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Verification flow

Hybrid System Effective VerificationModel
BackendEncoding

component

component
continuous

A/D, D/A

component
discrete

formula

FOL(R,Z,+,...)

Boolean

FOL(R,+,*,...)

Yes/No

Formulae are
• extremely large arithmetic formulae with a rich Boolean structure

⇒ Lazy Theorem Proving

• over an undecidable domain, but approximation sufficient due to robustness
of algorithms against manufacturing tolerances, rounding errors, . . .

⇒ Interval Constraint Solving
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Satisfiability solving for decidable theories:

Lazy theorem proving & DPLL(T)
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The Lazy TP Scheme: LinSAT

Davis Putnam Linear Programming

x

y
Input formula:

Φ = (e→ C∧D)

∧
(
f→ A∧ B

)
(
f∨ g∨ e

)
∧

∧

∧

∧

∧

∧

∧ (D→ (x ≤ 7))
(C→ (x+ y ≤ 5))
(B→ (2x− 4y ≤ −7))

(A→ (4x− 2y ≥ 9))
(e→ (C∨D) ∧ g)

(
g∨ f

)

Backtrack search

1. traversing possible truth-value assignments of Boolean part
2. incrementally (de-)constructing a conjunctive arithmetic constraint system
3. querying external solver to determine consistency of arithm. constr. syst.
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The Lazy TP Scheme: LinSAT
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The Lazy TP Scheme: LinSAT

D

B
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Irreducible infeasible subsystem is 

Conflict !
A

Davis Putnam Linear Programming
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Deduce
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The Lazy TP Scheme: LinSAT

Learned conflict clause:

A
D

B

Deduce

Deduce

Deduce

Deduce from conflict cl.
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Davis Putnam Linear Programming
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Backtrack search

1. traversing possible truth-value assignments of Boolean part
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Deciding the conjunctive T -problems
For T being linear arithmetic over R, this can be done by linear
programming:

n∧

i=1

m∑

j=1

Ai,jxj ≤ bj iff Ax ≤ b

 Solving LP maximize cTx

subject to Ax ≤ b

with arbitrary c provides consistency information.

To cope with systems C containing strict inequations
∑m

j=1Ai,jxj<bj,
one
• introduces a slack variable ε,
• replaces

∑m

j=1Ai,jxj<bj by
∑m

j=1Ai,jxj+ε ≤bj,
• solves the resultant LP L, maximizing the objective function ε

 C is satisfiable iff L is satisfiable with optimum solution > 0.
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Extracting reasons for T -conflicts

Goal: In case that the original constraint system

C =

( ∧k
i=1

∑n

j=1 Ai,jxj ≤ bi
∧

∧n
i=k+1

∑n

j=1 Ai,jxj < bi

)

is infeasible, we want a subset I ⊆ {1, . . . , n} such that
• the subsystem C|I of the constraint system containing only

the conjuncts from I also is infeasible,
• yet the subsystem is irreducible in the sense that any proper

subset J of I designates a feasible system C|J.
Such an irreducible infeasible subsystem (IIS) is a prime
implicant of all the possible reasons for failure of the constraint
system C.
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Extracting IIS
Provided constraint system C contains only non-strict inequations,
• extraction of IIS can be reduced to finding extremal solutions of

a dual system of linear inequations, similar to Farkas’ Lemma
(Gleeson & Ryan 1990; Pfetsch, 2002)

• to keep the objective function bounded, one can use dual LP

maximize wTy

subject to ATy = 0

bTy = 1

y ≥ 0

where wi =

{
−1 if bi ≤ 0,
0 if bi > 0

• choice of w guarantees boundedness of objective function
=⇒ optimal solution exists whenever the LP is feasible.

! For such a solution, I = {i | yi 6= 0} is an IIS.
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Extensions & Optimizations

DPLL(T): If the T solver can itself do fwd. inference, it cannot only
prune the search tree through conflict detection, but also
through constraint propagation:
1. SAT solver assigns truth values to subset C ⊂ A of the set A

of constraints occurring in the input formula,
2. T solver finds them to be consistent and to imply a truth

value assignment to further T constraints D ⊆ A \ C,
3. these truth-value assignments are performed in the SAT

solver store before resuming SAT solving.

02917: Arithmetic Satisfiability Solving – p.9/38



Satisfiability solving in
undecidable arithmetic domains

iSAT algorithm (AVACS consortium 2006–)
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Classical Lazy TP Layout

DPLL−SAT

+ conflict−driven learning
+ non−chronol. backtrack.

reasoner
Arithmetic

arithmetic
constraint system

explanation:
(minimal) infeasible
subsystem

consistent:
yes / no

Problems with extending it to richer arithmetic domains:
• undecidability: answer of arithmetic reasoner no longer

two-valued; don’t know cases arise
• explanations: how to generate (nearly) minimal infeasible

subsystems of undecidable constraint systems?

02917: Arithmetic Satisfiability Solving – p.11/38



Classical Lazy TP Layout

DPLL−SAT

+ conflict−driven learning
+ non−chronol. backtrack.

reasoner
Arithmetic

arithmetic
constraint system

explanation:
(minimal) infeasible
subsystem

consistent:
yes / no

Problems with extending it to richer arithmetic domains:
• undecidability: answer of arithmetic reasoner no longer

two-valued; don’t know cases arise
• explanations: how to generate (nearly) minimal infeasible

subsystems of undecidable constraint systems?

02917: Arithmetic Satisfiability Solving – p.11/38



Algorithmic basis:

Interval constraint propagation
(Hull consistency version)
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Interval Constraint Solving (1)

• Complex constraints are rewritten to “triplets” (primitive constraints):

x2 + y ≤ 6  
c1 : h1 =̂ x∧ 2

c2 : ∧ h2 =̂h1 + y

∧ h2 ≤ 6
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Interval Constraint Solving (1)

• Complex constraints are rewritten to “triplets” (primitive constraints):

x2 + y ≤ 6  
c1 : h1 =̂ x∧ 2

c2 : ∧ h2 =̂h1 + y

∧ h2 ≤ 6

• “Forward” interval propagation yields justification for constraint satisfaction:

x ∈ [−2, 2]

∧ y ∈ [−2, 2]

2

6

y

≤

+

∧

x

[−2, 2]

[0, 4]

[−2, 6]

[−2, 2]

h2

h1

satisfied in box

h2 ≤ 6 is

⇓
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Interval Constraint Solving (1)

• Complex constraints are rewritten to “triplets” (primitive constraints):

x2 + y ≤ 6  
c1 : h1 =̂ x∧ 2

c2 : ∧ h2 =̂h1 + y

∧ h2 ≤ 6

• Interval propagation (fwd & bwd) yields witness for unsatisfiability:

2

6

y

≤

+

∧

x

[3, 4]

[9, 16]

[9, 19]

[0, 3]

h2

h1

unsat. in box

h2 ≤ 6 is

⇓

x ∈ [3, 4]

∧ y ∈ [0, 3]
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Interval Constraint Solving (1)

• Complex constraints are rewritten to “triplets” (primitive constraints):

x2 + y ≤ 6  
c1 : h1 =̂ x∧ 2

c2 : ∧ h2 =̂h1 + y

∧ h2 ≤ 6

• Interval prop. (fwd & bwd until fixpoint is reached) yields contraction of box:

2

6

y

≤

+

∧

x

[−10, 10]

[0, 100]

[−10, 110]

[−10, 10]

h2

h1

∧ y ∈ [−10, 10]

x ∈ [−10, 10]
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Interval Constraint Solving (1)

• Complex constraints are rewritten to “triplets” (primitive constraints):

x2 + y ≤ 6  
c1 : h1 =̂ x∧ 2

c2 : ∧ h2 =̂h1 + y

∧ h2 ≤ 6

• Interval prop. (fwd & bwd until fixpoint is reached) yields contraction of box:

2

6

y

≤

+

∧

x

[−4, 4]

[0, 16]

[−10, 6]

[−10, 6]

h2

h1

⇓

∧ y ∈ [−10, 10]

x ∈ [−10, 10]

∧ y ∈ [−10, 6]

x ∈ [−4, 4]
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Interval Constraint Solving (1)

• Complex constraints are rewritten to “triplets” (primitive constraints):

x2 + y ≤ 6  
c1 : h1 =̂ x∧ 2

c2 : ∧ h2 =̂h1 + y

∧ h2 ≤ 6

• Interval prop. (fwd & bwd until fixpoint is reached) yields contraction of box:

Constraint is not satisfied

by the contracted box!

2

6

y

≤

+

∧

x

[−4, 4]

[0, 16] [−10, 6]

h2

h1

∧ y ∈ [−10, 6]

x ∈ [−4, 4]

[−10, 22]
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Interval contraction

Backward propagation yields rectangular overapproximation of
non-rectangular pre-images.

Thus, interval contraction provides a highly incomplete deduction
system:

x ∈ [0,∞)

∧ h =̂ x · y
∧ h > 5

=⇒ x ∈ (0,∞)

∧ y ∈ (0,∞)
=⇒ h ∈ (0,∞) 6=⇒ h > 5

 enhance through branch-and-prune approach.
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Schema of Interval-CP based CS Alg.

/ DPLL

Given: Constraint set C = {c1, . . . , cn},
initial box (= cartesian product of intervals) B in R|free(C)|

/ B|free(C)|

Goal: Find box B ′ ⊆ B containing satisfying valuations throughout
or show non-existence of such B ′.

Alg.: 1. L := {B}

2. If L 6= ∅ then take some box b :∈ L,

(LIFO)

otherwise report “unsatisfiable” and stop.
3. Use contraction to determine a sub-box b ′ ⊆ b.

(Unit Prop.)

4. If b ′ = ∅ then set L := L \ {b}, goto 2.
5. Use forward interval propagation to determine whether all

constraints are satisfied throughout b ′; if so then report b ′ as
satisfying and stop.

6. If b ′ ⊂ b then set L := L \ {b} ∪ {b ′}, goto 2.
7. Split b into subboxes b1 and b2, set L := L \ {b} ∪ {b1, b2},

goto 2.
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Observation

DPLL-SAT and interval-CP based CS are inherently similar:
DPLL-SAT Interval-based CS

Propagation: contraction in lattice

{false,true}

{false}

{}

{true} contraction in lattice
of intervals over R

of Boolean intervals
Split: split of Boolean interval [false,true] split of interval over R

This suggests a tighter integration than lazy TP:
common algorithms should be shared,
others should be lifted to both domains.
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iSAT algorithm

Tight integration of DPLL and ICP
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Lazy TP: Tightening the Interaction

Arithmetic
reasoner

DPLL−SAT

+ conflict−driven learning
+ non−chronol. backtrack.

arithmetic
constraint system

consistent:
yes / no

explanation:
(minimal) infeasible
subsystem
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Lazy TP: Tightening the Interaction

propagation

Arithmetic

constraint
+ conflict−driven learning
+ non−chronol. backtrack.propagation

Boolean

constraint

DPLL−SAT
control flow

enters / removes constraints &
triggers individual constraint propagations

reports narrowing results

Arithmetic
reasoner

DPLL−SAT

+ conflict−driven learning
+ non−chronol. backtrack.

arithmetic
constraint system

consistent:
yes / no

explanation:
(minimal) infeasible
subsystem
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Properties of Modified Layout

propagation

Arithmetic

constraint
+ conflict−driven learning
+ non−chronol. backtrack.propagation

Boolean

constraint

DPLL−SAT
control flow

triggers individual constraint propagations

reports narrowing results

enters / removes constraints &

• SAT engine has introspection into CP
• thus can keep track of inferences and their reasons

can use recent SAT mechanisms for generalizing reasons of
conflicts and learning them, thus pruning the search tree

preoccupation towards depth-first search (inherited from DPLL)
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The CP Mechanisms
Interpretation of variables: Each variable x is interpreted by two

intervals x ↑⊇ x ↓:
Interval denotes CP mechanisms

x ↑ justifying interval Fwd. propagation among
. ↑ intervals (wrt. some order)

x ↓ implied interval Fwd. and bwd. narrowing
among . ↓ intervals

Constraint propagation:

• h ≤ const: Narrow h ↓ to h ↓ ′:= h ↓ ∩[const,∞).
• x = y⊕ z: Apply the contractors of all reshufflings.

Conflicts: Materialize by contracting a . ↓ interval to ∅.
Constraint satisfaction: Shows by h ↑ satisfying the constraint.
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DPLL on a search lattice D
1. Start from the most general assignment σ⊥ ≡ ⊥.

2. (Propagation) If there is a not yet satisfied clause containing
exactly one elementary formula φ with value 6= false then
enqueue contract(φ). Repeat 2 if possible.

3. (Perform updates) If implication queue non-empty then dequeue
contract(φ) and perform it. If this assigns > to some entailed
variable then backtrack (if applicable, otherwise return
“unsatisfiable”). If all clauses become true, report “satisfiable”.
Enqueue contract(ψ) for all affected atoms ψ and repeat 3
unless queue empty. Thereafter proceed with 2, if applicable.

4. (Split) Select an arbitrary variable x with non-maximal (in
D \ {>}) value occurring in an unsatisfied elementary formula in
an unsatisfied clause.
Take x ′, x ′′ ∈ D \ {>} s.t. x := x ′ u x ′′. Enqueue x := x ′. Store
alternative x := x ′′ as backtrack alternative. Goto 3.
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Optimizations inherited from DPLL:

• conflict-driven learning
• non-chronological backtracking
• watched literal scheme
• restarts
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Conflict-Driven Learning in DPLL: Example

A + B
A + c + D
A + d + E
c + F + G
d + F + g
f + G
f + g
X + y
e + Y + Z
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B
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Conflict-Driven Learning in DPLL: Example

D

E

C

c
=1 d = 1, e = 1

a
=0

a

B

b = 1
A + B
A + c + D
A + d + E
c + F + G
d + F + g
f + G
f + g
X + y
e + Y + Z

02917: Arithmetic Satisfiability Solving – p.23/38



Conflict-Driven Learning in DPLL: Example

yx Z

x
=0 y = 0, z = 1

D

E

C

c
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a
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Conflict-driven learning in multi-valued case

Works like a charme w/o fundamental modifications:
• Decision variables coincide to interval splits;

the assigned values to asserted bounds x ≥ c, x > c, x < c,
x ≤ c;

• Implications correspond to contractions;
• Reasons to sets of asserted atoms giving rise to a contraction.

Through embedding into SAT, we get
conflict-driven learning and non-
chronological backtracking for free!
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Learning: Principle
z

y

x

x > 0
x < 3
y > 2
y < 5
z > 0
z < 2
x > y
z = x*y
y = z+x
...

Refutes other candidate boxes and constraint combinations immediately.
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Optimizations for DP:

Watched literal scheme
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Watched literals

Boolean SAT: Within each (not yet satisfied) clause, watch two
unassigned literals:

x ∨ y ∨ ¬z ∨ a

true false ↑ ↑
watch watch

Clause needs only be visited if one of the watched lieterals gets
assigned with wrong polarity. Otherwise clause either satisfied
or still satisfiable.
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Watched literals

Lattice-SAT: Within each clause, watch two undecided elementary
formulae:

x ≥ 4 ∨ z + x=̂y ∨ y ≥ 1 ∨ a > 4

(2, 3) (0, 1), (2, 3), (1, 3) (1, 3) (2, 5)

false ↑ true ↑
watch watch

Clause needs only be visited if a variable in the observed parts
becomes assigned:
• visit if a’s upper bound is reduced

(would suffice to visit if reduced to 4 or below)
• visit if x’s, y’s, or z’s interval is narrowed

(would actually suffice to visit if (z⊕ x) ∩ y becomes empty)
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Enforcing termination
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Enforcing termination

• SAT on an infinitely deep lattice may digress into an infinite sequence of
splits.

• This can be avoided if splitting depth within a SAT-solver run is bounded a
priori:

1. Select a bound on splitting depth,

2. run lattice-SAT and learn a pseudo-conflict closing the branch whenever
current search path has reached maximum number of splits,

3. report any solution thus found or any certificate of unsatisfiability thus
found (sound results due to monotonicity!),

4. if problem remained unsolved then
(a) reopen closed branches through deletion of pseudo-conflicts,
(b) restart SAT with larger splitting depth.

• Due to conflict-driven learning, restarts do never reexplore paths already
solved with lower splitting depth!
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iSAT in practice:

Benchmark results
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The impact of learning: no. of conflicts
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=⇒ enormous pruning of search space already on small examples
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The impact of learning: runtime
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iSAT in practice

Formula syntax
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Constraint solving: single formula mode
DECL
int [1, 100] a, b, c;

EXPR
a*a + b*b = c*c;

• Two sections:
1. Variable declarations (keyword “DECL”)
2. Constraint (keyword “EXPR”)

• Variables can be bounded integers (“int”), bounded reals
(“float”), or Booleans (“boole”)

• integers and reals come with declarations of bounded ranges:

int [-17, 123] a, b;
int [13,54045] c;
float [-9999.9999,3.1415927] alpha,omega;
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iSAT: type consistency

• boole is identified with int [0,1]

• floats and ints can be freely mixed within constraints,
• constraint evaluation is always in (safely outward rounding) float

arithmetic,
• the restriction to int only confines the search lattice:
• interval split: [a, b]  [a, z] ∪ [z + 1, b] with z ∈ Z,
• strengthened propagation: . . .  [a, b]  [dae, bbc].
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Sample constraints

x + y * 2 >= 5 + 2 * y;
x / y > 10 xor !a;
abs(nrt(x,5)) < 2.545;

Note that any type of fixedpoint equation is possible:
• (a + x / y) = x

and that type constraints can (voluntarily or accidentially) destroy
referential transparency:
• (a + x / y) = x for float[...]x,y vs.
• i = x / y; (a + i) = x for float[...]x,y;int[...]i.
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Interpreting the results

iSAT (a.k.a. HySAT 2) returns

unsatisfiable: all possible interval assignments, and hence all
possible real-valued assignments, have been refuted,

candidate solution box found: an interval box has been found which is
free of conflict and sufficiently small (below the selected
minimum split width).

The publicly available version of iSAT
• does not yet contain a check for actual existence of a satisfying

solution in the candidate box,
• for real-valued problems, safer information may be obtained by

restarting with smaller bounds on interval width in splitting and
on progress in deduction,

• for integer-valued problems, “candidate solution box found” can
generally be identified with “solution found”.
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