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What you’ll learn

• Alur-Dill timed automata:
• The model
• use in verification
• finitariness: clock regions

• Clock zones as a symbolic representation for TA states:
• represent (certain) convex unions of clock regions, avoiding

the exponential blowup of the region construction
• Difference bound matrices (DBMs)
• a practical representation of clock zones
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Timed Transition Systems
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Example

wait

closing
 x<=6

closed
 x<=5

open
 x<=8

opening
 x<=6

idle

closed1!

x>=5

x==6

x:=0,
activated:=false

closed1!
pushed?

activated:=true

x>=4

x:=0

x==6

x:=0

closed2?
x:=0

closed1!

• Stays in state opening for
exactly 6 time units,

• stays in state open
between 4 and 8 time
units,

• stays in state closing for
exactly 6 time units,

• stays in state closed for
exactly 5 time units,

• stays in all other states
arbitrarily long.

⇒ Parallel composition is not
transition-synchronous!
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Formal setup

A timed transition system TTS = (V, E, L, T, α,G, R, Inv, I) over a set
C of clocks and alphabet Σ has
• a set V of vertices (interpreted as discrete system states, a.k.a. locations),
• a set E of edges (interpreted as possible transitions),
• L ∈ V → P(AP) labels the vertices with atomic propositions that apply in

the individual vertices,
• I ⊆ V is a set of initial states,
• T : E→ (V × V) maps edges to location changes,
• α : E→ Σ assigns a communication to transitions,
• G : E→ P(ClockVal) gives conditions for a transition to be taken,
• R : E→ P(C) states the clocks to be reset upon a transition,
• Inv : V → P(ClockVal) yields state invariants denoting when a state may

be held,

where ClockVal = C→ R≥0.
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Runs of TTS

Given a TTS (V, E, L, T, α,G, R, Inv, I), a run r of the TTS is

• an alternating sequence (v0, c0)
(e0,t0)→ (v1, c1)

(e1,t1)→ . . . of
1. state/clock-valuation pairs (vi, ci) ∈ V × ClockVal,
2. transition/time pairs (ei, ti) ∈ E× R≥0

• with non-decreasing time stamps: ti ≤ ti+1 for each i
• that starts in an initial state: v0 ∈ I and c0 ≡ 0
• and is state-transition-consistent: T(ei) = (vi, vi+1) for each i
• and satisfies the transition guards: ci + (ti − ti−1) ∈ G(ei) for each i,

where c+ t(x) = c(x) + t for each clock x and t−1 = 0,
• and invariably satisfies the state invariants: ci + t ∈ Inv(vi) for each i and

each t with 0 ≤ t ≤ ti − ti−1

• and obeys clock resets: ci+1(x) =

{
ci(x) + (ti − ti−1) iff x 6∈ R(ei)

0 iff x ∈ R(ei)

for each i and each clock x.
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The quest

• The set of states of a TTS is V × ClockVal.
• It is infinite, as ClockVal = C→ R≥0.
• Naive forward or backward (on the fly or symbolic) state coloring

algorithms need not terminate.

Is reachability analysis etc. nevertheless mechanizable?
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Simple clock constraints

A clock constraint is simple iff
• it is of the form x ∼ k, where x is a clock, k an integer constant,

and ∼ one of <,≤,=,≥, >
• a conjunction of such simple constraints.

From now on, we will concentrate on TTS where
• all guards are simple,
• all invariants are simple.
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Clock regions

max.
clock

constraint
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Time-abstract bisimulation

A time-abstract bisimulation between two TTS is a relation

∼⊂ (V × ClockVal)× (V ′ × ClockVal ′)

s.t. for each (v, c) ∼ (v ′, c ′):

1. if there is (v1, c1) ∈ V × ClockVal and (e, t) ∈ E× R≥0 s.t.

(v, c)
(e,t)→ (v1, c1)

then there is (v ′1, c
′
1) ∈ V ′×ClockVal ′ and (e ′, t ′) ∈ E ′×R≥0 s.t.

(v ′, c ′)
(e ′,t ′)→ (v ′1, c

′
1) and α(e) = α(e ′) and (v1, c1) ∼ (v ′1, c

′
1)

N.B.: t and t ′ are not related!  time abstraction.
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Time-abstract bisimulation (cntd.)

2. if there is (v ′1, c
′
1) ∈ V ′ × ClockVal ′ and (e ′, t ′) ∈ E ′ × R≥0 s.t.

(v ′, c ′)
(e ′,t ′)→ (v ′1, c

′
1)

then there is (v1, c1) ∈ V × ClockVal and (e, t) ∈ E ′ × R≥0 s.t.

(v, c)
(e,t)→ (v1, c1) and α(e) = α(e ′) and (v1, c1) ∼ (v ′1, c

′
1)

("a",t)

("a",t’)

("a",t) ("b",s)

("a",t’)

("a",t)

("b",s’)

("b",s)

("a",t’)

("a",t)

("c",r’)("b",s’)

("b",s)

("a",t’)

("a",t) ("c",r)

("c",r’)("b",s’)

("b",s)

("a",t’)

("a",t) ("c",r)

("c",r’)("b",s’)

("b",s)

("a",t’)

("a",t)

States in the ∼ relation follow similar (same labels, different timing) traces.
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Clock regions vs. time-abstract bisimulation
Thm.: If ∼ is a time-abstract bisimulation on a TTS s.t. ∼ does only relate
identical vertices (yet with potentially different clock val.s) and if (v, c) ∼ (v ′, c ′)
then a vertice w ∈ V is reachable from (v, c) iff w is reachable from (v ′, c ′).

Thm.: For any TTS, the relation ∼⊂ (V × ClockVal)× (V × ClockVal) defined
by (v, c) ∼ (v ′, c ′) iff

1. v = v ′,

2. F.e. clock x, bc(x)c = bc ′(x)c or c(x) > mc < c ′(x),

3. F.e. clock x, fract(c(x)) = 0 ⇐⇒ fract(c ′(x)) = 0 or c(x) > mc < c ′(x),

4. F.e. clock x, y, fract(c(x)) ≤ fract(c(y)) ⇐⇒ fract(c ′(x)) ≤ fract(c ′(y)) or . . .

is a time-abstract bisimulation on the TTS (i.e., between the states of just that
one TTS).
(mc is the maximum time constant in the TTS.)

Cor.: Wrt. vertex reachability (and other time-abstract notions like existence of
time-abstract traces), states in the above ∼ relation are indistinguishable.

Obs.: For any TTS, there are only finitely many equivalence classes wrt. ∼.
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Equivalence classes of ∼

max.
clock

constraint
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The region automaton
Given the TTS = (V, E, L, T, α,G, R, Inv, I), we define its region
“automaton” (like the TTS, it actually lacks an acceptance condition)
to be the finite Kripke structure
ATTS = ([V × ClockVal]∼,→, L ′, [I× {x 7→ 0}]∼) with

• x→ y iff there is (v, c) ∈ x, (v ′, c ′) ∈ y, t ≥ 0, and e ∈ E s.t.

(v, c)
(e,t)→ (v ′, c ′)

• L ′([v, c]) = L(v).

• This is a finite Kripke structure that can be subjected
to CTL model-checking etc.

• but its size is exponential in the number of clocks:
#regions = |C|! · 2|C| ·∏c∈C(2max(c) + 2)

• Can we do the state-space traversal more symbolicly,
representing sets of regions by predicates?
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Clock zones
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Clock zones
A clock zone is the set of satisfying assignments in Rn≥0 of a
conjunction of
• inequations that compare a clock to an integer constant and
• inequations that compare the difference of two clocks to an

integer constant.

By introduction of a dedicated clock x0 representing the value 0,
difference logic formulae of the specific conjunctive form

φ ::=
∧

x∈C
(x0 − x ≤ 0) ∧

n∧

i=1

ψi

ψi ::= ci1 − ci2 ∼i ki

∼i ::= < | ≤
ki ::∈ Z

form an appropriate symbolic representation of clock zones.
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Closure properties of clock zones

If φ and ψ are symbolic representations of clock zones and d ∈ N then symbolic
representations

• φ∧ ψ for zone intersection: [[φ∧ ψ]]
def
= {~x ∈ Rn≥0 | ~x |= φ and ~x |= ψ}

• ∃xi.φ for clock hiding:

[[∃xi.φ]]
def
=

{
(x1, . . . , xn)

∣∣∣∣∣
there is y ∈ R≥0 s.t.
(x1, . . . , xi−1, y, xi+1, . . . , xn) |= φ

}

• φ[xi := 0] for clock reset: [[φ[xi := 0]]]
def
= [[xi = 0∧ ∃xi.φ]]

• φ ↑ for elapse of time:

[[φ ↑]] def
= {(x1 + δ, . . . , xn + δ) |(x1, . . . , xn) |= φ, δ ∈ R≥0 }

can be obtained effectively.
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TA reachability using zones: the idea
1. Represent reachable state sets by lists of pairs of locations and

clock zones 〈(l1, z1), . . . , (lm, zm)〉,
2. for such a pair, compute the set Postt(l, z) of successors under

a transition t with T(t) = (l, l ′) by
• let time elapse starting from z: φ1 = z ↑ represents states

reachable under arbitrary passage of time
• intersect φ1 with Inv(l): φ2 = φ1 ∧ Inv(l) reflects states

reachable through time passage consistent with the location
invariant (N.B.: invariant is convex due to simplicity)

• intersect φ2 with guard G(t): φ3 = φ2 ∧G(t) reflects states
reachable through time passage which enable the transition t

• reset the clocks in R(t): φ4 = φ3[r1 := 0] . . . [rj := 0], where
{r1, . . . , rj} = R(t), reflects the clock readings after performing
t’s resets

• intersect with the target loc.’s invariant: φ5 = φ4 ∧ Inv(l ′)
• do the location change: Postt(l, z) = (l ′, φ5).
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The state-space exploration

1. Start with the state list
R0 = I×

{
‘‘
∧
x∈C(x0 − x ≤ 0) ∧

∧
x∈C(x− x0 ≤ 0) ′′

}
.

2. Repeat
(a) select (li, zi) ∈ Rk and t ∈ E with source li s.t. Postt(li, zi) is

not already subsumed by Rk,
(b) build Rk+1 = Rk · 〈Postt(li, zi)〉
until no such (li, zi) ∈ Rk and t ∈ E is found.

N.B. Subsumption test can be performed at various levels of detail.
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The problem

• Iterating Postt(l, z) for all pairs (l, z) in the list of reachable
states and all transitions need not terminate:

x = 1 / x := 0 

 x,y := 0

 x <= 1

• In the region graph, we solved the problem by not distinguishing
clock readings above the max. clock constant.

• We can achieve a similar effect by widening zones that extend
beyond the max. clock constant:
• Any constraint of the form xi − xj ∼ l with l > maxconstant

is removed from the symbolic representation when it arises.
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Difference Bound Matrices
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Difference Bound Matrices
Difference bound matrices (DBMs) are a canonizable representation
for conjunctive formulae in difference logic

φ ::=

n∧

i=1

ψi

ψi ::= ci1 − ci2 ∼i ki

∼i ::= < | ≤
ki ::∈ Z

Given a finite clock set C (in practice containing the pseudo-clock
x0), a DBM M over C is a mapping

(C× C)︸ ︷︷ ︸
clock pairs

→ ( {<,≤}× Z︸ ︷︷ ︸
constraint on diff.

∪ {(<,∞)}︸ ︷︷ ︸
unconstrained

) .

Encoding: M(x, y) = (∼, k) =̂ x− y ∼ k
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Implied constraints and tightening
Observation: x−y ∼1 k1 and y− z ∼2 k2 implies x− z ∼ k1+k2, where

∼=

{
∼1 iff ∼1=∼2

< otherwise.

Consequence: A DBM may contain constraint pairs which imply
constraints that are tighter than the recorded constraints:
M(x, y) = (∼1, k1) ∧M(y, z) = (∼2, k2) ∧M(x, z) = (∼, k) and
1. k > k1 + k2 or
2. k = k1 + k2 but ∼=≤, yet ∼1=< or ∼2=<.

Solution: Tighten the DBM by replacing the constraint by the
stronger implied constraint.
Repeat this until no implied constraint stronger than a recorded
constraint remains. This brings the DBM into a canonical form.
Such canonization of DBMs can be done in cubic time using the
Floyd-Warshall algorithm.
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Properties of canonical DBMs

Thm: A canonical DBM is unsatisfiable iff there is some x ∈ C such
that M(x, x) = (<, 0) or M(x, x) = (∼, k) with k < 0.

Cor: Satisfiability test of canonical DBMs runs in O(|C|) time.
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Operations on clock zones using ca. DBMs
Intersection:

M∧N(x, y) =

{
M(x, y) if M(x, y) is tighter than N(x, y)

N(x, y) otherwise

Clock reset: When the dedicated clock variable x0 is used,

M[z := 0](x, y) =





M(x, y) if x 6= z and y 6= z

M(x, x0) if x 6= z and y = z

M(x0, y) if x = z and y 6= z

(≤, 0) if x = y = z

Note that canonicity saves an explicit quantifier elimination as the implied
constraints are already in place!

These operations do not preserve canonicity!
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Operations on clock zones using can. DBMs

Elapse of time: When the dedicated clock variable x0 is used,

M ↑ (x, y) =

{
M(x, y) if x = x0 or y 6= x0

(<,∞) if x 6= x0 and y = x0

Widening: When the maximum clock constant is k,

M̃(x, y) =

{
M(x, y) if M(x, y) = (∼, l) with |l| ≤ |k|

(<,∞) otherwise
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Pros and cons

• Zone-based reachability analysis usually is explicit wrt. discrete
locations:
• maintains a list of location-zone pairs or
• maintains a list of location-DBM pairs

confined wrt. size of discrete state space

avoids blowup by number of clocks and size of clock
constraints through symbolic representation of clocks

• Region-based analysis provides a finite-state abstraction,
amenable to finite-state symbolic MC

less dependent on size of discrete state space

exponential in number of clocks
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