Implementing Control Flow Analysis for
Security Protocols

Mikael Buchholtz*

DRAFT of October 1, 2003

The control flow analysis of the process calculus LYSA [3] provides a way of
analysing authenticity properties in security protocols. This report describes
the implementation of the analysis and proceeds by transforming the analysis
into formulae of Alternation-free Least Fixed Point logic. These formulae
serve as the input language of the Succinct Solver [8] that, thus, can be used
to compute the analysis result.

1. Introduction

This report describes the technical results in the development of the implementation
of the control flow analysis for the process calculus LYSA [3]. The implementation has
been used to analyse a number of authentication protocols as reported in [3]. The overall
implementation strategy is to provide a generation function, G(P), that given a LYSA
process P returns a formula in Alternation-free Least Fixed Point logic (ALFP). ALFP
is a powerful fragment of first-order predicate logic and an ALFP formula interpreted
over a finite universe serves as the input to the Succinct Solver [8]. In return the Succinct
Solver gives the smallest interpretation of the predicates that satisfies the formula. By
encoding the analysis components as predicates and describing their inter-dependencies
as specified by the analysis in ALFP, the Succinct Solver, thus, provides a tool for
computing the analysis components.

This implementation strategy requires that notation is changed from the format of the
original analysis in [3] into ALFP and this transformation is the topic of Section 6. Before

*This work is funded by the Information Society Technologies programme of the European Commission,
Future and Emerging Technologies, under the IST-2001-32072 project DEGAS.

getting that far, however, a number of other points requires more care and are handled
separately in Section 2 to 5. Each of these sections transforms the former analysis into
a new analysis resulting, finally, in the generation function, G(P), in Section 6.

Each new analysis is shown to be sound with respect to the previous analysis; that is,
it is shown that the new analysis also provides a solution to the previous analysis. Each
soundness results is stated as a lemma and the overall soundness of the implementation
is shown by combining the lemmata in Section 9. There it is also conjectured that the
converse property of soundness, called completeness, also holds.

The development described in this report closely follows a corresponding development for
the Spi-calculus [2] described in [7]. Resemblances and differences from this development
are noted throughout this report. One difference is this the development in [7] applies
a number of techniques to gain a low complexity according to a rather pessimistic cost
measure. In this report, the focus is instead on developing an implementation that
closely corresponds to the original analysis as stated in [3]. Thus, optimisations for
speed and space consumption of the solving procedure is not a part of this work though
practical experiments shows that the implementation runs in cubic time in the size of
the process that is analysed.

2. The Starting Point

2.1. LySaA

LySA [3] is a process calculus for security protocols. It uses terms, F, to describe
names, variables, and symmetric key encryption, respectively, according to the following
grammar:

E:x=n | z | {El,---,Ek}f%[destE]

Here, the sequence of terms F, - - - , E}, are encrypted under the key Ey. These encrypted
terms are annotated with a so-called crypto-point £ to denote the place of encryption as
well as a set of crypto-points £ where the term is intended to be decrypted.

Processes are formed from the grammar

P = <E1,--- ,Ek>.P | (El,--- ,Ej; .’,Cj_|_1,--- ,:II]C).P |
decrypt E as {E1, -, Ej; Tjp1,- - ,wk}%o [orig L] in P |
(vn)P | 'P | PP, | 0
The process (E1,---,Eg). P sends a sequence of k terms on a global network before
proceeding as the process P. The process (E1,--- ,Ej;; <41, ,zk). P receives such a
k-ary message and matches the first j terms in the message against the terms E1,--- , E;.
If they are component-wise equal then the variables z;,1, -+ ,z; become bound in P to

the remaining k — j terms and P is then executed. This kind of pattern matching also

E ¢ T Terms

P € P Processes

xz € X Variables

n € N Names

¢ € C Crypto-points

Table 1: Types used in the syntax.

occurs in decryption decrypt E as {E1,--- , Ej; Tj41,- - ,xk}eEo [orig L] in P where the
term F is attempted to be decrypted. Corresponding to encryption, this construct is
annotated with a crypto-point £ to denote the place of decryption along with a set of
crypto-points £ describing where F is indented to have been encrypted. The remaining
process expressions are restriction, replication, parallel composition, and the terminated
process, respectively. The calculus has a reduction semantics, which is defined in [3]. To
be precise about types of the syntactic categories and the meta-variables used to range
over them these are summarised in Table 1.

2.2. The Original Control Flow Analysis

The original version of the control flow analysis from [3] is restated in Table 3. The
overall idea of the analysis is to track the messages that are communicated in an analysis
component x along with a component p holding the possible values that variables may
become bound to. The version of the analysis given in Table 3 incorporates a reference
monitor: while tracking the control flow information, the analysis also checks whether
the annotations of encryption and decryption points are violated. If that is the case,
the error component 1) reports this by including the pairs of crypto-points for which the
annotations do not hold.

Table 2 summarise the types of the analysis components. Note that since the semantics
of LYSA, as given in [3], applies a-renaming of variables and names, the analysis uses
a notion of canonical names and variables. The notation |z| signifies the canonical
variable of z while |X| is the set of canonical variables. A similar notation is used for
names. Furthermore, the analysis uses a set membership operator, g, which ignores the
annotations on encrypted terms.

p : |X]— p(V) Variable environment

k€ p(VY) Network component

0 € pV) Local term cache

P € p(CxC) Error component

V eV Values — terms without variables

Table 2: Components used in the original analysis .

[n] €6 p(lz]) €6

pEN:6 p Ex:0
/\;-czop |=E191/\
YWo, Vi, Vi : A Vi€ 0 = {Wi,---, {,O[destﬁ]eﬁ

p EA{EL, -, B}y, [dest £]: 0

A p EEi:0; A
YV, Vit AL Vi€ = (i, Vi) €ERA
pk EP Y
p,k E(Ey,--+ ,E).P:v

N_ip | Ei: 6 A
V{Vi,- Vi) €k Ny ViEGi = AL Vi€ p(lzi]) A
pk EP: Y
pok E (B, Ej; T, ,38). P

p EE:0 AN N_yp EE:0;A

V{Vi,- Vil [dest L] € 0: AL ViE®; = Ay Vi€ p(lzi]) A
(—(el'nl e)= (£,1)e) A

p:k EP iy
p,k [=decrypt E as {Eq,--- ,Ej; Tj41,--- ,mk}éo [orig £] in P : 4

pk EP:Y p,k =Py
ok = (mP v b EIP
= P, - =D :
P;K|_11/JAP,H|_2¢ p,f@}:O:@[r

P K |:P1|P25¢

Table 3: The original analysis of terms, p = E : 6, and processes, p,x = P : 1.

In the following sections the formulation of the analysis is changes in order to provide
ALFP formulae that correspond to the original analysis. To distinguish the individual
analyses, the |=-symbols used in analysis judgements will be annotated with different
superscripts. The same goes for the analysis components except in the tables where
confusion is unlikely to occur.

3. From Succinct to Verbose

The analysis in Table 3 is a succinct Flow Logic [9] meaning that there are analysis
components placed on the right-hand side of the judgements. That is true both for
the component 6 in the judgements for terms, p = E : 0, and the component % in
the judgements for processes, p,x = P : 9. This Flow Logic style, in effect, creates
a local scope for the analysis components 8 and 1. The ALFP logic that the analysis
will be transformed into does, however, not provide scoping mechanisms for predicates.
Since the analysis components will be transformed into predicates the first step will
be to ensure that all analysis components have global scope. This can be achieved by
transforming the Flow Logic into verbose form [9] where all components are placed on
the left-hand side of the judgement.

The technique for transforming a succinct Flow Logic into a verbose one is standard [9]
and proceeds by adding labels in the syntax at all the places where succinct judgements
are used. Secondly, the succinct component, say 6, is replaced with a global mapping,
say 0", that for each label returns the corresponding succinct component.

By inspecting the analysis in Table 3, it is clear that the judgements of terms are used
at all applied occurrences of terms. Consequently, the syntax of LiySA is instrumented
with labels, [€ Lab, at all such occurrences yielding the syntax of labelled LySA:

E == ot | 2 | {Eb, ... ,E,lc’“}élo[dest /.',ls]l
0
l,
P o= (Eila 7E]l<;k>P | (E;ila aE]‘J; Ljt+1y " aa;k)P |
; ¢ . .
decrypt E! as {Eil,--- B @, ’xk}EéO [orig L] in P |
(vn)P | 'P | PP, | O

The semantics of labelled LYSA completely ignores the labels and, consequently, the

p : |X] = p(V) Variable environment
k€ p(V) Network component
6V : Lab — p(V) Global term cache

P € p(CxC) Error component

I € Lab Labels on terms

Table 4: Components used in the verbose analysis =".

[n] € 6(0) p(lz]) € 6(l)
p,G |='u nl p79 |=v .’El
Ak p, 0 =Y BN A
YWo, Vi, Vi s Al g Vi€ 0(l;) = {VA, -, Vi}i, [dest £] € 6(1)
p. 0 =Y B}, Bk} [dest L]
0

Af:l p79 'zv Ezl1 A
YVi,- -, Vit /\§:1Vi eG(lz) = <V1, ,Vk> ISILAN
p, K, 0,0 =Y P
py K, 1,0 Izv (Eil7 ,EL’“)P

/\‘zz.zl p70 ':v E‘zl1 A
V(Vi,--- Vi) € m s Aoy ViEO(l) = (N, Vi € p(la]) A
p;”’;¢76|=v P)
p,ﬂ,¢,0 ':v (Ei17 7E;J7 Tjy1, " 7$k)'P

p,0 £V EY AN_y p,0 =Y ES A
V{Vi, -, Vi}{,[dest £7€0(): N, ViEO() =
(Ai'c:j-i—l Vi € p(lzi]) A
UgLve gr)y= (00 ed A
p? H? ¢70 '=U P)
P;’%%o Izv decrypt E'as {Ei17 T JE;j; Tjp1s- - Jmk}gEéO [orig ‘C] in P

pJK‘7¢70':UP p?K:JwJe':’UP
psk, 0,0 EY (vn)P Pk, 0,0 =V I P

Pafiaiﬁ,@ ':v P A p,H,¢,9 'Zv Py
pa"iawag Izv P1|P2

Paf@ﬂﬂ,g 'Zv 0

Table 5: Verbose formulation of the analysis. Note that € is referred to as 6V elsewhere
in this report.

two variants of the calculus are equivalent in every practical aspect. When distinction
between the two variants is necessary |E'| signifies a LYSA term that is the result of
removing labels from the labelled LySA term E' while | P| signifies the homomorphic
extension of this function to processes.

To anticipate the development in Section 5, the sets of crypto-points in annotations have
also been instrumented with labels [€ Lab. These labels will be ignored for now and
to avoid confusion they are left out until Section 5 where they are needed.

The succinct formulation of the judgements for terms that uses 8 will, thus, be trans-
formed into a verbose formulation that uses 8¥ as described above. The analysis com-
ponent 8Y will sometimes be referred to as a global term cache, since it for each label
caches the values that the term with that label may evaluate to.

The succinct formulation of the observation predicate 1 may be rewritten in a similar
manner by introducing a “global observation cache” to map new labels added the syntax
to the values of the observation predicate at that point. However, it turns out that
actually already is a global component in the original formulation of the analysis and
can, therefore, equally well be written in verbose form.

With these two modifications the analysis uses the components summarised in Table 4
while the analysis itself is given in Table 5. Note that this analysis is written in the same
Flow Logic style as the initial analysis of the Spi-calculus [7, Table 1].

The following lemma expresses that this verbose analysis is sound with respect to the

original analysis:

Lemma 1 The analysis =" in Table 5 is sound with respect to the original analysis =
in Table 3. That is

(1) If p,6" =" B! then p = |E'] : 6°()
(2) If p ks, 6° E P then p,r = | P] : .

Proof Both (1) and (2) can be proven by straightforward structural induction in the
definition of =¥ in Table 5. Case (1) The cases of names and variables are base cases
while the induction hypothesis must be used in the case of encrypted terms. Case (2)
rely on (1) in the case of output, input, and decryption. The details of the proof are
given in Appendix A.1. d

4. From Infinite to Finite

The analysis is specified over the infinite set of values, V, that contain infinitely many
terms built from names and encryption. This poses a problem for the implementation

strategy, since the analysis should be transformed into ALFP formulae interpreted over
a finite universe. This section addresses this problem by encoding sets of terms into
tree grammars and give a new analysis that represent sets of terms by the finite set of
grammar rules.

Example 1 As an example of where infinite sets occur in the analysis consider the
LYSA process (ignoring for the moment the annotations of crypto-points):
P def by o11¢: layla 0
= (n).0[!1G). ({22 },)-
The process sends the terms n,{n}g, {{n}x}x, {{{n}tx}x}k,... over the network and in
doing so it binds the variable z to each of these values. Consequently, the analysis
p K, 9,0 = P specifies that the infinite set {|n], {|n]} k), {{I7)} 1k} k]>-- -} must be a
subset of p(|x]). O

The transformation of the analysis into a finite representation goes in two steps. The
first observation concerns the way that sets of values are used by the analysis =Y in
Table 5: for each term, E', the analysis of terms specifies the set of values 6”(1) that the
term may evaluate to. The analysis of processes also collects sets of values in p and k
but these sets are manipulated in “blocks of values” that correspond to the sets in 6.
It is, for example, always the case that if one of the values from 6”(l) is required to be
in p(|z]) then all other values of %(l) are also required to be in p(|z]).

As a consequence of this first observation, the analysis of processes in Table 5 can be
transformed into an equivalent analysis where p and x collects sets of blocks of values
rather than sets of values. The actual values in these blocks are still collected in 6 and
a blocks can, therefore, be represented by the label that is needed to access the values
in 6¥. For example, p : |X] — p(V) can be represented by p/ : |X| — p(Lab). The
intuition is then that even though pf(|z]) is a set of labels then it actually describes the
set of values given as the union of applying 8” to each of the labels in pf(|z]), i.e.

ollz) = |J 60
lep/ ((z])
The rule for the analysis of variables, for example, can then be written as
vi' € p([z]) - 6° (1) C 0°(D)
pl, 0 = ot

which is equivalent to the rule in Table 5, though each of the elements I’ in p/ now has
to find their values through 6°.

Similar modifications can be made to s throughout, thereby letting s/ € p(Lab*). In
the resulting analysis, sets of values (i.e. possible infinite sets of terms) only appear in

0" so the further development will concentrate on a finite representation of this one
component. This will be the second step of the transformation to a finite analysis.
To prepare for this development some theory of terms is reviewed in the next section
primarily based on [5].

4.1. Terms, Tree Languages, and Tree Grammars

A (single sorted) signature, 3, is a finite set of function symbols that each are associated
with a natural number from Ny called an arity. Signatures will be written using the
notation {f;,g;, -, hi} meaning that f is a function symbol with arity ¢ while g is a
function symbol with arity j, etc.

Terms are built by applying function symbols to other terms and sometimes also to
elements of an arbitrary set X. The set of terms over a signature ¥ and a set X is
defined inductively as the smallest set, T'(%, X), such that

TEX)=XU{f(t1, - ,tx) | e 2Nt €eT(E,X)N-- ANt € T(E,X)}

If the arity of a function symbol, f, is 0 then the element f() in T'(3, X) is called a
constant and is often written simply as f. The set of terms generated purely from
application of function symbols to other function symbols, i.e. T(%,0), is called the set
of ground terms or the free term algebra over 3.

A set of ground terms may be regarded as formal language over terms. In this context
terms are called trees and, consequently, these formal languages are called tree languages.
A tree language can be generated from a tree grammar. A (regular, normalised) tree
grammar, G, is a quadruple (N, X, R, S) where

N is a set of non-terminals,

Y. is a signature,

R is a finite mapping of rules with functionality N — p(B(3, N)) where the set
B(X, N) is defined below, and

S is a start symbol from N.

If an element u is in R(A) then the pair (A4, u) is called a rule in the grammar and is
often written as A — u. Sometimes A will be referred to as the head of the rule while u
is the body of rule. The set B(X, X) of “rule bodies” is the subset of T'(X, X') where all
function symbols are applied only to elements of X but not applied recursively to terms:

BE,X) Y {f(Ar,- , Ap) | fu €SAAL EX A--- A Ap, € X))

Note that unlike 7'(2, X) the set X is not included in B(Z, X).

A tree grammar G = (N, X, R, S) can be used to generate a set of ground terms. The
set generated by starting from a non-terminal A for which there is a rule A — u in R
is found by recursively substituting bodies of rules into » until a ground term is found.
This set is denoted L(G, A) and is defined inductively as the smallest set satisfying

LG, A) = {f(tr,- . tx) | f(As,..., Ay) € R(A) A
t1 € L(G,Al) N...Ntg € L(G,Ak)}

Notice that L(G, A) is indeed a subset of T'(X,). Since, the rule mapping R is the
only component of the grammar G that is mentioned by the above definition the set
is sometimes written L(R, A) instead of L(G, A). The tree languages generated by the
tree grammar G = (N, X, R, S) is the set of ground terms found by starting at the start
symbol S:

L&) ¥ LG,s)

Readers familiar with tree automata may be interested to recall that languages gener-
ated by a normalised, regular tree grammar, so-called reqular tree languages, are equiv-
alent to recognisable tree languages i.e. languages recognised by a bottom-up tree au-
tomaton. These languages are closed under union, intersection, and complementation
[5, Theorem 5].

4.2. Tree Grammars for the Analysis

The analysis uses sets of ground terms in the component 6 : Lab — (V). In particular,
67 (1) denotes the set of ground terms that the LYSA term E' may evaluate to. The idea
is to get a finite representation of the analysis by representing this set of terms as a tree
grammar G such that L(G) is precisely the set 8”(1). Each set in the range of 6V will be
represented by its own unique tree grammar, G}, in a component 8/ such that:

6°(1) = L(67 (1))

To precisely describe the tree grammars used by the analysis a signature is needed.
Consider the set

S {no | n € NYU {enci® | k€ NALECALE p(0)}

where names are regarded as constants (i.e. 0-ary function symbols) and enc is a k-ary
function symbol denoting encrypted terms annotated with crypto-points. Unfortunately,
S is not a signature, since it is an infinite set. Luckily, the analysis of any specific process
P only uses terms over a finite subset S. More precisely, the analysis of a process P uses
terms generated by the signature

def

Yivsa = {|n]o | n is a name used in P} U

{enci’f_l | k is the arity of an encryption annotated with £ and £ in P}

10

Often enc®*(Ag, A1, , Ay) will be written as {A1,--- , A} [dest £].

The tree grammars used in the analysis will represent the evaluation of labelled LySA
terms and the set of non-terminals for these tree grammars is chosen to be set of these
labels, Lab. The grammars will then have rules where the head is a label and the body
is from B(X1ysa, Lab) i.e. rules will be on the form

I — |[n] or
I = {li,++ I}y [dest £]

The tree grammars used in the analysis will on the form:
07(1) = G, = (Lab, Siysa, Ry, 1)

To lighten the notation one may disregard the set Lab and X1ys. since they are easily
derived given a specific process. Note also that the start symbol of any grammar G|
always is the label [and can therefore be left implicit. That means that only the rules,
R;, need to be mentioned in the analysis.

The rules of the grammars will be specified in the analysis of terms. The grammar G|
for a name n! simply contains grammar rule [— |n] in R;. The grammar, G;, for an

encrypted term {EY ... ,E,lc’“ }ZElo [dest £]' should include a rule] — {ly,--- ,lx }fo [dest L]
0

for the term itself in R; as well as rules for all the subterms E(l)o, “e- ,E,lc’c and their

subterms etc. Additionally, the grammars Gjy,--- ,Gj, for the subterms should also

contain rules for each subterm and, in fact, the rules will be ezactly the same as for the
rules for the subterm in G;. For example, if the rule mapping R; contains a rule [y — wug
then the rule mapping R;, will contain the exact same rule.

The tree grammar G; that describe the evaluation of a variable z! must meet the re-
quirement from analysis that uses blocks of values as sketched on page 8. This amounts
to requiring that

vI' € p!(l2]) : L(Gr) C L(&y)

The tree grammar G will include rules in R; on form [— u. The above subset require-
ment can be achieved by having rules in R; of the form | — u whenever I’ — u is in Ry
as well as copying all rules for non-terminals mentioned in u from Ry to R;. That is,
the analysis of a variable 2! should require that

VI' € pf(lz]) : Vu € Rp(I") : u € Ry(l)
as well as having a requirement for copying rules of subterms.

Notice that both the grammars for encryption and for variables require that rules are
copied between grammars. In fact, the exact same rules will be duplicated in all the
relevant grammars. That is, if both R;, and R, define rules for some label I then they
define exactly the same rules for [(i.e. Ry, (l) = Ry,(l)). Therefore, it is unnecessary

11

to keep copies of all the rule mappings for the different grammars and instead these
mappings are merged into one mapping, -y, representing in effect all the grammars.

Remember that the intuition of 6/ is that 67(l) should return the grammar G; =
(Lab, X1ysa, Ry, 1). However, all the components in the grammar can either be left
implicit or be represented by the on rule mapping v so 67 will be dispensed with all
together.

4.3. The Finite Analysis

The components in the finite analysis are given in Table 6. As describes earlier, the
analysis uses p/ and s to collect the labels of LYSA terms rather than the actual values
that the terms may evaluate to. The set of values that the terms may evaluate to is
given by tree grammars that all are represented by the rules in ~.

The analysis is given in Table 7 where the analysis of LYSA terms specifies the rules of
the tree grammars in the component . Note that the component 8/ is not a part of the
analysis specification but is implicitly represented by the rules in +.

The analysis of output simply specifies that the labels of all the LYSA terms that are
sent should be in kf. Correspondingly, input specifies that labels from x/ should be in
p! when variables may become bound. The pattern matching that takes place in input
specifies that two terms Eil and EéZ may match if the intersection of the sets of values
that they may evaluate to is non-empty; that is when L(v,l1) N L(7,l2) is non-empty.
The specification of matching in Table 5 uses the membership operator E that ignores
annotations on terms. In the same spirit an intersection operator @ is introduced as

51@SQZ{V651USQ|V€Sl/\VESQ}

and this operator in used for the intersection used for matching. The definition says that
if V is in S; then the annotations should be ignored when membership of Sy is checked.
The modifications of the analysis of decryption are similar to the changes made in input.

ol |X] = p(Lab) Variable environment

ki € p(Lab¥) Network component

v : Lab — B(31ysa, Lab) Rules in tree grammars

P € p(CxC) Error component

I € Lab Labels on terms / non-terminals
u € DB(XZ1ysa,Lab) Bodies of tree grammar rules

Table 6: Components used in the finite analysis =7.

12

In] € ~() VI' € p(lz]) s v(I') C (1)
p,y E 0l py E !
Mo py B Al LY [dest £] € 4(1)
v BB, By Yo [dest £]

Ny poy BT EY A, k) €k Ap R,y TP
p, k0, y =S (B, E¥).P
{ 1P |=f Eli
V(- 1) €k (N Ly, 1) RL(y, L) # 0) = (A4 1 € p(lai]) A
p, K0,y = P)
oty B (EY - EP; wip, -, zp). P

p.y EF B AN_y py EF B A
VAl zf[deStﬁ] v(1) : (N Ly l)ﬂL(% D) #0) =
(N 1 € p(lz]) A
EELVEEL) = (00 e A
p, K,y S P)

prrsthyy [/ decrypt B as {EY', - ’E;'j; Tjt1," - amk}é‘éo [orig L] in P

p, K,y EF P p, K,y EF P
p, k., y = (vn)P p, K,y EFIP

P;"'ﬁ;@b;’)’ |=f Pl/\P;ﬂ;%V sz Py
p;"‘::")baly ':f P1|1:)2

p, e, 0,y EFO

Table 7: Finite representation of the analysis. Note that p and k are referred to as p/
and k7, respectively, elsewhere in this report.

13

Example 2 Recall the process from Example 1 that on execution may generate arbitrar-
ily deep encryption:

P by z). ({z2}4.).0

The finite analysis =/ in Table 7 specifies that

K D Al 4} v: i = |n]

p(z) 2 {l,ls} lp = |n)
lo = {lo},
I3 — |k]
la = {la}y,

Note in particular, that the grammar for ly is “created” by “copying” the bodies, u, of
the rules where the head is in p(x) into bodies of rules lo — u. This creates a circularity
in the rule for ly such that L(v,l2) is the infinite set {|n],{|n]}x, {{In)} k) }1k]s- -}
i.e. precisely the set that x may evaluate to in Example 1. O

The step of going from an infinite domain to a finite domain using tree grammars was
introduced in the analysis of the Spi-calculus [7]. There, however, the analysis compo-
nents corresponding to p and k contain bodies of the grammar rules (i.e. elements of
B(X, Lab)) rather than the heads of the rules (i.e. elements of Lab) as the components do
here. The main motivation for this difference is that matching in LYSA takes place both
at decryption and at input rather than only at decryption as in the Spi-calculus. The
analysis of matching requires checks of non-empty intersection of two tree languages and
with the current definitions these checks require the use of non-terminals (i.e. labels).
By letting k contain such non-terminals the matching can be preformed in a analogue
way both in input and in decryption, which seem nice since they identical in the original
analysis.

Lemma 2 The analysis):f in Table 7 is sound with respect to the analysis Y in
Table 5. That s
(1) if pf,v E! E then p,0° E° E where for all | and all z

0°(1) = L(v,1)
p(l2]) = Urepr (1)) 0° (1)

(2) if pf 68, 4p,y =L P then p,k,1,0" =¥ P where p and 6 are as in (1) and
K= {(Vl,--- ,Vk) | <l1,---lk> € Iﬂ?f/\Vl € 91](11) ANV, € 0”(lk)}
Proof The proof goes by structural induction on terms and processes in the definition

of =/, The proof uses the definition of L(v,1) to establish the desired result as shown
in detail in Appendix A.2. O

14

5. Removing Polyvariance

Communication and encryption in LYSA are polyadic in the sense that they work on
sequences of terms. For the analysis, this means that e.g. s/ contains sequences of
labels. The predicate symbols of an ALFP formula is, however, interpreted over an
unstructured universe by the Succinct Solver'. Thus, sequences have to be encoded
directly into predicates of a fized arity. Furthermore, the tree grammars rules in -y
have a body that contains sequences of information, which also has to be encoded into

predicates.

The basic idea is to let the analysis work over families of predicates where each member
of the family represent a sequence of a specific length. Though the families will be
infinite, only finitely many predicates of a family are be needed to analyse a specific
process.

Recall from [3, Section 5] that a process P is said to have type (N, Ag, Agnc) Whenever
(1) it has no free variables, (2) its free names are in N, (3) all the arities used for sending
or receiving are in Ay, and (4) all the arities used for encryption or decryption are in
Agnc. Clearly, all the sets ANf, A,, and Ag, will be finite and only predicates based on
the last two sets are needed for an analysis of P.

5.1. Communication

The analysis describes the network component k by a family of relations:
kp ={m | misin ' and has length k}

such that &} C p(Lab¥). The transformation of the analysis =/ into an analysis =P
that uses the family of relations is quite simple, since in =P the analysis of output and
input only refers to sequences in s/ with the same length. Thus, the analysis =/ simply
need to refer to the corresponding ﬁi instead of /. The analysis of a process of type
(N, Aw, Agnc) will, consequently, only use the (finitely many) relations xj where k € A.

5.2. Encrypted Values

Encrypted values are represented in the tree grammar rules of y : Lab — p(B(X1ysa, Lab)).
The bodies of the rules are either a canonical name |n] or a polyadic k-ary encryption
{li,-.. ,lk}fo [dest £]. These encryptions will be represented by a family of auxiliary
relations, oy, such that an element in oy represents a sequence of k terms encrypted.

!The implementation of the Succinct Solver has an automatic encoding of structured terms into relations
over an unstructured universe that is not used by the analysis presented in this report.

15

A first suggestion for an encoding the k-ary term {l1,...,! k}fo [dest L] is to let oy contain
the tuple (I,1y,11,--- ,lx, £, L). Here, the first element, [, serves as a unique pointer into
ok, while the remaining elements are simply the content of the term. Now, v will be
changed into a component v/ that contains the canonical names as before but instead
of encryptions contains unique pointers, [, into oy.

The encoding works fine to get rid of the polyvariance and an analysis of a given program
of type (Nf, Ak, Agnc) will only need the (finitely many) auxiliary relations oj where
k € Agnc. However, the last element, £, is a set of crypto-points and since the Succinct
Solver works on unstructured universes it cannot directly represent these sets. Hence, yet
another encoding is needed. The idea is to introduce a unique label in the syntax at all
sets of crypto-points as already mentioned in Section 3 and add a cache ¢ : Lab — p(C)
to the analysis, which stores the sets of crypto-points for each label. The transformation
from the previous analysis =P will, for example, let

{lla T alk}leo[deSt ‘Cls] € 7(1)
be translated into
le ’yf(l) A (lalOa Tt 7lk7£a ls) ceop N Npeg Ve 6(18)

A similar encoding is used to represent the sets of crypto-points in the annotations of
decryption.

5.3. The Non-polyvariant Analysis

The components used in the analysis with polyvariance removed are shown in Table 8.
The analysis specification is given in Table 9 and in the judgements xk and o denote the
families of relations representing messages and encryption, respectively.

In the analysis of the Spi-calculus [7] sequences are encoded into binary/ternary relations
representing, in effect, a linked list. This encoding gives good time-complexity with
relation to a rather pessimistic complexity measure though it in practise is likely to be
slower that the encoding presented here.

pf 1 | X] = p(Lab) Variable environment
Kh € p(Lab") Network component
P € p(CxC) Error component

v? 1 Lab — p(|N] U Lab) Rules in tree grammars

or € p(Lab**? x C x Lab) Symmetric encryptions

0 : Lab— p(C) Sets of crypto-points

Il € Lab Labels on terms and sets of crypto-points

Table 8: Components used in the analysis =P where polyvariance is removed.

16

ln] € v(1) VI' € p(l=]) : v(I') S (1)
p,7,0,0 =P 0t Py, 0,0 EP ot

Af:O P75 075 |:P Efl A (laloalla T 7lk:€a ls) €or Nl € ’Y(l) NNeec t'e 5(15)
ps7,0,6 |=13 {Eilv T JE:ck }EE‘(I)O [deSt ‘Cls]l

Af:l p7’77076 'zp E£1 A (l17"' 7lk:) € ""'k/\p7’€7¢777075 |=p P
p7’€7¢7’770’76 ':p <Eil7 7E]lck>P

Ale P, 0,0 ':p Eéi A
V(L 0) € B (N L(y 1) @L(v, L) #0) = (Aiojp b € p(l2a]) A
p; k,,7,0,0 |=F P)
Paf@,iﬁ,%aafs ':p (Eila 7E;'j; Tjt1,"" amk)P

0,7,0,8 EP B' AApec £ €68(l,) AN_y p,vy,0,8 =P B A
V(U0 B 1) € o s 1 €x(l) = (N L(y, 1) RL(y, 1) #0) =
(Af=j+1 Ii € p(lzi]) A
(Lgoly)ve gols) = () ey A
P, k,,7,0,0 EP P)
P, K, 1,7, 0,8 =P decrypt E! as {E!* - ,E;.j; Tjp1, - ,mk}ééo [orig L] in P

paﬁa'lpaﬁy;a’ad':pp pﬂ’ﬁ)wa’y;o'ad':pp
Py Ky ,7,0,6 EP (vn)P ps K, ,7,0,6 EP 1P

p71€7¢7770—76'=p P A p;ﬂ,¢,7,0,5 'ZPPQ
P;ﬂ;¢;7;075|=p P1|P2

P, K, ,7,0,8 =P 0

Table 9: The analysis =P with polyvariance removed. Note that p, x, and v are known
as pf, kP, and 7P, respectively, elsewhere in this report.

17

Soundness of the analysis mainly concerns mapping the representation of encryptions in
o and 0 back to bodies in the rules of ~.

Lemma 3 The analysis =P in Table 9 is sound with respect to the analysis |:f m
Table 7. That is:

(1) If p?,4?,0,6 =P E then p!, v =/ E where for all |

(1) = {In]|In]erP()}U
{ {l,~ e}y [dest £] | 1" €P(l) A
(ll,lo,--- ,lk,é,ls) EoprNL= (S(ZS)}

(2) If p? kP, 3, AP, 0,6 =P P then pf k7 ,4p,v = P where v is as above and

vl = Uien fif

Proof The proof goes by structural induction and uses the uniqueness of labels, [, at
sets of crypto-points, £, to ensure that §(/;) is precisely the set £. A detailed proof is
given in Appendix A.3. O

6. Generating ALFP Logic Formulae

The next step is to create a generation function, G, which takes a process and returns
an ALFP formula. The function is defined on the structure of terms and processes by
taking each of the rules in the analysis P in Table 9 and giving an ALFP formula
equivalent to the hypothesis of these rules. Such an equivalent formula is relatively easy
to find, since the analysis =P is specified using analysis components over elements from
a finite, unstructured universe.

The generation function is given in Table 11 and uses the convention that all relations
(that is all analysis components that are powersets) are interpreted as predicates with the

p? € p(lX] x Lab) Variable environment

Kb € p(Lab") Network component

P € p(CxC) Error component

79 € p(Lab x ([N] U Lab)) Rules in tree grammars

or € p(Lab**? x C x Lab) Symmetric encryptions

09 € p(LabxC) Sets of crypto-points

I € Lab Labels on terms and set of crypto-points

Table 10: Predicates used in the ALFP formula generated by G(P).

18

G(n") = (L, n])
G(a') = Vl':p(lz],lI') = Vu: vl u) = v(l,v)

(Mo G(E)) A

Bl ElF Y [dest £4)) =
g(({ ! k }EOO[®])) Uk(lalﬂy" . alkaga ls) /\’Y(lal) ANNpec é(lsaﬁl)

G(0) = true
G((EL, -, E). P) = AL GE) Arg(l, -+ k) AG(P)

g((Eila :E;'j; Tjt1,° " ,:L'k).P): Ag:l g(Efi) A
VI, - k(1) =
(Ni—y NEI(I;, 1)) = (A p(l@il 1) AG(P))

Q(P1|P2) = g(Pl) /\g(PQ)
G((vn)P) = G(P)
G(!p) = §G(P)

G(decrypt E! as {E{l,--- ,E;-j; Tjgtl, - ,a:k}ééo [orig L] in P) =
G(EY) AAperd(ls,l) AN_g G(EF) A
vllal(l)a e JZ;QJKIJl; : Jk(llal(]a e alz:aﬁlalfs) A ’Y(lall) =
(N_o NEI(l},1;)) =
(A§:j+1 p(lzi], 1) A
(=0(l5,£) v =d(ls, £1) = (€', £) A
Gg(P))

Vll,ll: (E!u j\fc(u) /\y(ll,u) /\’)’(lg,u)) = NEI(ll,lz)

/\/\kE.AEnc

Vl13l2: (311171107" . 3l1k;£1)l13)l127120;' o 712k7€27128 :
ak(lllalIO) e ;llkazlalls) A
or(ly, 120, Lok, o, las) A
NEI(llo,lg()) Ao A NEI(llk,lgk) A
Y, 1) Ay, 1))
= NEI(ll,lz)

Table 11: Generation of the ALFP logic formulae. The specification of the predicate
NEI is added to the formula produces by G(P) predicate when P is of type (Nf, Ak, Agnc)
and uses the canonical names in M. Note that p,x,vy, and § are known as p9, kP, 9,
and ¢9, respectively, elsewhere in this report.

19

notational convention that set membership e € R is written as the predicate R(e). Three
of the components in the analysis =P are not relations but rather functions with type
f:+ A — p(B) as shown in Table 8. Such functions can be represented isomorphically
by a relation R € p(A x B) and the functions

rel(f)(a) = {(a,b) | b€ f(a)} and its inverse fun(R)(a) = {b | R(a,b)}

may be used to map between the two domains. The new domains of the analysis com-
ponents are given in Table 10 while the formulation of the generation function is in
Table 11. For the components where the domain has changed from functions to re-
lations the following transformations have been performed on the specification of the
analysis:

e Membership, such as b € f(a) is written f(a,b).
e Subset, such as f(a) C f(b) is extended to Vz : f(a,z) = f(b,).

e Quantifications are expanded so e.g. Vz € f(y) : ... is written Vz,y : f(y,z) = ...

Finally, the analysis =P in Table 9 contains tests of non-emptiness of language intersec-
tion such as
L(’Ygall) @L('ygab) 7é 0

Following closely the development from the analysis of the Spi-calculus in [7] this test is
axiomatised in a global auxiliary predicate NEI. The axiomatisation is given in Table 11
and is defined on the structure of values in the body of the grammar rules in «?, namely:
names represented by |n] and encryptions represented by labels. Note that the first
part of the axiomatisation uses the set of canonical names, N, used in the process
that is analysed. The second part recursively checks all sub-components but leaves out
checks on the crypto-points since this is an axiomatisation of @ and not ordinary set
intersection N.

As a final comment to Table 11, note that for clarity of the presentation the generation
function does not adhere to the strict syntactic rules for stratified negation required by
the Succinct Solver though these will be enforced in the implementation as described in
Section 8.

Lemma 4 A solution to the formula generated by the function G defined in Table 11 is
sound with respect an analysis result which satisfies the analysis =P defined in Table 9:

(1) If (p9,79,0,69) satisfies G(E) and the formula for NEI then p!, 4P, 0,6 =P E where
pf = fun(p?), 7 = fun(+9), and 6 = fun(89).

(2) If (p%,KkP,,v9,0,09) satisfies G(P) as well as the formula for NEI then also
of kP), AP, 0,0 =P P where of, AP, and § are as above.

20

Proof That NEI(ly,l3) is an axiomatisation of L(vy,l1) @ L(7,l2) can be seen by ex-
panding the definitions of the latter and getting the first.

The rest of the proof proceeds by structural induction on terms and processes and
involves only straightforward expansions of definitions of set membership, set inclusion,
etc. and simple rewriting of the formula. g

7. Dolev-Yao Attacker

A protocol, specified as a LYSA process, will be analysed together with a so-called Dolev-
Yao attacker. In [3], the attacker is specified as a formula, .7-"RD,\\2, that describes the
capabilities of the attacker through its impact on the analysis components. The intend
is that the analysis components should satisfy both the analysis specified in Table 3 as
well as the formula FRY and this intend is formalised as Theorem 5 in [3].

One implementation strategy for the attacker is to let the formula]:RD,\\,Q undergo the
same transformations as the analysis did in Sections 3 to 6. This strategy, however,
involves a rather heavy proof burden since one must prove both that each transformation
gives an equivalent formula as well as prove that the transformations correspond to the
transformation done for the analysis.

Another implementation strategy, which is pursued in this report, is to analyse a process
Qharg for which the analysis is equivalent to formula FRD,\\,(' . This implementation strategy
was originally applied in [6]. That it is plausible to adapt this strategy to LySA is
suggested by Theorem 4 in [3] that reads

“There exists an attacker Qpqrq of type (Nt, Ak, Agnc) such that the formula
Py E Qhard : ¥ is equivalent to the formula FRY of type (Nf, Ag, Agnc).”

Furthermore, the proof of Theorem 4 in [3] gives such a process defined as?

def

Qnard = (ke QT | heAee @5 | heae Q5 | kea, QF | Qs)
where .

Q=0 21, ,2).0

kK=(; 2).(; z).decrypt z as {; 21, - ,zk}ﬁ; [orig C] in 0

Q%= 20).-- G zx)- ({z1,- 2}y [dest €1). 0

Qf =G 21)---- G z)- (21, ,). 0

QF = (ne).0 [(n1).0[-+ | (nn).0| (5 2).0
and it is assumed that 1 € Ay, all the variables z, zg, 21, -+ , 2; all have the canonical
representative zo, and Ny = {ni, -+ ,nn}.

%Certain typos from [3] have been corrected in the definition of Qnard.

21

An ALFP formula, which is equivalent to fRD,\\;, can then be found by taking G on Qperg-
However, G is defined on labelled LYSA where labels are added at the applied occurrences
of variables as well as at sets of crypto-points. To transform Q.4 into a labelled LySA
process with an equivalent analysis two unique labels, [, and I¢, are added giving the
following process

def
where

RE=(; 21, ,2).0

RE=(; 2).(;). decrypt 2!* as {; 21, -~ ,zk}i;. [orig C¢] in 0
0
le

RE=(20)---- G a)- ({=1", o 2 ﬁg.[dest cle]*).0

RE=(z1).- - (zw) (2, ,2i).0

RE = (nJ!).0 [(nf).0] -+ [(nls). 0| (; 2).0

The reason for adding only two labels is that the knowledge of the attacker then does not
need to be duplicated. This also gives the primary challenge in arguing that the analysis
of Rparq is equivalent to the analysis of Qperg- That this indeed the case is stated in
Section 9 and the proofs uses the following two lemmata. The first lemma states that
the insertion of only one label, [,, suffices:

Lemma 5 Let R}, be as Rpeq except that all labels I, are replaced by unique labels.
The the analysis of R}, , is then logically equivalent to the analysis of Rpgrq:

Py Ky ¥, 0° IZU R;“".d’lp if and only if P, Ky, 60" |:U Rhard-

Proof The proof in Appendix A.4 proceeds by applying the analysis =" in Table 5 to
Rporq and RZ orq and showing that the resulting formulae are equivalent. O

The second point is that the analysis does not change because Rj4q only uses one label
for all sets of crypto-points.

Lemma 6 Let R}, , be as Ryarq except that all labels lc are replaced with unique labels.
The formula for the analysis of Ry, is the logically equivalent to the analysis of Rparq:

pfa kP, 9P, 0,0 ‘:p R,i:ard if and only if pfa kP, ,9P, 0,0 ‘:;D Rhara

Proof By inspecting the analysis =P in Table 9 is becomes clear that the analyses of the
two processes have syntactically identical requirements except for formula including 4.
In these formula, the analysis of Rpe.q referrers to d(l¢) exactly at places where the
analysis of R . referrers to either §(I¢) or §(i¢). The formula in the analysis of Rpgrq
requires 6(l¢) = C. Similarly, the analysis of R}, requires that §(I¢) = 6(I¢) = C for

22

all ¢ € Agne. Thus, the two formula are syntactical identical except for renaming 6(If)
and §(1¢) to §(I¢) and all these sets are required to contain exactly the same elements.
Clearly, the two formulae are then logically equivalent. O

8. Implementation

The analysis is implemented in SML/NJ [1] as an ML function, analyse, that computes
an ASCII version of an ALFP formula on the basis of Table 11 and the attacker Rpq.q
in Section 7.

The function analyse takes as input an ML data structure which represents a labelled
LySA process P of type (Nf, Ag, Agnc)- In return it gives an ALFP formula that is the
conjunction of

1. The result of G(P).

2. The result of G(Rparq) on a version of Rpgqy where A, and Ag,c is taken from the
type of P.

3. The formula NEI taking Ag,. to be the set given by the type of P. The auxiliary
set M. used in the specification of NEI in Table 11 is taken to be all the names in
P together with the name n,.

The resulting ASCII version of the ALFP formula can directly can be given to the
Succinct Solver that in return computes the smallest analysis components that satisfy
the formula i.e. the analysis of P together with an arbitrary attacker.

The Succinct Solver requires that negation is stratified and this is enforced in a strict
syntactical way: all negated queries on predicates in the " stratum must be placed
syntactically after any clauses which may add elements into relations in strata less
than i.

The analysis in Table 11 uses negation to test whether elements are missing from § in
the clause for decryption. To adhere to the stratification requirements these tests have
to be placed at the end of all the clauses that may add elements to §. This is done in
two steps: first, add all elements in the tests into an auxiliary relation PQD (Pending
Queries to §). This is done by replacing a clause such as

(=0(l5, €) v =~d(ls, £')) = (€', 0)

with the clause
PQD(l'S, 0,15, 0")

23

Second, at the end of all clauses the following clause is added

VIL 0,1, 0" s PQD(I, 0,1, 0') =
((=0(l5,0) vV (15, £) = 9(¢,4))

With these modification ML implementation closely follows the analysis given in Table 11.

9. Conclusion

The overall soundness of the implementation can now be summarised in the following
theorem:

Theorem 1 (Soundness of the analysis) The generation function in Table 11 is sound
with respect to original analysis in Table 3. That is,
(1) If (p9,79,0,89) satisfies G(E) and the formula for NEI then p,x = |E| : 0
(2) If (p9,KP,9,~v9,0,09) satisfies G(P) as well as the formula for NEI then p,x |
LP] - 5.

where p,k and 0 are found by composition of the transformations in Lemma 1 to 4.

Proof The theorem follows from Lemma 1 to 4. O

Additionally it is conjectured that the converse property of soundness, called complete-
ness, also holds. This seems reasonable, since the analysis of the Spi-calculus in [7]
follows a similar implementation strategy and it is indeed complete.

Completeness requires that all labels on terms and sets of crypto-points are unique.
For this purpose, the function [E7 is introduced to denote a labelled LYSA term that
is the result of adding unique labels to the LYSA term E. This function is extended
homomorphically to processes.

Conjecture 1 (Completeness of the analysis) The generation function in Table 11
is complete with respect to original analysis in Table 3. That is,

(1) If p,k = E : 0 then there ezists a (p?,79,0,09) that satisfies G([ET) and the
formula for NEI.

(2) If p,k = P : 1 then there ezists a (p9,kP,9,v9,0,89) that satisfies G([P]) and
the formula for NEI.

24

Furthermore, the analysis =, =, =7, =P, and G are all complete with respect to the
previous analysis.

Similar to the correctness of the analysis, the correctness of the implementation of the
attacker can also be split into a soundness and a completeness result:

Theorem 2 (Soundness of the attacker) G(Rpqnq) implies F5py.

Proof A consequence of the soundness Lemma 4 is that G(Rpgq) implies that there
is an analysis p/, kP, 9,vP, 0,0 EP Rharq- By Lemma 6 this analysis is equivalent to
an analysis p/, kP, 1, 4P, 0,0 =P R}, where the labels on the crypto-points are unique.
Then by the soundness Lemmas 3, 2, and 1 there is also an analysis p,k = | Rpara] : %
which by Theorem 4 in [3] is equivalent to FRy- O

Conjecture 2 (Completness of the attacker) FRY implies G(Rpara)-

Proof By Theorem 4 in [3] then F2Y implies p, & = Qpara : ¥ which by Conjecture 1
implies p, k,9,0" =¥ [Qhara |- By Lemma 5 then also p, k,1%,0” =Y Rparq noting that
the labels on sets of crypto-points are ignored in this analysis. By Conjecture 1 and
Lemma 6 then also G(Rpgrq)- O

This concludes the technical description of the implementation of the analysis of LYSA.
Apart from providing such an implementation, this report also serve a witness that
the implementation strategy described for the Spi-calculus in [7] carries over to other
related calculi such as LYSA. The main difference between LYSA and the Spi-calculus
is that LYSA introduces pattern matching. In the implementation this has lead to
choosing different domains for p and x than in [7] when implementing the tree grammar
encoding. Furthermore, this report contains a more detailed explanation of the tree
grammar encoding than [7] and it describes an implementation of a Dolev-Yao style
attacker.

References

[1] Standard ML of New Jersey. http://www.smlnj.org.

[2] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols — The Spi
calculus. Information and Computation, 148(1):1-70, 1999.

[3] C. Bodei, M. Buchholtz, P. Degano, F. Nielson, and H. Riis Nielson. Automatic
validation of protocol narration. In Proceedings of the 16th Computer Security Foun-
dations Workshop (CSFW 2003), pages 126-140. IEEE Computer Society Press,
2003.

25

[4]

[5]

[6]

[7]

8]

[9]

C. Bodei, M. Buchholtz, P. Degano, F. Nielson, and H. Riis Nielson. Efficient me-
chanical analysis of protocol narration. Manuscript.

H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and
M. Tommasi. Tree automata techniques and applications. http://www.grappa.univ-
lille3.fr/tata/, 27th September 2002.

F. Nielson, H. Riis Nielson, R. R. Hansen, and J. G. Jensen. Validating firewalls in
Mobile Ambients. In CONCUR 1999 — Concurrency Theory, volume 1664 of Lecture
Notes in Computer Science, pages 463-477. Springer Verlag, 1999.

F. Nielson, H. Riis Nielson, and H. Seidl. Cryptographic analysis in cubic time.
Electronic Notes in Theoretical Computer Science, 62, 2002.

F. Nielson, H. Riis Nielson, and H. Seidl. A succinct solver for ALFP. Nordic Journal
of Computing, 9:335-372, 2002.

H. Riis Nielson and F. Nielson. Flow Logic: a multi-paradigmatic approach to static
analysis. In The Essence of Computation: Complexity, Analysis, Transformation,
volume 2566 of Lecture Notes in Computer Science, pages 223-244. Springer Verlag,
2002.

26

A. Proofs

A.1. Proof of Lemma 1

The proof proceeds by structural induction in terms and processes. The induction hy-
pothesis is that Lemma 1 holds for all subterm or subprocesses of the expression consid-
ered.

Case (1)

(Names) Assume p,0° =Y n!. Then |n| € 0%(l) by the definition of =Y in Table 5.
Using the definition of = in Table 3 allows to conclude that p = n : 6%(l) i.e. that
p = |n'] : 6°(1) as required.

(Variables) Assume p,0° =Y z'. Then p(|xz|) C 6°(I) by the definition of =¥. The
definition of = can now be used to conclude that p = |z : 6(l) as required.

(Encryption) Let E def {EY, ... ,E,lc’“}ijlo [dest £] and assume that p,8° = E'. Us-
0

ing the definition of = then AF_, p,0v Y Efl so by the induction hypothesis also
A pEE ||_E'lej| : 0(1;). Using again the definition of =Y it also holds
YVo, Vi, Vit Ao Vi € 0°(1;) = {Vi, -+, Vi }op [dest L] € 6°(1)

which is precisely what is needed for to conclude that p = | E'| : 8(I) as required using
the definition of =. This concludes the proof of Lemma 1 case (1). Note that case (2)
has not been used to prove this part of the lemma.

Case (2)

(Output) Assume p, K,1,0" E° (Eil, e ,E’,lc’“) P. Then from definition of =Y the three
conjuncts in the hypothesis of the rule for output hold. From the conjunct A¥_; p, 8% =° EllZ
and Lemma 1 case (1) then A¥_| p = |E;] : 6°(l;) and from p, k,%,6” = P and the
induction hypothesis then p,x = | P] : 1. The final conjunct is the implication

VWi, Vi AL Ve 0t (L) = (W, Vi) €k

which is precisely the last conjunct needed to conclude p, s = (| E1], -+, [Ex])- | P] : ¢
by using the definition of =. Since there are no extra labels in this process then also
p,k = |(E1,---,Eg). P] : ¢ which is the required result.

(Input and decryption) are analogue to output.

(Restriction) Assume p,k,1,60" =Y (vn)P. Then p,k,1,0” EY P using the definition
of =¥ so by the induction hypothesis p,x = |[P] : 9. Using the definition of |=,
one may conclude that p,x | (vn)|P] : ¢ and since there are labels on n then also

p,k = [(vn)P] : ¢ as required.

27

(Replication and Parallel Composition) are similar to restriction while the case for the
(Terminated Process) trivially holds. This concludes the proof of Lemma 1. O

A.2. Proof of Lemma 2

The proof proceeds by structural induction on terms and processes over judgements of
I=/. The induction hypothesis is then that Lemma 2 holds for all terms and processes
that are immediate constituents of the term or process considered.

Case (1)

(Names) Assume p/,y |=f n'. Then |n| € «(I) by the definition of =/ in Table 7. Then

define 6%(1) « Liv,l) D {fO | fO € v()} 2 {|n]}- In other words, |n] € 6°(l) so by
the definition of = in Table 5 then p, " =¥ n! for any choice of p and in particular for
the one in Lemma 2.

(Variables) Assume p/,y =/ z!. Then VI’ € p/(|z]) : v(I') C ¥(I) by the definition of
=/ which is the same as (Urept (o)) v(I")) C 4(l). This states that the bodies of rules
in the grammar that have [as a head is going to be a superset of the bodies in all the
rules with I’ as a head. Consequently, the tree languages generated grammars are also
going to be supersets, i.e. (Uyepr(|z)) L(7:1)) € L(7,1). With the definitions of p and
6 from Lemma 2 it then follows that p(|z]) C 6%(l) and consequently that p,6? =¥ !
by the definition of =Y.

(Encryption) Let E = {E!,... ,E,lc’c }210 [dest £] and assume p/,y =/ E'. Then by the
0
definition of |=/ it holds that (a) A¥_y p/,7 £/ Ef and (b) {l1,--- I }; [dest £] € 7(1).

From (a) and the induction hypothesis it is known that A¥_; p,0? =° E'Zl’ which is the
first requirement for =% to be an analysis of E'.

Using (b) and the definition of L(7,![) it holds that
{{Vi,-- Vily [dest £] | Vo € L(7,10) A==~ AV} € Liy, 1) € L(,1)
With the definition of Y in Lemma 2 this is the same as
{{V1,--- ,Vk}ffo[dest Ll | Vo€ (o) N--- ANV €0°(l)} C6°(1)
or equivalently
YV € 0°(lo), -+, Vi € 0°(lk) {V1,-++ , Vii}}, [dest £] € 6°(1)

This is precisely the second requirement in =" and conclusively it holds that p, 8" =¥ E'.
This concludes the proof of case (1).

Case (2)

28

(Output) Assume pf k7 p, v =1 (Eil,--- ,E,lck).P. Then by the definition of =7/ in
Table 7 (a) Ab_, p/,y EF EY, () (- ,0k) € &/, and (¢) p/, k!, 9,y =/ P. Using
Lemma 2 case (1) and the induction hypothesis there are analysis of = corresponding
to (a) and (c), respectively. From (b) and the definition of k in Lemma 2 then

{(Vi, -, Vi) | Vi € 0°(l)) N AV € 0°(lg)} C

or equivalently
VVie0%(ly), - Ve € 0(lg) : (Vi,-++ Vi) €K

This is precisely the last requirement that is needed to use the definition of =Y in Table 5
to conclude that p, k,,0" =Y (Eil, e ,E,lc’“).P.

(Input) Assume pf kf, 9,y E=f (Eil,--- ,E’;-j; Zjt1, -+ ,Tk). P. Then by the definition
of =/ it holds that (a) /\g:1 ol Ef EY,

(b) V(oo k) €8T (AL (9 1) @L(y, 1) #0) = (¢)
where

(€ A lep (lzi)) Ap, sy ET P

The formula (b) may be rephrased (using the definition of @and 6”) to

VOG-) € kT s (AL TV Vi € 0°(1) AV EOY(L)) = (o)
or equivalently to

VAL D) € s YV € 0°(1), eV € 0°(15) 1 (N Vi 6°() = (o)

Next, first observe that if V' € 6°(I) and I € p(|z]) then V' € Upc,r(15)) 0°(1'); that is
V € p(|lz]) where p is as defined in Lemma 2. The formula above may then be rewritten
to

v(Ila al;c>_€ K’f : VW e ov(lll)a aij € ev(lé')avvj-i-l € 91}(;’4—1)"" Vi € ev(l;c) :
(Noy Vie 07 (1) = Njyy Vi€ p(lai)) Ap by =T P

taking advantage of Vj 1, ,V} being free in the hypothesis of the implication. Finally,
by using the definition of x in Lemma 2 and the induction hypothesis it is clear that

v<Vlla e "fkl) €EK: (/\{:1 V'Z E 91}(11)) = Ai?:j—kl ‘/;'I € p(LxZJ) A P, Ha,(;bae |:U P

Using the definition of =Y on this formula together with Lemma 2 case (1) for (a) leads
to the desired conclusion that p, k, 1,0 =Y (Eil, e ,E;.j; Tjq1, e ,Tk)- P.

(Decryption, restriction, replication, parallel composition, terminated process) The inter-
esting parts of decryption are analogue to input while the remaining cases are straight-
forward. This concludes the proof of Lemma 2. O

29

A.3. Proof of Lemma 3

The proof proceeds by structural induction over judgements of =P.
Case (1)

(Names) Assume p/, <P, 0,5 =P n!. Then |n| € vP(I) and with v defined as in Lemma 3

also |n] € ¥(I), which can be used to conclude p/,v =/ nl.

(Variables) Assume p/ P 0,6 =P 2. Then VI' € pf(|z]) : vP(I') C ~P(I). First, note
that with the definition 7 in Lemma 3 it clearly holds that v?(l1) C 4?(l2) implies that
v(11) € (l2) for any I; and lo. In particular it holds for the choices of I’ and I above so
viI' € pf(|z]) : v(I") C y(l), which is what is needed to conclude that p/,y =/ z! by the
definition of |=P.

(Encryption) Assume p/ 4P 0,8 =P {Eb ... ,E,lc’C }ZE(I)O [dest EZS]Z. From the definition of

=P then (a) AF_,p/ 7P, 0,0 EP Ef", which by the induction hypothesis can be used to
conclude A7 = Ef’ Additionally, (b) (I,1lg,l1,-- ,Ix, 4, 1s) € ok, (c) I € vP(l),
and (d) Apec ' € 6(ls). Note that since I is unique then §(l5) is precisely the set L.
Together with the definition of 7 in Lemma 3 (b), (c), and (d) can be used to conclude
that

{l1,-++ , L}y [dest £] € (1)

This, together with (a) may be used to conclude that p/,y =/ {EY ... E,i’“ }ZElO [dest £]".
0

Case (2)

(Output, Input) Simply note that if some m is in kj then also m € kU X for some
arbitrary set X. In particular, if m € ki then also m € k with the definition of x in
Lemma 3. This, together with straightforward application of Lemma 3 case (1) and the
induction hypothesis is enough to conclude the proof for output and input.

(Decryption) Assume that pf, kP 1), 4P, 0,6 =P P for
P % decrypt B! as BV, EY; jiq,--- ,xk}géo [orig L] in P’

Then the hypothesis in the rule for decryption also hold in the definition =P in Table 9 so
it e.g. holds that Apcr £ € 6(ls) and since I is unique then §(ls) = L. The precondition
of first implication in the hypothesis of the rule for decryption holds precisely when
V(U0 0, 0L 1) € oy 2 1T € 4P(1) holds. Using the definition of y in Lemma 3 then
it also holds that

{11, g ldest 6(05)] € 4(0)

For the choices of I, where the precondition of the second implication also holds, i.e.
where L(v,1}) @L(v,l;) # 0 holds, then the conclusion of the implications hold. This is

30

exactly as the corresponding conclusion in the rule for decryption in the analysis =/ in
Table 7 noting that £ = §(l;) and that £' = §(I%). Finally, the induction hypothesis and
Lemma 3 case (1) are needed to conclude the proof.

(Restriction, replication, parallel composition, and replication) are straightforward and
this concludes the proof of Lemma, 3. O

A.4. Proof of Lemma 5

Proof The proof proceeds by applying the analysis =" in Table 5 to both Rp.q and
R}, ., and showing that the resulting formulae are logically equivalent.

The processes Rpqq and R}, both consist of replication and parallel composition of
subprocesses. The analyses =Y, thus, result in formulae that are conjunction of the
analyses of the respective subprocesses. The analyses of the two processes are, thus,
equivalent if the conjunction of the analysis of each of the subprocesses are equivalent:

(1) Consider the respective analysis of Ri¥ = R¥ = (; z1,---, ;). 0. Since the processes
are identical their analyses are clearly logically equivalent.

(2) Both RY and Rk start by receiving a 1-ary message and binding it to z. The analysis
=" of this input gives that
g
V(1) € 6 : V1 € p(ze)

and that the remaining process should be analysed. That is, all 1-ary messages in s
will be in p(z,). Note also, that since all the variables in R}, (and in Rjp4.q) have the
same canonical variable the analysis will use p(z,) in the analysis of all subprocesses,
thus, sharing this information between them. The second input in RY and R also have
identical analyses.

The decryption in R gives the formula

p(ze) C0(11) A p(2a) C 6(l2) A
V{Vi, -, Vi) [dest £7 € (1) : Vo EO(l2) = AL, Vi € p(za) A
(La @ L'NVEZC) = (£,0,) €

where [and [o are unique labels that will only be used in this formula. The analysis
of Rperg gives an identical formula except that [, is used in the place for l; and Is.
Note that 6(l1) and 0(l2) contain the same sets and may therefore be replaced by 6(l,)
provided that no additional requirements are put on #(l,). That this is the case is argued
throughout the rest of the proof.

(8) Both RY¥ and RE start with k identical inputs that, of course, have identical analysis.

31

The analysis of R gives the formula

A V(VY €k:V € p(ze) A

Ao p(za) € 0(I3i) A

VVo, Vi, -+, Vi s Afg Vi € 0(ls;) = {Vo, -, Vi }ip [dest C] € 0(1y) A
YWV eb(ly) = (V)exr

where 39,131, -- ,l3%, and l4 are unique labels not used in any other formula. Notice that
every element in 6(l4) is also required to be in p(z,) since they must be 1-ary messages
of k. The formula for the analysis of R¥ is identical to the formula above except that all
the labels have been replaced by l,:

AE YV ER:V € p(ze) A

Ao p(zs) CO(ls) A

YVo, Vi, -+ Vit Ay Vi € 0(la) = {Vo, -+ , Vi }yy [dest €] € 8(1) A
VW:Vebl.) = (V)er

The first part of the formula requires that l-ary messages in x must be in p(z,) and
also be in 0(l,). These requirements are similar to the requirements from the analysis
of R5. The second part additionally requires that {Vp,--- ’Vk}lXZ/.O [dest C] is in 6(l,) but
since this value is also required to be a 1-ary message in k the formula is equivalent to
the analysis of RI¥.

(4) The analysis of R is

A YV €r:V € p(ze) A

Ny p(za) € 0(153) A
v‘/la 7‘/16:‘/269(152):><V15 aVk> €ER

where l51,- - - l5; are unique labels not used in any other formula. The analysis of Rfj
is identical except that all labels have been replaced with l,. Since all 6(l5;) contain
the exact same elements as 6(l,) and there are no new requirements on 6(l,) then the
analysis of R¥ is equivalent with the analysis of R.

(5) The analysis of R gives

(ne € O(lg) ANYV € 6(lg) : (V) € k) A
(/\;11 anJ € 0(171) AYV € 9(171) : <V> S K,) A
V(V)Y€ek:V € p(zs))

where lg,l71,+ -+ ,l7m, and lg are unique labels. Changing the labels in the formula to
ls gives an equivalent formula (in conjunction with the formula for the analysis of the
other subprocesses) since all elements in 6(l;) are also 1-ary messages in x and they will
therefore be in p(z,) and eventually 6(l,) anyway.

This concludes the proof of Lemma 5. 0

32

B. Asymmetric Cryptography

In [4], LySA is extended with asymmetric cryptography. This appendix covers the ex-
tensions made to the implementation to incorporate this new feature.

B.1. The New Stating Point

The syntax for LYSA terms, F, is extended with public and private keys as well as
asymmetric key encryption and becomes:

Euw= ... | m* | m™ | {By--, Bl [dest L]

The syntax for processes, P, is extended with a restriction operator that restricts a
key pair, i.e. the two names m™ and m™, along with a construct for asymmetric key
decryption:

P = ... | (vam)P | decrypt Eas{FE, - ,Ej; xzji1, - ,a:k|}%0 [orig L] in P

The analysis uses the same analysis components as before, i.e. the ones in Table 2, though
the set of values V is extended to contain asymmetric encryptions. The extensions to
the specification of the analysis are shown in Table 12.

lm*| €6 Im~] €é
A_op EEi:0;A
YWo, Vi, Vit AL Vi€t = {W,-- ,Vk[}f,o[dest Lled
p EAEL, - ,Ekl}éo[dest L]:6

p,k P
p,& | (ve m)P 9

pEE:0 N N_yp EEi:6;A
V{Vi, -, Vil}y,[dest £] € 0 : YV € 6 : V(m*,m™) :
{(Vo, Vgt = {m* m AN ViEO: = AL Vi€ p(lzi]) A
(el Al el)=(4,4)ey) A
pE EP: Y
p,k [=decrypt E as {|{Ey,--- ,Ej; 41, ,xk|}§0 [orig L] in P : 4

Table 12: Extensions to the original analysis in Table 3.

33

B.2. From Succinct to Verbose

Applied occurrences of terms and sets of crypto-points in annotation are all labelled,
yielding the following syntax:

E == ... | m* | m' | (B, Ey]% [dest £t
P == ... | (vam)P |
decrypt E! as {EY,--- ,E;-j; Tji1, - ’xk‘}f_@’j [orig £!] in P
0

The analysis of Table 12 is rewritten into succinct form using the labels at terms to refer
to the global term cache 6% as shown in Table 13. The analysis components used by this
analysis are the same as before i.e. the ones in Table 4.

m*] € 6(1) lm~] €6()
p,0 =¥ m+! p,0 = m~"
N .0 " B A
YV, Vi, -, Vit Al Vi €8; = {4, Villy, [dest £] € 6(1)
PO " BT - B [y [dest L]

Ps K,Z/J,e ':U P
paK‘ﬂ/}aa ':v (Vi m)P

p,0 EVEL A N_, p,0 = EE A
VAV, Vi, [dest £] € 00) < YV € 6(lo) : V(m*,m™) :
{VO,VH} = {m+7m_} A /\?:1% EO(;) = Ai=j+1 Vi € p(lzi]) A
(g L'Vl gr)=(6l)eyp) A
psk, 9,0 EY P
Py, 10,0 =¥ decrypt E as {{EY ... ,E;j; T, ,mk|}2éo [orig £'] in P

Table 13: Extensions to the verbose analysis in Table 5. Note that 8 is referred to as
0" elsewhere in this report.

34

B.3. From Infinite to Finite

The tree grammar encoding works as before though the signature for terms has to be
extended to include asymmetric encryptions. That is, X1yss becomes

def
ELYSA — ... U

{|m*]o | m™ is used in the processes P that is analysed } U
{lm Jo| m isusedin P } U
{aenci’fl | & is the arity of an asymmetric encryption annotated with £ and £ in P }

and as before aenc®*(Ay, A1, -+ , Ay) will typically be written {Ay,--- , Ay |}€40 [dest L].
Thus, rules in a tree grammar over Y1ys, where the non-terminals are taken from the
set of labels, Lab, will have the form:

I — |n] I - {ll,...,lk}fo[dest L]
I — |_m+J or .
I - |m™] Io— {l,- - Ly, [dest £]

The encoding into tree grammars follows closely the ideas presented in Section 4 and
the extensions to the analysis are given in Table 14.

[m*] € (1) lm™] €~(0)
py I mt! py B m!

Ao py ETES Al Uk [dest £] € v (1)
P ':f {|Ei1 [7E;gk |}€E(’]O [deSt ‘C]l

p.k, 0,y EI P
p, K,y = (v m)P

o ETE A Ay py B A
VI Tl [dest £ € 7(0) = ¥Vo € y(lo) YV € (lp) : V(m T, m)
{6, V5} = {m*,m "} A
(N L(v, 1) ®L(y, 1) #0) = Ay 1€ p(lzi]) A
(CELVEEL) = (0,0) €) A
p)”ﬂﬁ;’y |=f P
piryy = decrypt Bl as { By - ’E;'j? Tjp1, aﬂfkl}iﬂéo [orig £] in P

Table 14: Extensions to the finite analysis in Table 7. Note that p and x are referred
to as p/ and kf, respectively, elsewhere in this report.

35

B.4. Non-polyadic Analysis

The polyvariance in asymmetric encryption is remove from the analysis in the way
described in Section 5. In particular, a family of new relations «y, is introduced to store
asymmetric encryptions. A k-ary asymmetric encryption is stored in the relation

o, € p(Lab**2 x C x Lab)
analogue to the k-ary symmetric encryptions stored in oj, that was introduced in Table 8.

The sets of crypto-points are again kept in the analysis component § and by assuming
that all labels at sets of crypto-points are unique no confusion will occur by using the
same component as before. With these modifications the non-polyadic analysis is as
given in Table 15.

m*] € v(1) lm~] € (1)
pv,0,0,8 =P mt! pov,0,0,8 P m!

/\2::0 py7,0,a,0 Izp Efz A (l:loalla T 7lk7£7ls) €ar, N € ’Y(I) AN Neecl € 5(ls)
Ps7,0,0,6 =P B - B i [dest £1]]
0

p?ﬁ’¢’7707a76 I:p P
ps Ky, 7,0,0,0 =P (v m)P

p,Y,0,0,8 =P E' A Apep U €8(s) A N_yp,y,0,0,0 =P B A
VU, U0 € a1 ey(l) = VTV € v(lo) VYV €(ly) - Y(mt,m™) :
{VOaVE)I} = {m+am7} A
(N L) R Ly L) #0) = Al 1€ p(las]) A
(¢ ¢ 6(ls)) vEZ () = (£,4) € ¥) A
Pk, 0,7v,0,0,0 =P P
Py Ky 1,7y, 0, 0, 8 |=P decrypt E' as {EY,--- ,E;."; Tjp1,- - ,mkﬂééo [orig L!*] in P

Table 15: Extensions to the non-polyvariant analysis in Table 9. Note that p, s, and
are referred to as p/, kP, and 7P, respectively, elsewhere in this report.

B.5. The Generation Function

The generation function G is extended with clauses for the new syntactic constructs and
its definition is found by transforming the hypothesis of the rules in Table 15 into ALFP.
As in Section 6, all analysis components are transformed into sets of Cartesian products

36

and notational conventions are changed so that set membership, etc. are written as
statements about predicates.

One notable challenge remains: the query on set of key pairs in the rule for asymmetric
decryption. The matching in of the content of the encrypted messages is performed as
usual by consulting the auxiliary relation NEI. The matching of the key, on the other
hand, is performed by requiring that two elements from the grammars of the /o and [,
are a key pair. This corresponds to “unfolding” the definition of non-empty intersection,
i.e. of NEI, and checking that there is a key pair in the intersection. Note that the
recursive part of finding the non-empty intersection is not needed since all asymmetric
keys are names.

G(m+h =, |m*]) A KP(m*,m~) A KP(m~,m™)
G(m™) =~(,|m~]) AN KP(m~,m%) A KP(m*,m™)
GUED, -, B o [dest £14]') = Ao G(EF) A
ar(lLlo by, -l 6ls) A (LD A Aper (s, 0)

G((v4 m)P) =G(P)
G(decrypt E' as {|E},--- ,EY; 241, @[} o [orig £1*] in P) =
G(E"Y AAper €6(s,0) A N_yGEY) A
VU Doy Uy, U 0 g (U0, 0, I 1) Ay (L) =
YVo, Vg = (o, Vo) A (g, V) =
KP(Vo, Vi) A
Ny NEI(U, 1) = Ny p(lail 1) A
((m0(ls,) v =8(I5, £)) = (£, €) €) A

G(P)
ANke Apgne
Vi, la: (31, o, 5 ligs b1, lis, Iy, lao, -+ Lok, £a, Lo
ap(lf,lo0, s lik, 1, lis) A
ag(ly,lao, -+ 5 lak, Lo, lag) A

NEI(l10,120) A - - . A NEI(lyy, lag) A

(1, 11) Ay, 13))
= NEI(ll,lz)

Table 16: Extensions to the generation function analysis in Table 11. Note that p, &, 7,
and ¢ are referred to as p9,xP,~v9, and &9, respectively, elsewhere in this report.

The axiomatisation of the auxiliary predicate NEI is extended to include asymmetric

37

encryption. That is, asymmetric encryptions in ¢y are consulted and when all subcom-
ponents match then the labels of two asymmetric encryptions are required to be in NEI.
This is done for all k in the set Aagnc of arities of asymmetric encryptions or asymmetric
decryptions in the program that is analysed.

The implementation follows the lines presented in Section 8 and also for asymmetric
decryption queries to § are stratified in the syntactic way required by the Succinct
Solver.

B.6. Dolev-Yao Attacker

In [4], the formula for the attacker, fRD,\\z is extended with the capability use asymmetric
encryption and asymmetric decryption as well as access to private and free names that
represent asymmetric keys. Consequently, in the proof of Theorem 4 in [4] the attacker
Qhara (given in Section 7) is extended with the following processes:

QF = (; 2).(; 2).decrypt z as {; 21, -~ ,zk|}ﬁ; [orig C] in 0
QF =G 20).-- G 2n)- ({1, -, zxly oo [dest C]). 0
QF = (md).0 [(md).0 (m]).0| (m).0]--|(m).0] (m,).0](2).0

where the free names that represent asymmetric keys in the program that is analysed
are {mf, my o, ,m;' y My } and m¢ and m; are two distinct canonical names.

A labelled LySA process, Rparg, for which G(Rpg.q) gives a formula equivalent to the
new]:F[{),\\,l(can the be found by adding labels [, and Iz to the processes above similarly
to what was done in Section 7. The resulting process is:

R’g = (; 2).(; zo).decrypt 2l as {; z1,--- ,zk|}£;. [orig Clc] in0
)
BE = 20)-+) (et o+, 47 13, [dest C)). 0
. L) l’ 7l0 3 —le
RE = (mf").0 | (mE™*).0 | (mf™).0 | (m™®).0] - | (mf™).0| (m;™).0](; 2).0

These additions to the attacker ends the description of the modifications needed to cater
for asymmetric encryption.

38

