
State Exploration for Real-Time
Martin Fränzle

Carl von Ossietzky Universität

Dpt. of CS

Res. Grp. Hybrid Systems

Oldenburg, Germany

02917: State exploration for real-time – p.1/27

What you’ll learn

• Alur-Dill timed automata:
• The model
• use in verification
• finitariness: clock regions

• Clock zones as a symbolic representation for TA states:
• represent (certain) convex unions of clock regions, avoiding

the exponential blowup of the region construction
• Difference bound matrices (DBMs)
• a practical representation of clock zones

02917: State exploration for real-time – p.2/27

Timed Transition Systems

02917: State exploration for real-time – p.3/27

Example

wait

closing
 x<=6

closed
 x<=5

open
 x<=8

opening
 x<=6

idle

closed1!

x>=5

x==6

x:=0,
activated:=false

closed1!
pushed?

activated:=true

x>=4

x:=0

x==6

x:=0

closed2?
x:=0

closed1!

• Stays in state opening for
exactly 6 time units,

• stays in state open
between 4 and 8 time
units,

• stays in state closing for
exactly 6 time units,

• stays in state closed for
exactly 5 time units,

• stays in all other states
arbitrarily long.

⇒ Parallel composition is not
transition-synchronous!

02917: State exploration for real-time – p.4/27

Formal setup

A timed transition system TTS = (V, E, L, T, α,G, R, Inv, I) over a set
C of clocks and alphabet Σ has
• a set V of vertices (interpreted as discrete system states, a.k.a. locations),
• a set E of edges (interpreted as possible transitions),
• L ∈ V → P(AP) labels the vertices with atomic propositions that apply in

the individual vertices,
• I ⊆ V is a set of initial states,
• T : E→ (V × V) maps edges to location changes,
• α : E→ Σ assigns a communication to transitions,
• G : E→ P(ClockVal) gives conditions for a transition to be taken,
• R : E→ P(C) states the clocks to be reset upon a transition,
• Inv : V → P(ClockVal) yields state invariants denoting when a state may

be held,

where ClockVal = C→ R≥0.
02917: State exploration for real-time – p.5/27

Runs of TTS

Given a TTS (V, E, L, T, α,G, R, Inv, I), a run r of the TTS is

• an alternating sequence (v0, c0)
(e0,t0)→ (v1, c1)

(e1,t1)→ . . . of
1. state/clock-valuation pairs (vi, ci) ∈ V × ClockVal,
2. transition/time pairs (ei, ti) ∈ E× R≥0

• with non-decreasing time stamps: ti ≤ ti+1 for each i
• that starts in an initial state: v0 ∈ I and c0 ≡ 0
• and is state-transition-consistent: T(ei) = (vi, vi+1) for each i
• and satisfies the transition guards: ci + (ti − ti−1) ∈ G(ei) for each i,

where c+ t(x) = c(x) + t for each clock x and t−1 = 0,
• and invariably satisfies the state invariants: ci + t ∈ Inv(vi) for each i and

each t with 0 ≤ t ≤ ti − ti−1

• and obeys clock resets: ci+1(x) =

{
ci(x) + (ti − ti−1) iff x 6∈ R(ei)

0 iff x ∈ R(ei)

for each i and each clock x.

02917: State exploration for real-time – p.6/27

The quest

• The set of states of a TTS is V × ClockVal.
• It is infinite, as ClockVal = C→ R≥0.
• Naive forward or backward (on the fly or symbolic) state coloring

algorithms need not terminate.

Is reachability analysis etc. nevertheless mechanizable?

02917: State exploration for real-time – p.7/27

Simple clock constraints

A clock constraint is simple iff
• it is of the form x ∼ k, where x is a clock, k an integer constant,

and ∼ one of <,≤,=,≥, >
• a conjunction of such simple constraints.

From now on, we will concentrate on TTS where
• all guards are simple,
• all invariants are simple.

02917: State exploration for real-time – p.8/27

Clock regions

max.
clock

constraint
02917: State exploration for real-time – p.9/27

Time-abstract bisimulation

A time-abstract bisimulation between two TTS is a relation

∼⊂ (V × ClockVal)× (V ′ × ClockVal ′)

s.t. for each (v, c) ∼ (v ′, c ′):

1. if there is (v1, c1) ∈ V × ClockVal and (e, t) ∈ E× R≥0 s.t.

(v, c)
(e,t)→ (v1, c1)

then there is (v ′1, c
′
1) ∈ V ′×ClockVal ′ and (e ′, t ′) ∈ E ′×R≥0 s.t.

(v ′, c ′)
(e ′,t ′)→ (v ′1, c

′
1) and α(e) = α(e ′) and (v1, c1) ∼ (v ′1, c

′
1)

N.B.: t and t ′ are not related! time abstraction.

02917: State exploration for real-time – p.10/27

Time-abstract bisimulation (cntd.)

2. if there is (v ′1, c
′
1) ∈ V ′ × ClockVal ′ and (e ′, t ′) ∈ E ′ × R≥0 s.t.

(v ′, c ′)
(e ′,t ′)→ (v ′1, c

′
1)

then there is (v1, c1) ∈ V × ClockVal and (e, t) ∈ E ′ × R≥0 s.t.

(v, c)
(e,t)→ (v1, c1) and α(e) = α(e ′) and (v1, c1) ∼ (v ′1, c

′
1)

("a",t)

("a",t’)

("a",t) ("b",s)

("a",t’)

("a",t)

("b",s’)

("b",s)

("a",t’)

("a",t)

("c",r’)("b",s’)

("b",s)

("a",t’)

("a",t) ("c",r)

("c",r’)("b",s’)

("b",s)

("a",t’)

("a",t) ("c",r)

("c",r’)("b",s’)

("b",s)

("a",t’)

("a",t)

States in the ∼ relation follow similar (same labels, different timing) traces.

02917: State exploration for real-time – p.11/27

Clock regions vs. time-abstract bisimulation
Thm.: If ∼ is a time-abstract bisimulation on a TTS s.t. ∼ does only relate
identical vertices (yet with potentially different clock val.s) and if (v, c) ∼ (v ′, c ′)
then a vertice w ∈ V is reachable from (v, c) iff w is reachable from (v ′, c ′).

Thm.: For any TTS, the relation ∼⊂ (V × ClockVal)× (V × ClockVal) defined
by (v, c) ∼ (v ′, c ′) iff

1. v = v ′,

2. F.e. clock x, bc(x)c = bc ′(x)c or c(x) > mc < c ′(x),

3. F.e. clock x, fract(c(x)) = 0 ⇐⇒ fract(c ′(x)) = 0 or c(x) > mc < c ′(x),

4. F.e. clock x, y, fract(c(x)) ≤ fract(c(y)) ⇐⇒ fract(c ′(x)) ≤ fract(c ′(y)) or . . .

is a time-abstract bisimulation on the TTS (i.e., between the states of just that
one TTS).
(mc is the maximum time constant in the TTS.)

Cor.: Wrt. vertex reachability (and other time-abstract notions like existence of
time-abstract traces), states in the above ∼ relation are indistinguishable.

Obs.: For any TTS, there are only finitely many equivalence classes wrt. ∼.
02917: State exploration for real-time – p.12/27

Equivalence classes of ∼

max.
clock

constraint
02917: State exploration for real-time – p.13/27

The region automaton
Given the TTS = (V, E, L, T, α,G, R, Inv, I), we define its region
“automaton” (like the TTS, it actually lacks an acceptance condition)
to be the finite Kripke structure
ATTS = ([V × ClockVal]∼,→, L ′, [I× {x 7→ 0}]∼) with

• x→ y iff there is (v, c) ∈ x, (v ′, c ′) ∈ y, t ≥ 0, and e ∈ E s.t.

(v, c)
(e,t)→ (v ′, c ′)

• L ′([v, c]) = L(v).

• This is a finite Kripke structure that can be subjected
to CTL model-checking etc.

• but its size is exponential in the number of clocks:
#regions = |C|! · 2|C| ·∏c∈C(2max(c) + 2)

• Can we do the state-space traversal more symbolicly,
representing sets of regions by predicates?

02917: State exploration for real-time – p.14/27

Clock zones

02917: State exploration for real-time – p.15/27

Clock zones
A clock zone is the set of satisfying assignments in Rn≥0 of a
conjunction of
• inequations that compare a clock to an integer constant and
• inequations that compare the difference of two clocks to an

integer constant.

By introduction of a dedicated clock x0 representing the value 0,
difference logic formulae of the specific conjunctive form

φ ::=
∧

x∈C
(x0 − x ≤ 0) ∧

n∧

i=1

ψi

ψi ::= ci1 − ci2 ∼i ki

∼i ::= < | ≤
ki ::∈ Z

form an appropriate symbolic representation of clock zones.
02917: State exploration for real-time – p.16/27

Closure properties of clock zones

If φ and ψ are symbolic representations of clock zones and d ∈ N then symbolic
representations

• φ∧ ψ for zone intersection: [[φ∧ ψ]]
def
= {~x ∈ Rn≥0 | ~x |= φ and ~x |= ψ}

• ∃xi.φ for clock hiding:

[[∃xi.φ]]
def
=

{
(x1, . . . , xn)

∣∣∣∣∣
there is y ∈ R≥0 s.t.
(x1, . . . , xi−1, y, xi+1, . . . , xn) |= φ

}

• φ[xi := 0] for clock reset: [[φ[xi := 0]]]
def
= [[xi = 0∧ ∃xi.φ]]

• φ ↑ for elapse of time:

[[φ ↑]] def
= {(x1 + δ, . . . , xn + δ) |(x1, . . . , xn) |= φ, δ ∈ R≥0 }

can be obtained effectively.

02917: State exploration for real-time – p.17/27

TA reachability using zones: the idea
1. Represent reachable state sets by lists of pairs of locations and

clock zones 〈(l1, z1), . . . , (lm, zm)〉,
2. for such a pair, compute the set Postt(l, z) of successors under

a transition t with T(t) = (l, l ′) by
• let time elapse starting from z: φ1 = z ↑ represents states

reachable under arbitrary passage of time
• intersect φ1 with Inv(l): φ2 = φ1 ∧ Inv(l) reflects states

reachable through time passage consistent with the location
invariant (N.B.: invariant is convex due to simplicity)

• intersect φ2 with guard G(t): φ3 = φ2 ∧G(t) reflects states
reachable through time passage which enable the transition t

• reset the clocks in R(t): φ4 = φ3[r1 := 0] . . . [rj := 0], where
{r1, . . . , rj} = R(t), reflects the clock readings after performing
t’s resets

• intersect with the target loc.’s invariant: φ5 = φ4 ∧ Inv(l ′)
• do the location change: Postt(l, z) = (l ′, φ5).

02917: State exploration for real-time – p.18/27

The state-space exploration

1. Start with the state list
R0 = I×

{
‘‘
∧
x∈C(x0 − x ≤ 0) ∧

∧
x∈C(x− x0 ≤ 0) ′′

}
.

2. Repeat
(a) select (li, zi) ∈ Rk and t ∈ E with source li s.t. Postt(li, zi) is

not already subsumed by Rk,
(b) build Rk+1 = Rk · 〈Postt(li, zi)〉
until no such (li, zi) ∈ Rk and t ∈ E is found.

N.B. Subsumption test can be performed at various levels of detail.

02917: State exploration for real-time – p.19/27

The problem

• Iterating Postt(l, z) for all pairs (l, z) in the list of reachable
states and all transitions need not terminate:

x = 1 / x := 0

 x,y := 0

 x <= 1

• In the region graph, we solved the problem by not distinguishing
clock readings above the max. clock constant.

• We can achieve a similar effect by widening zones that extend
beyond the max. clock constant:
• Any constraint of the form xi − xj ∼ l with l > maxconstant

is removed from the symbolic representation when it arises.

02917: State exploration for real-time – p.20/27

Difference Bound Matrices

02917: State exploration for real-time – p.21/27

Difference Bound Matrices
Difference bound matrices (DBMs) are a canonizable representation
for conjunctive formulae in difference logic

φ ::=

n∧

i=1

ψi

ψi ::= ci1 − ci2 ∼i ki

∼i ::= < | ≤
ki ::∈ Z

Given a finite clock set C (in practice containing the pseudo-clock
x0), a DBM M over C is a mapping

(C× C)︸ ︷︷ ︸
clock pairs

→ ({<,≤}× Z︸ ︷︷ ︸
constraint on diff.

∪ {(<,∞)}︸ ︷︷ ︸
unconstrained

) .

Encoding: M(x, y) = (∼, k) =̂ x− y ∼ k

02917: State exploration for real-time – p.22/27

Implied constraints and tightening
Observation: x−y ∼1 k1 and y− z ∼2 k2 implies x− z ∼ k1+k2, where

∼=

{
∼1 iff ∼1=∼2

< otherwise.

Consequence: A DBM may contain constraint pairs which imply
constraints that are tighter than the recorded constraints:
M(x, y) = (∼1, k1) ∧M(y, z) = (∼2, k2) ∧M(x, z) = (∼, k) and
1. k > k1 + k2 or
2. k = k1 + k2 but ∼=≤, yet ∼1=< or ∼2=<.

Solution: Tighten the DBM by replacing the constraint by the
stronger implied constraint.
Repeat this until no implied constraint stronger than a recorded
constraint remains. This brings the DBM into a canonical form.
Such canonization of DBMs can be done in cubic time using the
Floyd-Warshall algorithm.

02917: State exploration for real-time – p.23/27

Properties of canonical DBMs

Thm: A canonical DBM is unsatisfiable iff there is some x ∈ C such
that M(x, x) = (<, 0) or M(x, x) = (∼, k) with k < 0.

Cor: Satisfiability test of canonical DBMs runs in O(|C|) time.

02917: State exploration for real-time – p.24/27

Operations on clock zones using ca. DBMs
Intersection:

M∧N(x, y) =

{
M(x, y) if M(x, y) is tighter than N(x, y)

N(x, y) otherwise

Clock reset: When the dedicated clock variable x0 is used,

M[z := 0](x, y) =





M(x, y) if x 6= z and y 6= z

M(x, x0) if x 6= z and y = z

M(x0, y) if x = z and y 6= z

(≤, 0) if x = y = z

Note that canonicity saves an explicit quantifier elimination as the implied
constraints are already in place!

These operations do not preserve canonicity!

02917: State exploration for real-time – p.25/27

Operations on clock zones using can. DBMs

Elapse of time: When the dedicated clock variable x0 is used,

M ↑ (x, y) =

{
M(x, y) if x = x0 or y 6= x0

(<,∞) if x 6= x0 and y = x0

Widening: When the maximum clock constant is k,

M̃(x, y) =

{
M(x, y) if M(x, y) = (∼, l) with |l| ≤ |k|

(<,∞) otherwise

02917: State exploration for real-time – p.26/27

Pros and cons

• Zone-based reachability analysis usually is explicit wrt. discrete
locations:
• maintains a list of location-zone pairs or
• maintains a list of location-DBM pairs

confined wrt. size of discrete state space

avoids blowup by number of clocks and size of clock
constraints through symbolic representation of clocks

• Region-based analysis provides a finite-state abstraction,
amenable to finite-state symbolic MC

less dependent on size of discrete state space

exponential in number of clocks

02917: State exploration for real-time – p.27/27

	What you'll learn
	
	Example
	Formal setup
	Runs of TTS
	The quest
	Simple clock constraints
	Clock regions
	Time-abstract bisimulation
	Time-abstract bisimulation (cntd.)
	Clock regions vs. time-abstract bisimulation
	Equivalence classes of $sim $
	The region automaton
	
	Clock zones
	Closure properties of clock zones
	TA reachability using zones: the idea
	The state-space exploration
	The problem
	
	Difference Bound Matrices
	Implied constraints and tightening
	Properties of canonical DBMs
	Operations on clock zones using ca. DBMs
	Operations on clock zones using can. DBMs
	Pros and cons

