
Automated Analysis of Infinite Scenarios

Mikael Buchholtz?

Informatics and Mathematical Modelling, Technical University of Denmark, Richard
Petersens Plads, bldg. 321, DK-2800 Kgs. Lyngby, mib@imm.dtu.dk

Abstract. The security of a network protocol crucially relies on the sce-
nario in which the protocol is deployed. This paper describes syntactic
constructs for modelling network scenarios and presents an automated
analysis tool, which can guarantee that security properties hold in all
of the (infinitely many) instances of a scenario. The tool is based on
control flow analysis of the process calculus LySa and is applied to the
Bauer, Berson, and Feiertag protocol where is reveals a previously un-
documented problem, which occurs in some scenarios but not in other.

1 Introduction

The security of any network protocol is not only determined by the behaviour
the protocol itself. The security additionally relies upon the scenario in which
the protocol is deployed. A protocol that suffers from a parallel session attack
is an example of this: It may be possible to show that the protocol is secure
— even when it is under attack — in the case that only a single session of the
protocol is deployed on the network. However, when multiple session are present
on the network, the parallel session attack can occur because the attacker uses
messages from one session to perform the attack on another session.

This paper presents an automated analysis tool that focuses on deployment
scenarios for security protocols. Protocols will be modelled in the process cal-
culus LySa [3] and analysed with a control flow analysis that can guarantee
confidentiality and authentication properties. The syntax of a LySa process, P ,
has features for modelling cryptography, nonce generation, message passing, etc.
These features are well-suited to model the internal behaviour of individual prin-
cipals. In this paper, we furthermore want to model the scenarios in which these
principals appear. To this end, LySa is extended with a meta-level that contains
various indexing constructs. For example, the meta-level has an indexing par-
allel composition, |i∈S M , that describes a number of meta-level processes M

in parallel. These processes only differ in their index i and, thus, the construct
can be used to describe principals A1, A2, A3, . . . that only differ in their iden-
tity but otherwise follow the same protocol. A key idea in having the meta-level
is that it should not simply be a syntactic shorthand for succinct modelling of

? This work is funded by the Information Society Technologies programme of the
European Commission, Future and Emerging Technologies, under the IST-2001-
32072 project DEGAS.

2 Mikael Buchholtz

one specific instance of a scenario. Instead, a meta-level process specifies all the
different instances that a protocol may be deployed in.

Each instance of a scenario will be described by an object-level process P ,
which is an ordinary LySa process without indexing constructs. Instantiation
is described by an instantiation relation, M V P , and meta-level process may
instantiate many different object-level processes. In fact, a meta-level is allowed
to instantiate to infinitely many different object-level processes, thus, describing
an infinitely large scenario.

A second step is to extend the control flow analysis from [3] to cover also
meta-level processes. The control flow analysis is an automatable analysis tech-
nique that works by over-approximating the behaviour of a process. Thus, the
extended meta-level analysis provides an automated analysis of scenarios and
even copes with the fact that they may be infinitely large.

1.1 Contribution of this paper

This paper contributes with version 2 of the LySatool. Version 1 of the tool [7]
is the implementation of the control flow analysis of object-level LySa [3]. The
second version of the LySatool includes the analysis of the meta-level and, hence,
caters for analysis of arbitrarily large scenarios. The overall idea of adding an
analysable meta-level was first suggested in [8] but for a different calculus. This
paper extends that work in several respects: it (1) gives an implementation of
a meta-level analysis. To take advantage of an existing implementation of an
object-level analysis the idea of a meta-level has been applied on the LySa cal-
culus; (2) gives a more detailed treatment of the correctness of the analysis. The
simpler format of LySa over the calculus in [8] simplifies the work needed to do
this; (3) makes the meta-level useful both to check confidentiality and authen-
tication properties; and (4) uses the LySatool to find a previously undiscovered
problem in a classical key establishment protocol [1].

2 LySa and the Meta-Level

The process calculus LySa [3] is tailored to model network protocols that attain
their security by means of cryptography. LySa models perfect cryptography, i.e.
that successful decryption of ciphertext is only possible if the correct key is
known. As of [4], LySa caters for both symmetric and asymmetric key cryp-
tography. To keep the presentation simple, only symmetric key cryptography
is presented in this paper. However, all the results in this paper, including the
LySatool implementation, work also for asymmetric cryptography.

2.1 Syntax

The syntax of LySa is given in Figure 1. The syntax of expression E ∈ Expr and
processes M ∈ MProc up until the horizontal double line corresponds closely
to the syntax of LySa presented in [3]. This subset of processes is sometimes

Automated Analysis of Infinite Scenarios 3

mx ::= xi

E ::= ni | mx | {E1, . . . , Ek}E0

M ::= 〈E1, . . . , Ek〉.M | (E1, . . . , Ej ; mx j+1, . . . ,mxk).M |
decrypt E as {E1, . . . , Ej ; mx j+1, . . . ,mxk}E0

in M |
(ν ni) M | !M | M1 | M2 | 0 |

let X ⊆ S in M | |i∈S M | (νi∈S nai)M

Fig. 1. The syntax of LySa including the meta-level.

referred to as object-level processes taken from the set Proc and is ranged over
by P . The syntax below the horizontal double line describes the new meta-level
constructs.

The basic building blocks of LySa are values, which syntactically are de-
scribed by expressions built over distinct countable sets of indexed names ni ∈
Name and indexed variables xi ∈ Var . A sequence of indexes i = i1 . . . ik (for
k ≥ 0) has each index i taken from a countable set Index . At the object-level,
the indices are simply seen as a syntactic concatenation of i to n or x. At the
meta-level, on the other hand, indices play a crucial role for the indexing con-
structs. A k-tuple of expressions, E1, . . . , Ek, may be encrypted under a key E0

by the encryption expression {E1, . . . , Ek}E0
.

2.2 Object-Level Semantics

Only the object-level of LySa has a dynamic semantics. This semantics describes
how an object-level process, P , evolves in a step-by-step fashion. The semantics
is formalised by a reduction relation, P → P ′, defined as the smallest relation
satisfying the rules in Figure 2. The semantics ranges over values V ∈ Val , which
are expressions without variables. The meaning of the object-level constructs and
their formal semantics is explained in the following.

In LySa a tuple of values can be communicated over a global network. Send-
ing a messages is done by synchronous output 〈V1, . . . , Vk〉.P1 that matches a
pattern-matching input (V1, . . . , Vj ; mx j+1, . . .mxk).P2 as described by the rule
(Com). If the first j values in output and input (until the semi-colon) are iden-
tical then last k− j values in output are component-wise bound to the variables
in input. This binding takes place through a substitution, which may apply α-
renaming to avoid capturing bound names. An encrypted value may be decrypted
as described by the rule (SDec). The key V0 used for encryption and decryption
must the same and the first j values inside the encryption are pattern-matched.
The process (ν ni)P restricts the scope of ni to be P , only. Apart from commu-
nication, parallel composition is interleaved as described by (Par). The inactive
process, 0, cannot evolve and consequently it is not mentioned in Figure 2. Fi-
nally, the rule (Congr) may bring processes on a form where they match the

4 Mikael Buchholtz

(Com) 〈V1, . . . , Vk〉.P1 | (V1, . . . , Vj ; mx j+1, . . . ,mxk).P2 →

P1 | P2[mx j+1
α
7→ Vj+1, . . . ,mxk

α
7→ Vk]

(SDec)decrypt {V1, . . . , Vk}V0
as {V1, . . . , Vj ; mx j+1, . . . ,mxk}V0

in P →

P [mx j+1
α
7→ Vj+1, . . . ,mxk

α
7→ Vk]

(New)
P → P ′

(ν ni) P → (ν ni) P ′
(Par)

P1 → P ′
1

P1 | P2 → P ′
1 | P2

(Congr)
P ≡ P ′′ P ′′ → P ′′′ P ′′′ ≡ P ′

P → P ′

Fig. 2. The reduction relation; P → P ′.

other rules by applying the structural congruence P ≡ P ′. This relation is as
usual the least congruence on object-level processes where

– parallel composition is associative, commutative with 0 as neutral element,
– !P describes replication of P i.e. !P ≡ !P | P ,
– restriction has capture-avoiding scope extrusion, and
– names may undergo disciplined α-conversion.

The notion of disciplined α-conversion is used solely for the benefit of the analysis
as discussed in Section 3. For the sake of the analysis, the set of names will be
partition into equivalences classes. Disciplined α-conversion requires that α-
conversion only takes place within the same equivalence class. Each of these
classes contain countably many element and consequently disciplining does not
effect the expressive power of the semantics.

Example 1. A repeated nonce handshake between two principals A and B that
initially share a key K may be modelled in LySa as the object-level process

(ν K) (!(ν n) 〈A,B, n〉.(B,A; x).decrypt x as {n; }K in 0

| !(A,B; y).〈B,A, {y}K〉.0)

Note in particular that the semi-colon is placed after the nonce n when the
variable x is decrypted. This means pattern-matching takes place and decryption
only succeeds if x is indeed bound to the nonce n encrypted under the key K.

2.3 Meta-Level Semantics

The meta-level has no dynamic semantics as such. Instead, a meta-level process
M specifies a scenario, which is made up of a set of object-level processes. The
meta-level process M is said to instantiate to an object-level process P , written
M V P , whenever P is in the set described by M . The set of object-level

Automated Analysis of Infinite Scenarios 5

(IOut)
M V P

〈E1, . . . , Ek〉.M V 〈E1, . . . , Ek〉.P

(IInp)
M V P

(E1, . . . , Ej ; mx j+1, . . . ,mxk).M V (E1, . . . , Ej ; mx j+1, . . . ,mxk).P

(ISDec)
M V P

decrypt E as {E1, . . . , Ej ; mx j+1, . . . ,mxk}E0
in M V

decrypt E as {E1, . . . , Ej ; mx j+1, . . . ,mxk}E0
in P

(INew)
M V P

(ν na) M V (ν na) P
(IRep)

M V P

!M V!P

(IPar)
M1 V P1 M2 V P2

M1 | M2 V P1 | P2

(INil) 0 V 0

(ILet)
M [X 7→ S′] V P

let X ⊆ S in M V P
if S′ ⊆fin S

(IIPar)
M [i 7→ a1] V P1 . . . M [i 7→ ak] V Pk

|i∈{a1,...,ak} M V P1 | . . . | Pk

(IINew)
M V P

(νi∈{a1,...,ak} nai) M V (ν naa1
) . . . (ν naak

) P

Fig. 3. The instantiation relation; M V P

processes may be infinite but each object-level process P in this set will itself be
a finite process.

The instantiation relation is defined in Figure 3. All object-level processes
instantiate to themselves with any subprocesses instantiated as well. In the in-
dexing meta-level constructs S is a set of indexes from P(Index). The syntax of
index sets, S, is left unspecified but include set identifiers X ∈ SetId as place-
holder for an index set. The process let X ⊆ S in M declares such a set identifier
X to stand for some arbitrary subset of S for use inside M . This is the key mech-
anism, which lets instantiation describe sets of object-level processes. Note that
the rule (ILet) requires X to become bound to a finite subset of S. This is done to
ensure that all object-level processes are finite when instantiation is performed.
The rule (IPar) instantiates an indexed parallel to the parallel composition of
the a finite number of processes that have the index i taken from the index set
{a1, . . . , ak}. This index set is required to be finite, which is again done to attain
a finite object-level process. Finally, the indexed restriction (νi∈S nai)M instan-

tiates to restrictions of all the names nai where i is substituted with elements
from S as described by the rule (IINew).

6 Mikael Buchholtz

Example 2. The nonce handshake in Example 1 describes scenario where pre-
cisely two principals are present. Below the meta-level constructs are used to
describe the same nonce handshake but this time in a more general scenario:

let X ⊆ N in let Y ⊆ N in (νij∈X×Y Kij)(
|i∈X |j∈Y !(ν nij) 〈Ai, Bj , nij〉.(Bj , Ai; xij).decrypt xij as {nij ; }Kij

in 0

| |j∈Y |i∈X !(Ai, Bj ; yij).〈Bj , Ai, {yij}Kij
〉.0)

The first line declares the set identifiers X and Y to be subset of the natural
numbers and, thus, the meta-level process describes all instances where any

number of Ai’s initiates a nonce handshake with any number of Bj ’s. Note also
that the parts that describe the internals of each Ai and Bj closely correspond
to the object-level processes in Example 1. The scenario, on the other hand is
described by the meta-level constructs.

2.4 Binders and Substitution

The restriction operator (ν ni)M is a binder of the name ni. In general, any kind
of substitution of elements in the syntax respects binders and only substitutes
free (i.e. unbound) instances of elements. Also input and decryption are binders
of variables, the let-construct a binder of set identifiers, indexed parallel is a
binder of the index i, while indexed restriction too is a binder of names.

Names that are not bound by any binder are said to be free names and they
play an important role in the analysis attackers as discussed in Section 4. It is
completely standard to define a function fn(P) that finds the free names of the
object-level process P . For the meta-level, we define a function, mfn(M) that
returns the most free names there can be in any instance of M . That is, mfn
satisfies that if M V P then fn(P) ⊆ mfn(M).

Names in mfn(M) do not need to be free in every instance of M but will not
be a problem with the way mfn(M) is use in Section 4. This is as oppose to [8],
where only a restricted class of processes were treated, namely the ones where
names are either free in all instances or in none. Thus, the approach taken here
considers a more general class of processes than in [8].

3 The Control Flow Analysis

The aim of a control flow analysis is to statically predict the behaviour of a
process. Since the behaviour of an object-level process is given by its reduction
semantics, the correctness of the analysis of object-level processes will as usual be
given by a subject reduction result. A meta-level process, on the other hand, has
no dynamic behaviour in itself. Instead, the control flow analysis will predict the
behaviour of all the object-level processes that a meta-level process instantiates
to. The correctness of the meta-level analysis will therefore show that the analysis
is preserved by instantiation.

The control flow analysis can also be used to analyse processes under attack
but the discussion of this is postponed until Section 4. An overall trademark of

Automated Analysis of Infinite Scenarios 7

the analysis is that it works by finding conservative over-approximations to the
behaviour of a process. This means that any actual behaviour of a process will
be reflected in the analysis result but the converse does not necessarily hold.
With respect to security, this means that the analysis can be used to guarantee

the absence of attacks. However, the analysis cannot be used to guarantee the
presence of an attack because a possible attack reported by the analysis may be
a consequences of approximation.

3.1 Equivalence Classes for Dealing with Infinities

One of the challenges when making an efficiently computable, automated analysis
of the behaviour of a process is the infinity of values that may occur in the
execution of the process. For example, at the object-level a replicated restriction,
such as in !(ν n) 〈n〉.P , may semantically produce an infinity of names by α-
converting the name n. Also, at the meta-level an indexing parallel, such as
|i∈X 〈ni〉.P , may instantiate to infinitely different names if X represents an
infinite set.

To deal with this infinity, the set of values, Val , will be partitioned into
finitely many equivalence classes written bValc. It is important to stress, that
this partitioning is made purely for the benefit of the analysis and will in no way
effect the semantic behaviour a process. The analysis will record representatives
of these equivalence classes, so-called canonical values, which are written bV c.
As a consequence, the analysis is only capable of distinguishing two values V1

and V2 if they belong to different equivalence classes i.e. if bV1c 6= bV2c. The
analysis is carefully designed such that any “mistakes” that arise because it
cannot correctly distinguish two values will lead to over-approximation.

3.2 The Object-Level Analysis

The object-level control flow analysis aims at giving an account of the messages
communicated on the network during any execution of an object-level process.
Messages communicate by the polyadic output are recorded in an analysis com-
ponent κ ∈ P(bValc∗)by a set of tuples of canonical values, thereby, benefitting
from the finite partitioning of the value domain. It is also practical to have an
analysis component ρ : bVarc → P(bValc)that records the set of values that
variables may become bound to during the execution of a process. The control
flow analysis is specified using the Flow Logic [18] framework as a predicate

ρ, κ |=Γ P

that holds precisely when ρ, κ is an analysis result that correctly describes the
behaviour of the object-level process P . The predicate is defined inductively in
the structure of processes in Figure 4. The environment Γ is needed only for the
meta-level analysis presented in Section 3.3 and is often ignored when discussing
the object-level.

8 Mikael Buchholtz

(AN) ρ |= ni : ϑ iff bnic ∈ ϑ

(AVar) ρ |= xi : ϑ iff ρ(bxic) ⊆ ϑ

(ASEnc) ρ |= {E1, . . . , Ek}E0
: ϑ iff ∧k

i=0 ρ |= Ei : ϑi ∧
∀U0 ∈ ϑ0 . . . Uk ∈ ϑk : {U1, . . . , Uk}U0

∈ ϑ

(AOut) ρ, κ |=Γ 〈E1, . . . , Ek〉.M iff ∧k
i=1 ρ |= Ei : ϑi ∧

∀U1 ∈ ϑ1 . . . Uk ∈ ϑk : U1 . . . Uk ∈ κ ∧
ρ, κ |=Γ M

(AInp) ρ, κ |=Γ (E1, . . . , Ej ; mx j+1, . . . ,mxk).M

iff ∧j
i=1 ρ |= Ei : ϑi ∧

∀U1 . . . Uk ∈ κ : ∧j
i=1 Ui ∈ ϑi ⇒

(∧k
i=j+1 Ui ∈ ρ(bmx ic) ∧ ρ, κ |=Γ M)

(ASDec) ρ, κ |=Γ decrypt E as {E1, . . . , Ej ; mx j+1, . . . ,mxk}E0
in M

iff ρ |= E : ϑ ∧ ∧j
i=0 ρ |= Ei : ϑi ∧

∀{U1, . . . , Uk}U0
∈ ϑ : ∧j

i=0 Ui ∈ ϑi ⇒

(∧k
i=j+1 Ui ∈ ρ(bmx ic) ∧ ρ, κ |=Γ M)

(ANew) ρ, κ |=Γ (ν ni) M iff ρ, κ |=Γ M

(ARep) ρ, κ |=Γ !M iff ρ, κ |=Γ M

(APar) ρ, κ |=Γ M1 | M2 iff ρ, κ |=Γ M1 ∧ ρ, κ |=Γ M2

(ANil) ρ, κ |=Γ 0 iff true

(ALet) ρ, κ |=Γ let X ⊆ S in M iff ρ, κ |=Γ [X 7→S′] M

where S′ ⊆fin Γ (S) and bS′c = bΓ (S)c

(AIPar) ρ, κ |=Γ |i∈S M iff ∧a∈Γ (S) ρ, κ |=Γ M [i 7→ a]

(AINew) ρ, κ |=Γ (νi∈S nai)M iff ρ, κ |=Γ M

Fig. 4. Analysis of LySa expressions, ρ |= E : ϑ, and object-level and meta-level
processes ρ, κ |=Γ M .

The object-level part of the analysis in Figure 4 is essentially the control
flow analysis from [3]. It relies on an auxiliary predicate ρ |= E : ϑ defined on
expression. Conceptually, ϑ ∈ P(bValc) contains the values that E may evalu-
ate to in some execution: (AN) names may evaluate to their canonical name;
(AVar) variables may evaluate to the values recorded in the analysis component
ρ; (ASEnc) encryption expression may evaluate to any encryption generated by
recursive evaluation of subexpressions.

The rule for k-ary output (AOut) evaluates all expressions using the auxiliary
predicate ρ |= Ei : ϑi and ensures that all combinations of their evaluations are
recorded as k-tuples in κ. Correspondingly, k-ary input succeeds according to
the analysis rule (AInp) for all k-tuples in κ where the first j values correspond
to what the j first expressions may evaluate to. This takes care of the analysis
of pattern-matching. If it is deemed successful then the remaining k − j values
are required to be component-wise recorded in ρ(bmx ic) thereby ensuring that

Automated Analysis of Infinite Scenarios 9

the analysis records possible variable bindings. The rule (ASDec) for decryption
follows the same idea as for pattern-matching input though here the candidates
are fund by evaluating the expression E. The remaining rules for the object-level
analysis are standard. One may coin the fact that the analysis only distinguished
names up to their canonical assignment:

Lemma 1 (Invariance of canonical names). If ρ, κ |= P and bnc = bn′c
then ρ, κ |= P [n 7→ n′].

Proof. The lemma is a direct consequence of the fact that the analysis only
records canonical names. The proof proceeds by straightforward by induction in
the definition of the analysis with the only interesting case being the rule (AN)
though it too is straightforward because bnc = bn[n 7→ n′]c = bnc.

The main technical result about the correctness of the object-level analysis is
that the analysis correctly captures the behaviour of all executions of an object-
level process. This is formulated as a standard subject reduction result:

Lemma 2. If ρ, κ |= P and P → P ′ then ρ, κ |= P ′.

Proof. The proof proceeds by structural induction in the reduction step P → P ′.
The proof uses auxiliary lemmata about invariance of structural congruence and
substitution of variables for values in ρ. The details may be found in [3].

3.3 The Meta-Level

The analysis of the meta-level constructs are given in the last there rules in
Figure 4. The rules makes use of the environment Γ : (SetId ∪ P(Index)) →
P(Index) to record declarations of set identifiers. It is implicitly assumed that
every index set S maps to itself i.e. that Γ (S) = S for all S ∈ P(Index).

The rule (ALet) updates Γ for the set identifier X declared in the let-
construct. However, the analysis only keeps track of indices up to a finite, canon-
ical partitioning of the index sets. Therefore it suffices to update Γ with a finite
subset S′ that belongs to the same equivalence class as the set S, which is de-
clared in the let-construct. Thus, Γ will map all set identifiers to finite sets, which
makes it easy to implement Γ . The rule (AIPar) makes the conjunction of the
analysis of the process M where i has been substituted for the indexes in Γ (S).
This substitution corresponds to what happens semantically in (IIPar) while the
conjunction is analogue to the analysis of binary parallel composition in (APar).
The rule (AINew) ignores the restriction similarly to the rule (ANew).

The fact that the meta-level analysis is invariant up to the canonical parti-
tioning of index sets is captured by the following lemma:

Lemma 3 (Invariance of canonical indices). Let ba1c = ba2c. Then ρ, κ |=Γ

M [i 7→ a1] if and only if ρ, κ |=Γ M [i 7→ a2].

Proof. The substitution only modifies names and variables so it is sufficient to
note that the analysis uses their canonical representatives and that bni[i 7→ a1]c =
bni[i 7→ a2]c as well as bxi[i 7→ a1]c = bxi[i 7→ a2]c. Thus, the analysis of M [i 7→
a1] and M [i 7→ a2] will be equivalent for all M .

10 Mikael Buchholtz

The aim of the meta-level analysis is to capture the behaviour of an entire
scenario as described by a meta-level process M . This is captured by the following
main result about the correctness of the meta-level analysis:

Theorem 1 (Correctness of instantiation). If ρ, κ |=Γ M and MΓ V P

then ρ, κ |= P .

Proof. The proof is by induction in M over the cases in the instantiation relation
defined in Figure 3. The only interesting cases are the three meta-level constructs.
The cases for the object-level constructs follow from the induction hypothesis.

3.4 Implementation

The goal of implementing the control flow analysis is to attain an analysis result
for a process. That is, given a process M the implementation provides ρ, κ such
that ρ, κ |=[] M . The implementation of the control flow analysis in the LySatool
works in two steps: (1) a generation function G(M) produces a formula that
corresponds to the analysis predicate defined in Figure 4, and (2) a standard
solver [17] is used to find an interpretation, which satisfies the formula.

The main challenge when the object-level was implemented in the LySatool
version 1 [7] was that the analysis is specified over infinite sets of terms (which
denote encryption). The implementation solves this by encoding sets of terms as
regular tree grammars and manipulates a finite number of grammar rules akin
to the strategy proposed in [16].

The second version of the LySatool is based on version 1 and indeed much of
the code is reused. The main modification is to extend the constraint generation
function G from ranging over object-level processes, only, to range over meta-
level constructs as well. The definition of this function closely follows the three
last rules in Figure 4 by taking the left-hand side of the iff as an argument to the
function and returning the right hand-side. In the case of the let X ⊆ S in M ,
one has to choose a finite set that is within the same equivalence class as S.
In the implementation this is the point where one chooses the partitioning of
these indexing sets as a parameter for controlling the precision of the meta-level
analysis. The analysis results presented in Section 4 and Section 6 have been
attained using this version 2 of the LySatool.

4 The Attacker

The goal of the LySatool is to validate security properties of a LySa process.
Consequently, the main focus is on analysing process under attack from malicious
parties also populating the network. The object-level of LySa has been designed
such that this attack setup can be described as simple parallel composition: if
P is an object-level process describing a protocol and P• is an attacker then the
behaviour of the process P | P•comprises all the attacks that P• may launch
over the network on P .

Automated Analysis of Infinite Scenarios 11

Instead of having to analyse all the infinitely many attackers P• in parallel
with P we follow ideas from [15]: It suffices to analyse a single process, Phard ,
to get an account of the behaviour of all attackers.

Lemma 4 (Existence of a hardest attacker). There exists process Phard

with the property that: for all attacker processes P•

ρ, κ |= P | Phard implies ρ, κ |= P | P•

Proof. The proof is by construction of Phard and subsequent induction in P•.
The proof also relies on restricting the attention to attackers that only use the
same arities as P for communication and encryption. Details can be found in [3].

By the subject reduction result in Lemma 2 it then follows that ρ, κ |= P | Phard

gives an account of how P behaves under attack from any possible attacker,
which is allowed by the semantics of LySa. This analysis result gives an account
of the behaviour of the attacker. Note also that because P• is placed in parallel
with P it has access to all the free names in P . The hardest attacker, Phard ,
therefore takes fn(P) as a parameter.

When choosing the canonical partitioning of names and variables, a special
equivalence class is reserved for names and variables at the attacker. Repre-
sentatives of these equivalence classes are denoted n• and x•, respectively. For
example, ρ(x•) is an over-approximation of all the values that any variable in an
attacker may become bound to i.e. it represents the knowledge of the attacker.

4.1 The Attacker at the Meta-Level

When we want to evaluate the security of a scenario described by a meta-level
process M we must consider the possibility that each of the object-level process
P , where M V P , may be under attack. The aim of the analysis is, hence, to
guarantee that no such attacks can occur on any instance of M .

In order to analyse all instances of a meta-level process under attack, we can
once more rely directly on the hardest attacker Phard . By design every object-
level process instantiates to itself. Consequently, adding Phard at the meta-level
means that it always instantiates to be a hardest attacker at the object-level.
This is made clear by the following theorem:

Theorem 2 (Attacker at the meta-level). If ρ, κ |=Γ M | Phard and MΓ V

P then ρ, κ |= P | P• for all attacker processes P•.

Proof. From (APar) then ρ, κ |=Γ M and ρ, κ |=Γ Phard . By Theorem 1 then
ρ, κ |= P . Furthermore, because Phard is an object-level process then PhardΓ =
Phard and Phard V Phard so by Theorem 1 it follows that also ρ, κ |= Phard .
Consequently, by (APar) then ρ, κ |= P | Phard and finally by Lemma 4 ρ, κ |=
P | P• for all attackers P•.

At the meta-level, the function mfn(M) is used to provide the set of free
names to Phard . This set may actually be larger than the free names in some

12 Mikael Buchholtz

specific instance of M meaning that the attacker may increase its power because
it has access to too many names compared to what occurs semantically. However,
if no attacks are reported by the analysis when the attacker has this extra power
then no attacks can occur semantically, either.

Example 3. We refer to the scenario for the nonce handshake from Example 2
as the process M . Taking bNc = {1} the analysis result of ρ, κ |=[] M | Phard as
reported by the LySatool reveals that

ρ(x•) ∩ Name = {bn11c, bA1c, bB1c}

The index 1 in the analysis result is a canonical representative of any element
in N. Thus, the attacker may learn any nonce nij as well as the identities of any
principal Ai and Bj for i, j ∈ N. On the other hand, the analysis guarantees that
the keys Kij are confidential because bK11c is not in ρ(x•). Since the analysis is
an over-approximation this means that the attacker cannot learn the keys.

5 Security Properties

As discussed in Example 3, the analysis can guarantee confidentiality properties.
To find out whether a particular value V is confidential one simply inspects
the analysis result. If bV c is not in ρ(x•) then the analysis guarantees that no
attacker can ever bind V to any of its variables.

The analysis of [3] is furthermore able to guarantee destination and origin
authentication. This property considers the places where cryptography is applied
to ensure that a message can only reach a particular principal. The property of
destination and origin authentication is specified by annotations of the form

[at c destC] and [at c orig C]

at all points of encryption and decryption, respectively. Here c ∈ CP is a crypto-
point that marks the point in the syntax (akin to a line-number). Encryptions
are furthermore annotated with a set C ⊆ CP of destination crypto-points where
the encrypted values are intended to be decrypted. Symmetrically, decryptions
are annotated with a set C of crypto-points where successfully decrypted value
are intended to have been encrypted.

Semantically annotations are void i.e. they do not interfere with the semantic
behaviour of a process. A process P is said to guarantee dynamic authentication

none of these intentions are broken in any execution of the process. That is, P

guarantees dynamic authentication if there are no reduction steps derived using
the rule (SDec) of the form decrypt{V1, . . . , Vk}V0

[at c′ dest C ′] as{V1, . . . , Vj ;
mx j+1, . . . ,mxk}V0

[at c orig C] in P → P ′ such that c 6∈ C ′ or c′ 6∈ C.
The main result of [3] is that an extension of the object-level analysis pre-

sented in Figure 4 is capable of analysing whether an object-level process guar-
antees dynamic authentication. The extension of the analysis essentially boils
down to adding a check of whether c 6∈ C ′ or c′ 6∈ C in the rule (SDec) for anal-
ysis of decryption. If the analysis finds no errors in these checks then a process
P is said to guarantee static authentication. The main result of [3] is that

Automated Analysis of Infinite Scenarios 13

Lemma 5. If P guarantees static authentication then P guarantees dynamic

authentication.

Proof. The proof relies on the fact that the analysis over-approximates the dy-
namic behaviour of P and thereby also the potential authentication errors that
may be reported. The details are [3].

5.1 Authentication at the Meta-Level

To further refine the authentication property for the meta-level, crypto-points
are equipped with indices analogue to indices on names and variables. That is,
crypto-points will be of the form ci. Crypto-points are also made subject to a
notion of canonicity because the meta-level analysis only distinguishes elements
up to the canonical partitioning of index sets.

The meta-level analysis is now capable of checking destination and origin
authentication up to the partitioning into equivalence classes. Conceptually, the
analysis guarantees that messages only reach principals within a certain equiv-
alence class. The meta-level analysis is extended by adding a check of whether
bcic 6∈ bC ′c or bc′

i
c 6∈ bCc in the rule (SDec). If no violations of the authen-

tication properties are found by these checks in the meta-level analysis of M

then M guarantees static authentication. The check for static authentication by
the meta-level analysis suffices guarantee the authentication properties for all
object-level process that M instantiates to:

Theorem 3 (Authentication at the meta-level). If M guarantees static

authentication and MΓ V P then P guarantees dynamic authentication.

Proof. The theorem follows immediately from Theorem 1 and the fact that in-
dexed crypto-points are subject to canonicity as well as Lemma 5.

6 An Example Protocol

To illustrate the usefulness of the meta-level we analyse a protocol by Bauer,
Berson, and Feiertag [1]. According to a recent survey [5] there are no known
attacks on the protocol and, furthermore, the protocol is the basis one of the key
establishment mechanisms in an ISO/IEC standard [13]. The protocol makes use
of a server with which each principal initially shares a key KS i. In the first two
messages of the protocol, fresh nonces na ij and nbij produced by principal Ii and
Ij , respectively, are sent to the server along with the identities of the principals.
The server generates a new session key Kij , which is returned encrypted to each
principal along with their own nonce and the identity of the other principal. The

14 Mikael Buchholtz

protocol may be encoded as a meta-level scenario in the following way:

let X ⊆ S0 in let Y ⊆ S1 in (νi∈X∪Y KS i)
|i∈X |j∈Y !(ν naij) 〈Ii,naij〉.

(; xaij).decrypt xaij as {Ij ,naij ; xk ij}KSi
[at aij orig {s2 ij}] in 0

| |j∈Y |i∈X !(Ii; ynij).
(ν nbij) 〈Ij , Ii, ynij ,nbij〉.
(; ybij , yaij).decrypt ybij as {Ii,nbij ; yk ij}KSj

[at bij orig {s1 ij}] in
〈yaij〉.0

| |i∈X |j∈Y !(Ij , Ii; zaij , zbij).(ν Kij) 〈{Ii, zbij ,Kij}KSj
[at s1 ij dest {bij}],

{Ij , zaij ,Kij}KSi
[at s2 ij dest {aij}]〉.0

Annotations are added to declare that the two encryptions made at the server
are intended for the correct responder and initiator of the protocol, only.

One scenario can be described by taking S0 = {0} and S1 = {1}. Then the
meta-level process describes a scenario where principal I0 repeatedly initiates
the protocol with I1. When choosing bS0c 6= bS1c, the analysis guarantees static
authentication. That is, the analysis guarantees that the messages containing
the session keys will only be delivered to the correct principals.

Taking instead S0 = S1 = N the encoding represents a scenario where every
principal Ii can use the protocol with every principal Ij . This scenario includes
the case where a pair of principals uses the protocol in both directions at the
same time. For this scenario the analysis no longer guarantees static authentica-
tion. In fact, the scenario does not satisfy dynamic authentication because the
authentication property may be violated. The attack occurs precisely when the
protocol is used in both directions at the same time. As an end result of the
attack, two principals, say I1 and I2, may end up sharing a session key K12 but
both of them will think that the key came from a protocol session they them-
selves initiated. The problem is easy to fix: one simply needs to ensure that the
two encryptions made at the server do not have the same format. The analysis
guarantees authentication when the messages in one of these encryptions are
rearranged.

7 Conclusion

7.1 Related Work

The meta-level analysis bears some resemblance to a result shown by Comon-
Lundh and Cortier [10] that says that it suffices to consider a limited number
of principals when analysing a protocol. The result is shown by projecting the
semantic behaviour of all principals onto this limited number of principals. Our
meta-level analysis can also be seen as projection the behaviour of different
principals. However, the projection is onto the canonical values in the analysis
result rather that onto the semantic behaviour as in [10]. Thus, our results are
provided by a computable analysis that features a syntactic meta-level, which
furthermore allows a flexible modelling of different scenarios.

Automated Analysis of Infinite Scenarios 15

The idea of having additional syntax that describes scenarios can also be
found in frameworks such as Casper [14], CAPSL [11], etc. The main difference
from our approach is that they use syntactic unfolding i.e. that their scenarios
undergo a syntactic transformation (corresponding to our instantiation) before

analysis takes place.
It is also be appropriate to mention that our object-level analysis is related

to the approaches in [2, 12, 9]. The reader is referred e.g. to [3, 6] for a detailed
comparison with these approaches. However, none of these approaches deal with
scenarios that is the topic of this paper.

7.2 Summary

When discussing the security of a protocol it is vital to consider the scenario in
which the protocol will be deployed. This paper puts the focus on these deploy-
ment scenarios by extending the process calculus LySa with a meta-level. This
meta-level contains language primitives that caters for a flexible description of
scenarios. We have shown that it is viable to make a control flow analysis directly
on the meta-level that, also in practice, is capable of guaranteeing both confiden-
tiality and authentication properties. The analysis has been implemented with
relatively minor effort by relying on a previous implementation of the object-
level analysis. The result is version 2 of the LySatool, which has proven its worth
by finding a previously unreported problem in a classical security protocol. The
LySatool is freely available at

http://www.imm.dtu.dk/cs LySa/lysatool

where the full analysis results for examples in this paper can also be found.

Acknowledgements. The idea of having an analysable meta-level came up when
writing [8] with Flemming Nielson and Hanne Riis Nielson. Many other ideas
concerning LySa come from them as well as Chiara Bodei and Pierpaolo Degano.

References

1. R. K. Bauer, T. A. Berson, and R. J. Feiertag. A key distribution protocol using
event markers. ACM Transactions on Computer Systems, 1(3):249 – 255, 1983.

2. B. Blanchet. An efficient cryptographic protocol verifier based on Prolog rules. In
CSFW 2001, pages 82–96. IEEE, 2001.

3. C. Bodei, M. Buchholtz, P. Degano, F. Nielson, and H. Riis Nielson. Automatic
validation of protocol narration. In CSFW 2003, pages 126–140. IEEE, 2003.

4. C. Bodei, M. Buchholtz, P. Degano, F. Nielson, and H. Riis Nielson. Static
validation of security protocols. JSC, 2004. To appear. Preliminary version at
www.imm.dtu.dk/pubdb/views/edoc download.php/3199/pdf/imm3199.pdf.

5. C. Boyd and A. Mathuria. Protocols for Authentication and Key Establishment.
Springer, 2003.

6. M. Buchholtz. Automated analysis of security in networking systems. Ph. D. thesis
proposal. Available from http://www.imm.dtu.dk/∼mib/thesis/, December 2004.

16 Mikael Buchholtz

7. M. Buchholtz. Implementing control flow analysis for security protocols. DEGAS
Report WP6-IMM-I00-Pub-003, Draft 2003.

8. M. Buchholtz, F. Nielson, and H. Riis Nielson. A calculus for control flow analysis
of security protocols. IJIS, 2(3-4):145–167, 2004.

9. M. Bugliesi, R. Focardi, and M. Maffei. Compositional analysis of authentication
protocols. In ESOP 2004, volume 2986 of LNCS, pages 140–154. Springer, 2004.

10. H. Comon-Lundh and V. Cortier. Security properties: Two agents are sufficient.
In ESOP 2003, number 2618 in LNCS, pages 99–113. Springer, 2003.

11. G. Denker, J. Millen, and H. Rueß. The CAPSL integrated protocol environment.
Technical Report SRI-CLS-2000-02, SRI International, 2000.

12. A. D. Gordon and A. Jeffrey. Authenticity by Typing for Security Protocols. In
CSFW 2001, pages 145 –159. IEEE, 2001.

13. Information technology - security techniques - key management - part 2. mecha-
nisms using symmetric techniques ISO/IEC 11770-2. International Standard, 1996.

14. G. Lowe. Casper: A compiler for the analysis of security protocols. JSC, 6(1):53–84,
1998.

15. F. Nielson, H. Riis Nielson, and R. R. Hansen. Validating firewalls using Flow
Logics. TCS, 283(2):381–418, 2002.

16. F. Nielson, H. Riis Nielson, and H. Seidl. Cryptographic analysis in cubic time. In
TOSCA 2001, volume 62 of ENTCS. Elsevier, 2001.

17. F. Nielson, H. Riis Nielson, and H. Seidl. A succinct solver for ALFP. NJC,
9:335–372, 2002.

18. H. Riis Nielson and F. Nielson. Flow Logic: a multi-paradigmatic approach to static
analysis. In The Essence of Computation: Complexity, Analysis, Transformation,
volume 2566 of LNCS, pages 223–244. Springer, 2002.

Automated Analysis of Infinite Scenarios 17

This appendix is not intended to be part of the paper. It contains the
proof of a theorem that has been omitted for the sake of space.

A Proof of Theorem 1

The proof of Theorem 1 uses a lemma that concerns the way let-constructs are
analysed. The idea when analysing the let-construct is to conduct the analysis
with the largest possible set of canonical indices. This suffices because it also cov-
ers the analysis of processes where smaller subsets are chosen. This can formally
be stated as the lemma:

Lemma 6 (Subset in let-declaration). If bS2c ⊆ bS1c then ρ, κ |=Γ [X 7→S1] M

implies ρ, κ |=Γ [X 7→S2] M .

Proof. The proof proceeds by induction in the structure of M .
Case let X ′ ⊆ S in M . Assume that ρ, κ |=Γ [X 7→S1] let X ′ ⊆ S inM i.e. by
(ALet)

ρ, κ |=Γ [X 7→S1][X′ 7→S′] M

for some S′ such that S′ ⊆fin Γ (S) and bS′c = bΓ (S)c. Now assume that
X = X ′. Then the inner substitution of X is overwritten by [X ′ 7→ S′] so

ρ, κ |=Γ [X 7→S1][X′ 7→S′] M iff ρ, κ |=Γ [X 7→S2][X′ 7→S′] M

iff ρ, κ |=Γ [X 7→S2] let X ′ ⊆ S in M

as required. Alternatively assume that X 6= X ′. Then the order of substitutions
does not matter. Using this and the induction hypothesis (IH) one may derive

ρ, κ |=Γ [X 7→S1][X′ 7→S′] M iff ρ, κ |=Γ [X′ 7→S′][X 7→S1] M

implies ρ, κ |=Γ [X′ 7→S′][X 7→S2] M (by IH)
iff ρ, κ |=Γ [X 7→S2][X′ 7→S′] M

which allows to conclude that ρ, κ |=Γ [X 7→S2] let X ′ ⊆ S in M as required.
Case |i∈S M . First notice that if S 6= X then ρ, κ |=Γ [X 7→S1] |i∈S M implies
ρ, κ |=Γ [X 7→S2] |i∈S M simply by applying the induction hypothesis for the anal-
ysis of M . Next assume that S = X, which gives that

ρ, κ |=Γ [X 7→S1] |i∈S M iff ∧a1∈S1
ρ, κ |=Γ [X 7→S1] M [i 7→ a1]

From the assumption that bS2c ⊆ bS1c it is known that for every a2 ∈ S2 there
is a corresponding a1 ∈ S1 such that ba2c = ba1c. By Lemma 3 then it holds
that ρ, κ |=Γ [X 7→S1] M [i 7→ a2] for all a2 ∈ S2. This together with the induction
hypothesis allows to conclude

∧a2∈S2
ρ, κ |=Γ [X 7→S2] M [i 7→ a2]

which is precisely ρ, κ |=Γ [X 7→S2] |i∈S M as required.
The remaining cases are straightforward and follow by applying the induction

hypothesis because the analysis does not directly use Γ in these cases.

18 Mikael Buchholtz

Using this lemma, we can now proceed to the proof of Theorem 1:

Proof. The proof proceeds by induction in the structure of M .
Case let X ⊆ S in M . First, calculate

(let X ⊆ S inM)Γ = let X ⊆ Γ (S) in M(Γ \ X)

where Γ \ X is as Γ except that Γ (X) is undefined. Next, assume that (let X ⊆
S in M)Γ V P which according to (ILet) in Table 3 happens because

(M(Γ \ X))[X 7→ S′] V P

for some S′ ⊆fin Γ (S). Because X is undefined in Γ \ X this is the same as

M(Γ [X 7→ S′]) V P

Next, assume that ρ, κ |=Γ let X ⊆ S inM i.e. from (ALet) that

ρ, κ |=Γ [X 7→S′′] M

where S′′ ⊆fin Γ (S) and bS′′c = bΓ (S)c. Notice that bS′c ⊆ bS′′c so by Lemma 6

ρ, κ |=Γ [X 7→S′] M

From the induction hypothesis it then follows that ρ, κ |= P as required.
Case |i∈S M . Assume ρ, κ |=Γ |i∈S M i.e. from (AIPar) that

∧a∈Γ (S) ρ, κ |=Γ M [i 7→ a]

Furthermore, let Γ (S) = {a1, . . . , ak} for some arbitrary set {a1, . . . , ak}. Next,
assume that (|i∈S M)Γ V P1 | . . . | Pk by (IPar). Noting that (|i∈S M)Γ =
|i∈Γ (S) MΓ and using (IIPar) this means that

MΓ [i 7→ aj] V Pj

for each aj ∈ Γ (S). Since the two substitutions Γ and [i 7→ aj] range over
different domains the order of the substitution of does not matter. Thus, it also
holds that for all aj ∈ Γ (S) that

(M [i 7→ aj])Γ V Pj

The induction hypothesis can be applied k times to establish that

ρ, κ |= P1 ∧ . . . ∧ ρ, κ |= Pk

which by (APar) from Table 4 applied k times give precisely ρ, κ |= P1 | . . . | Pk

as required.
Case (νi∈S nai)M . Assume that ρ, κ |=Γ (νi∈S nai)M i.e. that

ρ, κ |=Γ M

Automated Analysis of Infinite Scenarios 19

Let Γ (S) = {a1, . . . , ak} and note that ((νi∈S nai)M)Γ = (νi∈Γ (S) nai)MΓ .

Next assume that ((νi∈S nai)M)Γ V (ν naa1
) . . . (ν naak

)P , which according to
(IINew) happens because

MΓ V P

The induction hypothesis applies to give that ρ, κ |= P , which by (ANew) from
Table 4 is the same as ρ, κ |= (ν naa1

) . . . (ν naak
)P as requires.

The remaining cases for the object-level syntax are straightforward because
the substitution Γ does not modify anything in the object-level syntax.

