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1 Introduction

This assignment deals with the implementation of a solver for constraint satisfaction problems
(CSPs). Constraint satisfaction is one of the most important and well studied areas in artificial
intelligence. There is an extensive literature concerning this issue (for a compendium cf. [RvBW06]
A CSP is a high level description of a problem, its range of application contains Planning and
Scheduling Problems, Network Management and Configuration, Database Systems, Molecular
Biology, Electrical Engineering and many more.

The CSP model is represented by a set of variables and their domains as well as by constraints
specifying the relations between the variables. The variable domain is not limited to be finite
or bounded but may be continuous. Moreover, constraints can involve arbitrary arithmetics.
Therefore, a CSP is a very useful and rich tool for describing (real-world) models and problems,
and strongly generalizes the well-known NP-complete Boolean satisfiability problem (SAT).

In this assignment we just consider a very restricted class of CSP problems over finite domains
involving offset arithmetic. Nevertheless, in this restricted class problems can be encoded more
conveniently than in SAT.

In the lectures you got to know the DPLL algorithm for solving propositional SAT problems.
Modern DPLL SAT solvers are very efficient and are able to handle huge formulas due to re-
cent enhancements like conflict-driven learning, non-chronological backtracking, and lazy clause
evaluation.

Objective. Your task is to develop a simple branch-and-prune CSP solver based on the DPLL
backtrack search for a more general class of formulas, where the domain of a variable is no longer
two-valued. This means that your implementation should provide an extended DPLL decision
mechanism, backtracking, and the deduction process.

2 Constraint satisfaction problems

The classic definition of a constraint satisfaction problem is as follows:

Definition 1 (CSP) A CSP is a triple P = 〈X,D,C〉 where

• X = 〈x1, . . . , xn〉 is an n-tuple of variables,

• D = 〈D1, . . . , Dn〉 is a corresponding n-tuple of domains s.t. xi ∈ Di, i ∈ {1, . . . , n}, and

• C = 〈c1, . . . , ct〉 is a t-tuple of constraints.

A constraint cj is a pair 〈RSj , Sj〉 where Sj is an n′-tuple of variables in X, where n′ ≤ n,
and RSj is a relation on the variables in Sj, i.e. RSj is a subset of the Cartesian product of the
domains of the variables in Sj .

A solution of a CSP P is an n-tuple A = 〈a1, . . . , an〉 where ai ∈ Di and each constraint
cj is satisfied, i.e. A projected onto Sj is an element of RSj . Note that the relation RSj can be
given explicitly or implicitly by a predicate. A CSP P is called satisfiable if a solution of P exists,
otherwise P is unsatisfiable.
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Example 1 Consider the trivial CSP P = 〈〈x1, x2〉, 〈D1, D2〉, C〉 where x1, x2 are reals, D1 =
[0, 3], D2 = [2, 5] and C = 〈〈{〈w1, w2〉 : w1 = w2}, 〈x1, x2〉〉〉. The only constraint states that
x1 = x2 has to hold. A solution of P, therefore, is e.g. 〈2.7, 2.7〉. However, if D2 = [4, 5] then P
is unsatisfiable since the domains of x1 and x2 are disjoint, i.e. D1 ∩D2 = ∅.

2.1 Simple CSPs

Your CSP solver should address just a subclass of the general CSP definition. We restrict the
domains Di to be finite and bounded. The domains Di are given by the interval [lbi, ubi] ⊂ Z
where lbi, ubi ∈ Z are whole numbers (integers). Furthermore, we just consider a special form of
constraints. Therefore, we need some definitions.

Definition 2 (simple bound, simple constraint) Let x and y be two integer variables and
k ∈ Z be a whole number, then

x ≥ y + k

is called a simple bound.
A constraint c = 〈RS , S〉 is called simple if and only if RS can be represented by a disjunction

DRS of simple bounds1. For the sake of simplicity we write DRS to denote the constraint c.

Note the following observations, where x and y are integer variables, z ∈ [0, 0] is a dedicated
integer variable representing the value 0, and k, k′, l ∈ Z.

x ≥ y ≡ x ≥ y + 0
x ≥ y − k ≡ x ≥ y + k′ where k′ = −1 · k

x ≥ k ≡ x ≥ z + k
k ≥ l ≡ z ≥ z + k′ where k′ = l − k

x ≤ y + k ≡ y ≥ x− k
x ≤ y ≡ y ≥ x

x ≤ y − k ≡ y ≥ x+ k
x ≤ k ≡ z ≥ x− k
k ≤ l ≡ l ≥ k

x > y + k ≡ x ≥ y + k′ where k′ = k + 1
x > y ≡ x ≥ y + 1

x > y − k ≡ x ≥ y − k′ where k′ = k + 1
x > k ≡ x ≥ k′ where k′ = k + 1
k > l ≡ k ≥ k′ where k′ = l + 1

x < y + k ≡ y > x− k
x < y ≡ y > x

x < y − k ≡ y > x+ k
x < k ≡ x ≤ k′ where k′ = k − 1
k < l ≡ l > k

Example 2 Let c = 〈RS , S = 〈x1, x2〉〉 where xi ∈ Di = [−1, 2] ⊂ Z for i ∈ {1, 2}, and

RS = { (−1,−1), (−1, 0), (−1, 1), (−1, 2),
(0, 2), (1, 2), (2, 2),
(2,−1) }.

The pairs (−1, vx2) for vx2 ∈ D2 can be encoded as solutions in D1 ×D2 = [−1, 2]× [−1, 2] of the
predicate x1 ≤ −1. The same holds for the pairs (vx1 , 2) for vx1 ∈ D1 as solutions of x2 ≥ 2. The
pair (2,−1) is the only solution in D1 ×D2 of the predicate x1 ≥ x2 + 3. Thus, the relation RS

1The definition of satisfaction of simple bounds and disjunctions thereof is standard.
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DECL
x 0 0 0 ;
x 1 3 6 ;
x 2 −6 4;
x 3 −2 5;

FORMULA
x 1 >= x 0 + −1 v x 0 >= x 1 + 3 v x 2 >= x 1 + 3 v x 3 >= x 2 + −1;
x 1 >= x 0 + −4 v x 0 >= x 2 + 6 v x 3 >= x 2 + 4 v −10 >= 4;
x 1 >= x 0 + −2 v x 0 >= x 3 + 6 v x 3 >= x 1 + 0 v 4 >= −10;

Figure 1: Example of the input format (corresponds to the CSP from example 3)

contains exactly all solutions in D1 ×D2 of the predicate P = (x1 ≤ −1 ∨ x2 ≥ 2 ∨ x1 ≥ x2 + 3).
By the equivalence relations above P can be translated into the simple constraint

c = (z ≥ x1 + 1 ∨ x2 ≥ z + 2 ∨ x1 ≥ x2 + 3) ≡ P

where z ∈ [0, 0] is a (fresh) dedicated variable representing 0.

To sum up, we define the restricted CSP.

Definition 3 (simple CSP) A CSP P = 〈X,D,C〉 is called simple iff

• ∀Di ∈ D ∃lbi, ubi ∈ Z (with lbi ≤ ubi) : Di = [lbi, ubi] ⊂ Z, and

• each constraint c ∈ C is simple.

Example 3 Given the simple CSP P = 〈X,D,C〉 where X = 〈x0, x1, x2, x3〉 and D0 = [0, 0], D1 =
[3, 6], D2 = [−6, 4], D3 = [−2, 5] are the domains of the variables. C contains the following simple
constraints:

(x1 ≥ x0 + (−1) ∨ x0 ≥ x1 + 3 ∨ x2 ≥ x1 + 3 ∨ x3 ≥ x2 + (−1)),
(x1 ≥ x0 + (−4) ∨ x0 ≥ x2 + 6 ∨ x3 ≥ x2 + 4 ∨ −10 ≥ 4),
(x1 ≥ x0 + (−2) ∨ x0 ≥ x3 + 6 ∨ x3 ≥ x1 + 0 ∨ 4 ≥ −10).

A solution of the CSP P is e.g. x0 = 0, x1 = 4, x2 = −1, and x3 = 1, since x3 ≥ x2 + (−1) is
satisfied in the first constraint, x1 ≥ x0 + (−4) in the second, and, trivially, 4 ≥ −10 in the third.

2.2 Input format of the tool

Your tool must accept input files of the following syntax:

simple CSP ::= DECL var decl
FORMULA formula

var decl ::= {variable lb ub ;}∗
formula ::= {constraint ;}∗

constraint ::= {simple bound v}∗ simple bound
simple bound ::= variable >= variable + integer

variable ::= x nat number

where nat number ∈ N, and lb, ub, integer ∈ Z.
The semantics of these constraint formula is standard, as explained in Fig. 1.
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3 Algorithm for solving simple CSPs

The backtrack algorithm as mainly described in subsection 3.1 for solving simple CSPs P =
〈X,D,C〉 manipulates interval valuations (or interval assignments) ρ : X → I, ∅ /∈ I, mapping
a variable xi ∈ X to a non-empty interval ρ(xi) ∈ I with ρ(xi) ⊆ Di ⊂ Z. Let ρ and ρ′ be two
interval valuations. If ∀x ∈ X : ρ′(x) ⊆ ρ(x) then ρ′ is called refinement of ρ.

The initial interval valuation ρ0 maps each variable xi to its initial interval Di, i.e. ∀xi ∈
X : ρ0(xi) = Di. Therefore, we have to define the interpretation of simple bounds over interval
valuations.

Definition 4 (Semantics of simple bounds over interval valuations) Let ρ be an interval
valuation. Then a simple bound x ≥ y + k is

• true under ρ iff
min ρ(x) ≥ max ρ(y) + k,

• false under ρ iff
max ρ(x) < min ρ(y) + k,

and

• inconclusive under ρ otherwise.

Example 4 Let ρ be defined by ρ(x) = [−2, 4] and ρ(y) = [2, 10]. Then

• x ≥ y + (−15) is true under ρ, since

min ρ(x) = −2 ≥ max ρ(y) + (−15) = 10− 15 = −5,

• x ≥ y + 15 is false under ρ, since

max ρ(x) = 4 < min ρ(y) + 15 = 2 + 15 = 17,

and

• x ≥ y + 0 is inconclusive under ρ, since both

min ρ(x) = −2 ≥ max ρ(y) + 0 = 10,

and
max ρ(x) = 4 < min ρ(y) + 0 = 2,

do not hold.

The definition of satisfaction of simple constraints over interval assignments, then again, is stan-
dard. A simple constraint is satisfied by or true under an interval valuation ρ iff at least one of
its simple bounds is true under ρ. A simple constraint is false under ρ iff all its simple bounds are
false under ρ. If a simple constraint c is neither true nor false under ρ, we say that c is inconclusive
under ρ.

The next proposition states that interval satisfaction of a CSP P is a sufficient condition for
satisfiability of P .

Proposition 1 Let ρ be an interval valuation. Then, if all simple constraints of a CSP P are
satisfied by ρ then there exists a (point) solution of P and, hence, P is satisfiable.
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3.1 Basic backtrack algorithm

Given a simple CSP P = 〈X,D,C〉. In order to decide whether P is satisfiable or unsatisfiable,
the base algorithm A consecutively performs two steps, a consistency checking step and a decision
step (by splitting intervals), until inconsistency (a constraint becomes false) or satisfiability (all
constraints are satisfied) are detected. In case of inconsistency, a backtrack step is applied. If
backtracking is not feasible then we stop with result “P is unsatisfiable”. If satisfiability is proven,
we return “P is satisfiable”.

Algorithm A

1. Consistency check: For each simple constraint c ∈ C, the algorithm computes the truth
value of c under the current interval valuation ρ. If a false constraint is found go to 2. In
the case that all constraints are true under ρ, then stop with the result “P is satisfiable”.
Otherwise go to 3.

2. Backtrack: Retrieve the interval valuation ρ which was valid before the youngest non-
revoked decision step was performed. Assert the stored alternative interval (cf. 3) of that
decision, update ρ correspondingly, and go to 1.

If no such decision exists, return “P is unsatisfiable” and stop.

3. Decision: Select a variable x ∈ X s.t. |ρ(x)| > 1 and split the interval ρ(x) into two disjoint
intervals ρ′(x) and ρ′′(x) (with ρ′(x)∪ρ′′(x) = ρ(x)). Opt for one of the intervals and update
the current interval valuation correspondingly. Store the other interval as the alternative,
and go to 1.

We say that each decision opens a new decision level, where initially solving starts on decision
level 0. Each decision increments the decision level by 1.

Example 5 Given the simple CSP P = 〈X,D,C〉 where X = 〈x0, x1, x2〉 and D0 = [0, 0], D1 =
[1, 6], D2 = [−2, 3]. C contains the following simple constraints:

c1 = (x1 ≥ x0 + 5 ∨ x2 ≥ x1 + (−5)),
c2 = (x0 ≥ x2 + 2 ∨ x1 ≥ x2 + 4).

Algorithm A starts solving with the initial interval valuation ρ0 at step 1 on decision level 0. All
simple bounds are inconclusive under ρ0, thus, no constraint is false under ρ0. A performs a
decision (step 3). The variable x0 cannot be split since its interval is a point interval. So, we
select variable x1 and split its current interval ρ0(x1) = [1, 6] into [1, 3] and [4, 6]. We decide for
[1, 3], update the interval valuation to ρ1, where ρ1(x1) = [1, 3] and ρ1(xi) = ρ0(xi) for i 6= 1, and
open decision level 1. The interval [4, 6] is stored as the alternative for possible backtracking.

Again A checks the consistency of P. The simple bound x1 ≥ x0 + 5 in c1 becomes false under
ρ1 since

max ρ1(x1) = 3 < min ρ1(x0) + 5 = 0 + 5 = 5,

while x2 ≥ x1 + (−5) becomes true since

min ρ1(x2) = −2 ≥ max ρ1(x1) + (−5) = 3− 5 = −2.

Thus, the simple constraint c1 evaluates to true. Both bounds in the second constraint c2 are still
inconclusive under ρ1.

We go to step 3 and split the interval ρ1(x2) = [−2, 3] of x2 into [−2, 0] and [1, 3]. We decide
for the upper part [1, 3], store [−2, 0] as the backtrack alternative, and open decision level 2, where
ρ2 is the updated interval valuation. Then, the constraint c2 becomes false, since

max ρ2(x0) = 0 < min ρ2(x2) + 2 = 1 + 2 = 3

5



and
max ρ2(x1) = 3 < min ρ2(x2) + 4 = 1 + 4 = 5

hold. Therefore, A backtracks before the last non-revoked decision and re-opens decision level 1
with the interval valuation ρ1. The stored alternative interval [−2, 0] for variable x2 of that decision
is asserted. Let ρ3 be the current interval assignment. The evaluation of constraint c1 still holds
under ρ3, i.e. c1 is true under ρ3, while both simple bounds in c2 are inconclusive again.

Consequently, A opens decision level 2 and splits an interval: ρ3(x2) = [−2, 0] into [−2,−2]
and [−1, 0], where now the lower part [−2,−2] is decided which leads to the interval valuation ρ4.
This implies that x0 ≥ x2 + 2 becomes true since

min ρ4(x0) = 0 ≥ max ρ4(x2) + 2 = (−2) + 2 = 0.

This means that also constraint c2 is satisfied by ρ4. Hence, the algorithm A stops with result “P
is satisfiable”.

3.2 Acceleration techniques

As the (finite-domain) constraint satisfaction problem is NP-complete in general, it is not expected
that there exists an algorithm (on deterministic machines) which efficiently solves the problem in
theory, i.e. with a polynomial time bound. Not surprisingly, the worst-case time complexity of
algorithm A is exponential in the number of variables.

However, e.g., industrial needs motivate investigations of acceleration techniques for the basic
backtrack approach. Recent algorithmic enhancements in the SAT and CSP community, like
conflict-driven learning and non-chronological backtracking, led to efficient algorithms from a
practical point of view.

In the sequel we consider some acceleration techniques where our main focus is on the deduction
process while others are just mentioned briefly.

Deduction (a.k.a. constraint propagation). One powerful mechanism is the deduction pro-
cess. In contrast to pure branching and consistency checking, here we derive new information
(e.g., about the interval valuation) from the current state of the proof search. In our case, if all
but one simple bound in a simple constraint c are false under the current interval valuation ρ then
we can deduce that the remaining (still inconclusive) simple bound has to hold. Otherwise, the
entire constraint becomes false which is a dead end in our proof search and implies a backtrack.
We call such a constraint c unit.

More formally, let c = (sb1 ∨ . . . ∨ sbi = x ≥ y + k ∨ . . . ∨ sbn) ∈ C be a simple constraint in
a constraint system C and ρ be an interval valuation. Moreover, let all simple bounds sbj ∈ c for
j 6= i be false under ρ, and sbi be inconclusive under ρ. To satisfy C under a refinement ρ′ of ρ
we have to satisfy the constraint c and thus also sbi. Slightly more formally:

C is true under ρ′ only if c is true under ρ′ iff sbi is true under ρ′.

So, each tuple t of values for the variables in ρ not satisfying the simple bound sbi does not satisfy
the constraint system C, i.e. t projected on x and y is not a solution of sbi. In order to exclude
such tuples we try to deduce new intervals for the variables x and y from ρ and sbi as follows:

• From x ≥ y + k it follows that x ≥ (min ρ(y) + k) =: lb. So, we can potentially deduce a
new lower bound for the interval of x, i.e. ρ′(x) = ρ(x) ∩ [lb,+∞).

• From x ≥ y+ k ≡ y ≤ x− k it follows that y ≤ (max ρ(x)− k) =: ub. So, we can potentially
deduce a new upper bound for the interval of y, i.e. ρ′(y) = ρ(y) ∩ (−∞, ub].

For all other variables z 6= x, y : ρ′(z) = ρ(z). Note that it is not guaranteed in general that the
deduced lower or upper interval bounds for x or y are actually tighter. However, ρ′ is always a
refinement of ρ, since ρ′(x) ⊆ ρ(x) and ρ′(y) ⊆ ρ(y).
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Example 6 Let c = (x ≥ y + 0 ∨ y ≥ z + 4) be a simple constraint, and ρ given by ρ(x) =
[0, 1], ρ(y) = [4, 20], ρ(z) = [10, 15] be an interval valuation. It is easy to see that x ≥ y+ 0 is false
and y ≥ z + 4 is inconclusive under ρ. So, we can deduce new bounds from y ≥ z + 4:

• y ≥ min ρ(z) + 4 = 10 + 4 = 14.

• z ≤ max ρ(y)− 4 = 20− 4 = 16.

Hence, ρ′(y) = ρ(y) ∩ [14,+∞) = [4, 20] ∩ [14,+∞) = [14, 20] and ρ′(z) = ρ(z) ∩ (−∞, 16] =
[10, 15] ∩ (−∞, 16] = [10, 15]. We see that we narrowed down the interval for y enormously while
the interval of z remains untouched.

We enrich algorithm A of subsection 3.1 by a deduction process.

Algorithm B works as algorithm A where step 1 is enriched as follows:

1. Consistency check & Deduction: For each simple constraint c ∈ C the algorithm com-
putes the truth value of c under the current interval valuation ρ. If a false constraint is found
go to 2. In the case that all constraints are true under ρ, then stop with result “P is satisfi-
able”. If one constraint is unit then deduce new intervals and update ρ correspondingly. If
the narrowing was successful then go to 1, otherwise go to 3.

Note that deducing new interval valuations does not increment the decision level, which is only
done by step 3.

Lazy clause evaluation. To accelerate step 1 of algorithms A or B we just need to visit
constraints containing variables for which the interval was narrowed down instantaneously before.
The truth value of all other constraints cannot change. Moreover, it is not necessary to visit
already satisfied constraints. Another very powerful technique is the two-watch-literal scheme,
where only two bounds of a constraint are evaluated.

Conflict-driven learning & non-chronological backtracking. If a conflict in the proof
search was detected then a (minimal) reason for this conflict can be determined (with some addi-
tional data-structures). Such a reason contains information about the intervals (or rather interval
borders) of some variables contributing to the conflict. In order to avoid visiting a conflict with
the same reasons in another part of the search space, the negation of this reason can be added/
learned as a further constraint (called conflict clause in the SAT community).

As witnessed by the reason of a conflict it might happen that a few of the last decisions have
no impact on the conflict. Therefore, we are able to skip backtracking to these decision levels
and jump back to the second highest decision level contributing to the conflict. Then, the learned
constraint will prevent us from visiting the conflict again.

Both techniques allow to achieve enormous performance gains in SAT and CSP solving.

Decision heuristics. Since our problem lies in NP, where a solution can be non-deterministically
guessed efficiently, heuristics for the choice of a variable to be split play an important role and can
lead to speed-ups of multiple orders of magnitude (for special cases). One of the famous decision
heuristics is the so called variable state independent decaying sum (VSIDS) decision heuristics.
Here, the activities of the variables during the solving process are taken into account.

4 Assignment

The assignment is subdivided into a theoretical and practical part. The theoretical considerations
should demonstrate your understanding of the theoretical basis of the algorithm, while the practical
part deals with the development of a CSP solver tool implementing the algorithm.

Note that there are optional exercises which are not required to solve. However, fulfillment of
these optional tasks leads to bonus points.

7



4.1 Exercises

1. Theoretical consideration

(a) Why does proposition 1 hold? How can a solution be extracted from ρ? Give a com-
prehensible explanation. (A formal proof is not necessary.)

(b) Is algorithm A sound and complete, i.e. does A stop on each simple CSP with the
correct result? Give reasons for your answer.

(c) Assume that we generalize the definition of a simple CSP s.t. the domains of the vari-
ables are (possibly) infinite, but still bounded, e.g. intervals over the reals, and simple
bounds are of the form x ∼ y + r with ∼∈ {≥, >} and r ∈ R. Let P be such a
generalized simple CSP.

i. Does algorithm A work correctly on P , i.e. is the result correct? If this is not the
case, can A be adapted? Give reasons for your answer.

ii. Does algorithm A terminate on P? If this is not the case, can A be adapted? Give
reasons for your answer.

Remark: we consider the algorithm here in theory and not its behavior on a resource-
limited machine.

(d) Optional: Think about possible decision heuristics: Which heuristics –in your opinion–
for a variable choice, for interval splitting and interval deciding make sense in this
framework and why?

(e) Optional: Is it possible to integrate conflict-driven learning and non-chronological
backtracking into algorithm B? Briefly sketch your ideas.

2. Practical work

For the implementation part you can use your favorite programming language.

(a) Think about suitable data structures for the internal representation of variables, simple
bounds, simple constraints, interval valuations, etc. At the same same time, reflect on
the aim of the data structures, e.g. use a stack for storing interval valuations or rather
intervals in order to easily recover interval valuations when backtracking. Implement
the data structures.

(b) Implement a parser for reading in the input file to the data structure of your solver.
Remark: Your parser can simply do that on-the-fly.

(c) Implement algorithm A (subsection 3.1). If the input CSP is satisfiable then A must
output a solution.

(d) Implement algorithm B (subsection 3.2). If the input CSP is satisfiable then B must
output a solution. Therefore, extend the solver from exercise 2c.

(e) Test both tools (from exercises 2c and 2d) on a sufficient number of input files. You can
also try to find suitable application examples, e.g. from scheduling or other planning
problems and encode these apropriately. Measure and compare the runtimes of both
CSP solvers on all your benchmarks (also these from exercise 2e). Do the runtimes
differ from each other and, if so, why? For a fair comparison all benchmarks should be
performed on the same machine.

(f) Optional: Enhance algorithm B by supporting some kind of

• lazy clause evaluation,

• decision heuristics

mentioned in subsection 3.2. Does this actually improve the runtimes on your bench-
marks over algorithm A and B?
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5 Report requirements

Your work on this assignment must be documented by a report. The report should comprise the
following:

• A short introduction and problem description.

• The solutions to the exercises.

• Implementation details should not be part of the report. (If desired or necessary add such
details to the appendix.) However, all your implemented solutions have to be described
briefly in your own words and possibly supported by some figures, in particular the realized
data structures and main procedures of the algorithm.

• Encountered problems and your solutions.

• A conclusion in which you should summarize your findings obtained on this project.

Report Form

The report must be handed in on paper. In case this is impractical, you should ask Michael for
permission for an electronic only submission. Deadlines apply in the same way.

Further, the various input files, output files, the well-documented source files of the tool,
etc. must be packed into a single zip or tar.gz file for each report and sent to MF (Fraenzle@
informatik.uni-oldenburg.de) by email. After unpacking, the various files must be clearly
identifiable.

The report must have a front page identifying the course, the assignment and the participating
students.

The report on the assignment is expected to be around 10 pages and should not exceed 15
pages. To this you may add appendices.

General

The report for this assignment must be handed in at the IMM reception, building 321 no later
than Friday, July 11, 2008 at 12.00. This is a hard deadline — no reports handed in later will
be considered. Also the files must be sent before the deadline.

Please note:

• The assessment will be based upon the presentation of your work in the reports.

• The reports must be signed by all participants. Unless you state otherwise, the signatures are
understood to confirm that all participants agree to have contributed equally to the project.

• Any collaboration with other groups on smaller parts of the assignments must be declared
and clearly identified. Collaboration on major parts is not acceptable.

Also note that clarifications, FAQs, and practical details may be put on the course project page
found via the course home page. You should consult this if you encounter problems.
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