
http://www.omnys.it/degas

DEGAS IST-2001-32072
Design Environments for Global ApplicationS

Consortium: UNITN (I) University of Trento (Coordinator), IMM (DK) Informatics and Math-

ematical Modelling - Technical University of Denmark, DIPISA (I) Dipartimento di Informatica -

Università di Pisa, UEDIN (UK) University of Edinburgh - MTCI (I) Motorola Technology Center

Italy - OMNYS (I) Omnys Wireless Technology

Deliverable D19
Static Analysers

Contractual date of delivery: December 31, 2003

Actual date of delivery: December 22, 2003 (updated February 10, 2004)

Author(s): Mikael Buchholtz, Hanne Riis Nielson, Flemming Nielson

Participant(s): IMM

Workpackage: WP6

Estimated Person Months: 4.5

Security: Pub Nature: P Version: 1.1 Pages: 15

Abstract.

This document constitutes documentation of a prototype tool for static analysis of security protocols

given as processes in the process calculus LySa.

Keyword list: Static analysis, security protocols

Document history

Date Version Security Comments
September 11, 2003 – Internal Document start
September 25, 2003 0.1 Public First draft
December 22, 2003 1.0 Public Official release
February 10, 2004 1.1 Public Parser added

Contents

I Executive Summary 2

II Full Description 3

1 Overview 3

2 Data Structures and Translations 4

2.1 LySa . 4

2.2 Meta LySa . 6

2.3 Labelled LySa . 6

2.4 Translations . 7

3 The Analysis 8

3.1 An Example . 9

A Installation Guide 10

B Overview of Source Files 11

C ASCII Names of Predicates 12

D Listing of the file example.sml 12

E Input and Output Functionality 13

E.1 Parsing LySa from ASCII text . 13

2

Part I

Executive Summary

This deliverable contains a prototype tool of a static analysis of origin and destination
authentication for security protocols. The prototype is downloadable from

http://www.imm.dtu.dk/cs LySa

This document constitutes the accompanying documentation of the prototype soft-
ware.

Part II

Full Description

1 Overview

This deliverable contains the implementation of a prototype of the analysis of the
process calculus LySa [3, 2] and is implemented in Standard ML of New Jersey
(ML) [1]. While this document describes the implementation itself, a description
of the technical development behind the implementation can be found in [4]. The
implementation is available on the internet as described in Appendix A.

The analysis works on processes of the process calculus LySa. The implementation
contains three representations of these processes at different levels of abstraction,
namely, LySa, Meta LySa, and Labelled LySa. The syntax of the calculus given
in [3, 2] corresponds to the representation that is here called LySa. Meta LySa

extends this representation with indexed constructs that allows for a succinct repre-
sentation of multiple copies of processes. These indexed constructs are e.g. used in
examples in [3] and the idea is that a Meta LySa process can be syntactically ex-
panded into LySa processes with a different numbers of copies of the branches in the
indexed constructs. Finally, Labelled LySa is similar LySa but has labels added to
the syntax that will be used by the implementation of the analysis as described in [4].

Figure 1 gives an overview of the implementation with the translations between the
different representations. The analysis itself takes a Labelled LySa process as input
so processes in other representations must be translated before they can be analysed.
The analysis produces a formula of Alternation-free Fixed Point logic (ALFP) in
ASCII format. This formula serves as the input to the Succinct Solver [5] that solves
the formula and returns the analysis result: the smallest analysis components (in their
predicate representation [4]) that satisfy the ALFP formula.

3

Meta LySa LySa Labelled LySa ALFP Result

translate translate analyse solve

Figure 1: Overview of the implementation.

2 Data Structures and Translations

This section contains excerpts from the source files of the implementation. Appendix B
contains an overview of these files.

2.1 LySa

In [2] LySa is given according to the following grammar:

E ::= n | m+ | m− | x | {E1, · · · , Ek}
`

E0
[dest L] |

{|E1, · · · , Ek|}
`

E0
[dest L]

P ::= 〈E1, · · · , Ek〉. P | (E1, · · · , Ej; xj+1, · · · , xk). P |

decrypt E as {E1, · · · , Ej; xj+1, · · · , xk}
`

E0
[orig L] in P |

decrypt E as {|E1, · · · , Ej; xj+1, · · · , xk|}
`

E0
[orig L] in P |

(ν n)P | (ν± n)P | !P | P1|P2 | 0

The grammar is represented by an ML datatype in the ML structure Lysa as shown
in Figure 2. Names, variables, and crypto-points are all of type Symbol and are
considered to be the concatenation of the first string with all the elements in the
string list. The annotations are represented by the datatype Form where a set of
crypto-point is represented as a list. LySa terms, E, are represented by the datatype
Term: the constructors NAME, NAMEP, and NAMEM represent names n, m+, and m−,
respectively, while the constructor ENC represents symmetric key encryption and the
constructor AENC represents asymmetric key encryption. Processes, P , are represented
by the datatype Proc. Note that the sequences of variables in input and decryption
are given as a Term list though only terms created with the constructor VAR may
be used here. Similarly, the restricted names in NEW and ANEW are represented by
elements of type Term but only terms created with the constructor NAME may be used.
Note also that parallel composition is given by a list of processes rather than as a
binary operator as in the grammar. Finally, the value CPDY is the crypto-point `• of
the attacker and may be used e.g. in protocol specifications.

The structure Lysa also contains a auxiliary functions on LySa processes, e.g. to
calculate the free names, though these are not shown in Figure 2.

4

structure Lysa =

struct

type Symbol = string * string list

type Name = Symbol

type Var = Symbol

type CP = Symbol

datatype Form = ORIG of CP list

| DEST of CP list

datatype Term = NAME of Name

| NAMEP of Name

| NAMEM of Name

| VAR of Var

| ENC of Term list * Term * CP * Form option

| AENC of Term list * Term * CP * Form option

datatype Proc = OUT of Term list * Proc

| INP of Term list * Term list * Proc

| DEC of Term * Term list * Term list * Term *

CP * Form option * Proc

| ADEC of Term * Term list * Term list * Term *

CP * Form option * Proc

| NEW of Term * Proc

| ANEW of Term * Proc

| BANG of Proc

| PAR of Proc list

| NIL

val CPDY = ...

...

end

Figure 2: The structure that represents LySa processes (excerpt from the file lysa.sml).

structure Lysa =

struct

...

datatype Proc = ...

| PAR_I of string * int * Proc

| PAR_X of string * int * string * Proc

| NEW_I of ((string * int) list * Term) list * Proc

| ANEW_I of ((string * int) list * Term) list * Proc

...

end

Figure 3: The structure that represents Meta LySa processes (excerpt from the file
lysa.sml).

5

2.2 Meta LySa

Meta LySa adds indices to all names, variables, and crypto-points so they can e.g.
be ni, xjk, or `kji. It also extends the grammar of LySa with indexing constructs so
that processes become

P ::= . . . | |bi=a P | |b
i = a
i 6= j

P | (νb
i=a
ni)P | (ν±

b
i=a
ni)P

The first indexed parallel composition lets the index i be used on names, variables, and
crypto-points in the process P . The index will take integer values from a to b and when
the Meta LySa process is translated into a LySa process as described in Section 2.4
it becomes b − a processes in parallel. The second indexed parallel composition is
similar except that a process is not instantiated when the value of index i is equal to
the value of the index j. Finally, the indexed restriction uses sequences of indices,
i = i1 · · · , ik, and corresponding start indices a = a1, · · · , ak. The construct restricts
all the names ni1···ik where each ij takes values from aj up to b.

The Meta LySa processes are represented by extending the datatype for LySa pro-
cesses in the structure Lysa as shown in Figure 3. In Meta LySa names, variables,
and crypto-points all have the type Symbol: the first string is the element itself while
the string list is a list of indices each of which are of type string.

The first indexed parallel construct is represented by the constructor PAR I, which
contains an index of type string, a start index of type int and a process. Note
that the upper index, i.e. b in the grammar, is not represented in the constructor.
The actual value of b will be given when a Meta LySa process is translated to a
LySa process as described in Section 2.4. The second indexed parallel composition
is represented by constructor PAR X and contains an extra index of type string to
be excluded in the instantiation. The indexed restrictions are represented by the
constructors NEW I and ANEW I that each takes a list of indices of type string and
corresponding start indices of type int together with a name of type Term that will
be restricted. Note that only terms constructed with NAME may be used here.

2.3 Labelled LySa

In [4], Labelled LySa is given according to the following grammar:

E ::= nl | m+l | m−l | xl | {E1, · · · , Ek}
`

E0
[dest Lls]

l
|

{|El1
1 , · · · , E

lk
k |}`

E
l0
0

[dest Lls]
l

P ::= 〈E1, · · · , Ek〉. P | (E1, · · · , Ej; xj+1, · · · , xk). P |

decrypt E as {E1, · · · , Ej; xj+1, · · · , xk}
`

E0
[orig Lls] in P |

decrypt E as {|E1, · · · , Ej; xj+1, · · · , xk|}
`

E0
[orig Lls] in P |

(ν n)P | (ν± n)P | !P | P1|P2 | 0

Labelled LySa processes are represented by the datatypes in the structure LLysa

shown in Figure 4. Here names, variables, crypto-points, and labels at terms and

6

crypto-points are all of type string.

structure LLysa =

struct

type Name = string

type Var = string

type CP = string (* Crypto-points *)

type Lab = string (* Term Labels *)

datatype Term = NAME of Name * Lab

| NAMEP of Name * Lab

| NAMEM of Name * Lab

| VAR of Var * Lab

| ENC of Term list * Term * CP * CP list * Lab * Lab

| AENC of Term list * Term * CP * CP list * Lab * Lab

datatype Proc = OUT of Term list * Proc

| INP of Term list * Term list * Proc

| DEC of Term * Term list * Term list * Term *

CP * CP list * Lab * Proc

| ADEC of Term * Term list * Term list * Term *

CP * CP list * Lab * Proc

| NEW of Term * Proc

| ANEW of Term * Proc

| BANG of Proc

| PAR of Proc * Proc

| NIL

val CPDY = ...

...

end

Figure 4: The structure that represents Labelled LySa processes (excerpt from the file
llysa.sml).

Encrypted terms are represented by the constructor ENC where the first of the two
labels of type Lab is the label, ls, at the set of crypto-points while the second label is
the label, l, of the term itself. In addition to what is shown in Figure 4 the structure
LLysa contains auxiliary functions on Labelled LySa processes.

2.4 Translations

The translation from Meta LySa to LySa is preformed by the function ml2lProc

in the structure MLysa2Lysa as shown in Figure 5. The function returns a LySa

process that is the Meta LySa process given as the second argument where all indexed
constructs have been unfolded the number of times given by the first argument.

Important: note that when a process is instantiated with index 0 it is implicitly

7

assumed to be a process that communicates with the attacker. Therefore, `• is added
to all sets of crypto-points in destination and origin annotations in the 0th unfolding.

structure MLysa2Lysa :

sig

val ml2lProc : int -> Lysa.Proc -> Lysa.Proc

...

end

Figure 5: Structures for translation from Meta LySa to LySa in the file mlysa2lysa.sml.

The translation of a LySa process into a Labelled LySa process is performed by the
function l2llProc in the structure Lysa2LLysa as shown in Figure 6. The translation
adds unique labels to all terms and all sets of crypto-points in the process. This is done
through a label counter that may be reset by calling the function reset. Annotations
of destination and origin at encryption and decryption, respectively, may be ignored by
writing NONE as annotation. The function l2llProc translates this into the equivalent
of having no annotation, which is to allow all the crypto-points in the processes being
translated as well as `• into the sets of intended destinations or origins. The structure
Lysa2LLysa additionally contains functions to translate other syntactic categories
such as terms and annotations, which are not shown in Figure 6.

Important: note that l2llProc removes all characters that are not alphanumeric
characters or a prime (’) in the strings of names, variables, and crypto-points. This
may cause name-clashes that result in unexpected analysis results! Furthermore, all
the strings in indices should represent integer numbers where negative numbers are
prefixed with -.

structure Lysa2LLysa :

sig

val l2llProc : Lysa.Proc -> LLysa.Proc

val reset : unit -> unit

...

end

Figure 6: Structure for translating from LySa to Labelled LySa in the file lysa2llysa.sml.

3 The Analysis

The implementation of analysis itself may be found in the file analysis1.sml and closely
follows [4, Section 6]. As shown in Figure 7, the file contains a structure Analysis1.
The structure contains a number of values that represent various elements of the
attacker which may be useful when inspecting the result. Here, LDY represents l•,
LSDY represents lC, NDY represents n•, NPDY represents m+

• , NMDY represents m−
• , and

ZDY represents z•.

The structure contains generation functions genProc and genTerm corresponding to

8

the function G in [4] for processes and terms. Furthermore, the function genNEI

generates a predicate for non-empty intersection of sets of values found when analysing
a process while genDY generates a suitable attacker for a given process.

structure Analysis1 :

sig

val LDY : string

val LSDY : string

val NDY : LLysa.Term

val NMDY : LLysa.Term

val NPDY : LLysa.Term

val ZDY : LLysa.Term

val canon : LLysa.Term -> LLysa.Name

val genTerm : LLysa.Term -> string

val genProc : LLysa.Proc -> string

val genDY : LLysa.Proc -> string

val genNEI : LLysa.Proc -> string

val analyse : LLysa.Proc -> string

end

Figure 7: Structure for the analysis in the file analysis1.sml.

Finally, the function analyse binds it all together by taking a Labelled LySa process
and return an ASCII version of an ALFP formula corresponding to the analysis of
that process. In the ASCII version of the formula, the names of the predicates in [4]
are changed into ASCII format as summarised in Appendix C.

Important: note that all strings in names, variables, and crypto-points in the La-
belled LySa process that is analyses should only contain alphanumeric characters,
prime (’), or underscore (). Furthermore, none of these strings may start with an
underscore. These requirements will automatically be fulfilled if the Labelled LySa

process is obtained from a LySa process by calling the function l2llProc as described
in Section 2.4.

3.1 An Example

Appendix D contains a listing of the file example.sml that shows an example of the
use of the analysis. It follows closely the procedure sketched in Figure 1.

First, a Meta LySa process MLP is declared using the datatype from the structure
Lysa, which corresponds to the following process

(νb
ij=11Kij) |

b
i=1 |

b
j = 1
j 6= i

! (ν mij)〈{mij}
aij

Kij
[dest {bij}]〉. 0

| ! (; xij). decrypt xij as {; yij}
bij

Kij
[orig {aij}] in 0

that repeatedly sends and receives b · b messages, mij for 1 ≤ i, j ≤ b and i 6= j,
encrypted under the respective keysKij on the network. Next, the Meta LySa process

9

MLP is translated into a LySa process LP by calling MLysa2Lysa.ml2lProc. This
process is then translated into the Labelled LySa process LLP using the function
Lysa2LLysa.l2llProc. The Labelled LySa process is given as input to the function
Analysis1.analyse that in return produces a string ALFP that contains an ASCII
version of the ALFP formula describing the analysis.

Finally, the Succinct Solver is initialised by the call FormulaAnalyzer.init(). The
ALFP formula is solved using the function FormulaAnalyzer.solveStd that returns
the output, i.e. the analysis components, on standard out. For more on solving func-
tions and handling output from the Succinct Solver see [6].

References

[1] Website for Standard ML of New Jersey. http://www.smlnj.org, 2003.

[2] C. Bodei, M. Buchholtz, P. Degano, F. Nielson, and H. Riis Nielson. Static vali-
dation of security protocols. Submitted to Journal of Computer Security 2003.

[3] C. Bodei, M. Buchholtz, P. Degano, F. Nielson, and H. Riis Nielson. Automatic
validation of protocol narration. In Proceedings of the 16th Computer Security
Foundations Workshop (CSFW 2003), pages 126–140. IEEE Computer Society
Press, 2003.

[4] M. Buchholtz. Implementing control flow analysis for security protocols. DEGAS
Report WP6-IMM-I00-Pub-003, To appear.

[5] F. Nielson, H. Riis Nielson, and H. Seidl. A succinct solver for ALFP. Nordic
Journal of Computing, 9:335–372, 2002.

[6] H. Sun. User’s guide for the Succinct Solver (V2.0) .
http://www.imm.dtu.dk/cs SuccinctSolver/userGuide.pdf, 2003.

A Installation Guide

The LySa analysis requires the following software to be installed:

• New Jersey SML version 110.0.7 available at

http:://www.smlnj.org

• The Succinct Solver version 2.0 (release October 17, 2003) available at

http://www.imm.dtu.dk/cs SuccinctSolver/

Follow the installation procedures at the respective websites. Next, the LySa analysis
itself should be installed:

10

• Download the file:

http://www.imm.dtu.dk/cs LySa/lysatool-1.1.tar.gz

• Unpack the lysatool-1.1.tar.gz, which creates a subdirectory called lysatool.

• Edit the file lysatool/sources.cm and set the path .../Formulas to point to the
directory Formulas in your installation of the Succinct Solver (typically the
directory HORN/Formulas in your Succinct Solver installation.)

Now, the analysis is ready to run. For example, to run the file example.sml found
in the directory lysatool (1) change to the directory lysatool, (2) start ML (e.g. by
typing sml in a shell), and (3) execute the command use "example.sml";. The
Succinct Solver will now compute the analysis result for the example process. Note,
for example, that the component PSI will be empty as expected since all messages are
encrypted under keys unknown to the attacker.

B Overview of Source Files

The LySa analysis contains the following files (in the directory lysatool described in
the installation guide A):

lysa.sml The definition of structure Lysa with the datatype for LySa

and Meta LySa and auxiliary functions for these processes.

llysa.sml The definition of structure LLysa with the datatype Labelled
LySa and auxiliary functions on Labelled LySa processes.

mlysa2lysa.sml The definition of the structure MLysa2Lysa with functions
that translate Meta LySa to LySa.

lysa2llysa.sml The definition of the structure Lysa2LLysa with functions
that translate LySa to Labelled LySa.

analysis1.sml Functions for the origin and destination authentication
analysis.

COPYRIGHT Copyright statement.

set.sml An implementation of sets and set operations.

sources.cm Source file for Standard ML of New Jersey’s Compilation
Manager.

version Description of version and log of changes.

example.sml Example program listed in Appendix D.

example2.sml Example of parsing ASCII input as described in Ap-
pendix E.1.

11

io/ Directory containing auxiliary functions for input/output.

protocols/ Directory containing example protocols.

C ASCII Names of Predicates

The implementation closely corresponds to the description in [4] but uses the following
ASCII names for the predicates described in [4]:

Predicate ACSII Name
ρ

g
k RHOk

κ
p
k KAPPAk

ψ PSI

γg C

δg D

Predicate ACSII Name
αk ALPHAk

σk SIGMAk

NEI NEI

Nc N

PQD PQD

D Listing of the file example.sml

1 (***)

(* Example of how the analysis can be used (see D19 Section 3.1) *)

(***)

5 CM.make();

let

local

open Lysa

10 in

val MLP = NEW_I([([("i",1),("j",1)],NAME("K",["i","j"]))],

PAR_I("i",1,

PAR_X("j",1,"i",

PAR(

15 [BANG(

NEW(NAME("m",["i","j"]),

OUT([ENC([NAME("m",["i","j"])],

NAME("K",["i","j"]),

("a",["i","j"]),

20 SOME(DEST([("b",["i","j"])])))],

NIL))),

BANG(

INP([],[VAR("x",["i","j"])],

DEC(VAR("x",["i","j"]),

25 [],

[VAR("y",["i","j"])],

NAME("K",["i","j"]),

("b",["i","j"]),

12

SOME(ORIG([("a",["i","j"])])),

30 NIL)))]))))

end

val LP = MLysa2Lysa.ml2lProc 3 MLP

val LLP = Lysa2LLysa.l2llProc LP

35
val ALFP = Analysis1.analyse LLP

val ss = FormulaAnalyzer.init();

in

40 FormulaAnalyzer.solveStd(ss,FormulaAnalyzer.inputStr(ALFP))

end

E Input and Output Functionality

This appendix contains information on auxiliary input and output capabilities for the
analysis prototype tool.

E.1 Parsing LySa from ASCII text

Meta LySa processes (including LySa processes) can be parsed from ASCII text
strings according to the grammar in Figure 8. Here the set identifier contains strings
that begin with a letter and are followed by zero, one, or more letters or digits. The
set number contains strings with decimal representation of numbers using the prefix
- to denote a negative number. The following list of strings are considered to be
keywords that cannot be used for other purposed than described by the grammar:

as, at, CPDY, dest, decrypt, in, orig, new

Any string between an opening /* until the first closing */ will be regarded as com-
ments and disregarded when parsing.

In the grammar a non-terminal post-fixed with + denotes non-empty comma-separated
list of that non-terminal while a non-terminal post-fixed with ∗ denotes a (possibly
empty) comma-separated list of that non-terminal. An ε in the body of a rule denotes
the empty string.

The prefix operators on processes (input, output, decryption, and restriction) binds
tighter than the ! at replication that again binds tighter than parallel composition.
Parallel composition is left associative. Alternative precedence may be forced by
adding parentheses around processes and terms.

Names and variables are parsed according the same syntax and conflicts are resolved
by ensuring that any occurrence of a variable that is in scope (of an input or a
decryption) will indeed be interpreted as a variable. At all other places elements will

13

proc :: = (proc) | < term∗ > . proc | (term∗ ; var∗) . proc |
decrypt term as { term∗ ; var∗ } : term orig in proc |
decrypt term as {| term∗ ; var∗ |} : term orig in proc |
(new name) proc | (new +- name) proc |
! proc | proc | proc | 0 |
|_{ assign } proc | |_{ assign \ index } proc |
(new_{ assign+ } name) proc | (new_{ assign+ } +- name) proc

term ::= (term) | { term∗ } : term dest | {| term∗ |} : term dest |
name | namep | namem | var

name ::= indentifier subscript

namep ::= indentifier + subscript

namem ::= indentifier - subscript

var ::= indentifier subscript

subscript ::= _{ index ∗ } | ε

index ::= identifier | number

assign ::= index = number

orig ::= [at cryptopoint orig { cryptopoint∗ }] | [at cryptopoint] | ε

dest ::= [at cryptopoint dest { cryptopoint∗ }] | [at cryptopoint] | ε

cryptopoint ::= identifier subscript | CPDY

Figure 8: ASCII grammar for LySa.

be interpreted as names. Thus, processes may never contain free variables though
they may contain free names.

Annotations of origin and destination information are added in square brackets. The
full annotations give both a crypto-point denoting the place of decryption/encryption
as well as a set of crypto-points for expected origin/destination. The latter informa-
tion may be left out and this will be interpreted as the semantic equivalent of having
no requirement of origin/destination. If an annotation is altogether empty the decryp-
tion/encryption will further more be interpreted as if it takes place at an unspecified
crypto-point.

Using the parser. The parser may be accessed through the signature LysaASCIIIO

shown in Figure 9. Processes may be parsed from a file, a stream, or a string using the
functions parseFile (the argument is the filename), parseStream, and parseString,
respectively. On unsuccessful parsing the exception parseError is thrown.

An example of an ML program that uses the parser and the analysis may be found
in the file example2.sml. The program uses the LySa file example.lysa that may be
found in the protocols directory and is listed below:

14

structure LysaASCIIIO :

sig

exception parseError of string

val parseFile : string -> Lysa.Proc

val parseStream : TextIO.instream -> Lysa.Proc

val parseString : string -> Lysa.Proc

val toString : Lysa.Proc -> string

val toFile : string -> Lysa.Proc -> unit

end

Figure 9: Structure for parsing ASCII text into Meta LySa in the file io/lysaacsiiio.sml.

1 /* Example of a LySa process in ASCII text format */

(new_{i=1,j=1} K_{i,j})

(

5 |_{i=1} |_{j=1\i} (

! (new m_{i,j}) < { m_{i,j} } : K_{i,j} [at a_{i,j} dest {b_{i,j}}]>.0

|

! (; x_{i,j}).

decrypt x_{i,j} as {; y_{i,j} } : K_{i,j} [at b_{i,j} orig {a_{i,j}}] in 0

10)

)

15

