
Symbolic Methods
Symbolic state-space traversal

for finite-state systems

Martin Fränzle

Carl von Ossietzky Universität

Dpt. of CS

Res. Grp. Hybrid Systems

Oldenburg, Germany

02917: Symbolic Methods for Finite State II – p.1/20

What you’ll learn

• reduced ordered binary decision diagrams
• symbolic methods for state reachability
• SAT-based procedures for bounded state reachability
• full reachability via BDDs

• symbolic CTL model checking

02917: Symbolic Methods for Finite State II – p.2/20

Reduced ordered binary decision diagrams

(RO)BDDs

02917: Symbolic Methods for Finite State II – p.3/20

A decision tree

An Irishman’s Philosophy
In life, there are only two things to worry about:
Either you are well or you are sick.
If you are well, there is nothing to worry about,

But if you are sick, there are only two things to worry about:
Either you will get well or you will die.
If you get well, there is nothing to worry about,

But if you die, there are only two things to worry about:
Either you will go to heaven or hell.
If you go to heaven, there is nothing to worry about.

And if you go to hell, you’ll be so busy shaking hands with all
your friends, you won’t have time to worry!

02917: Symbolic Methods for Finite State II – p.4/20

Binary decision diagrams

An ordered decision tree for (a⇔ b) ∧ (c⇔ d):

false true

0

d

1

d

0

d

000

c c

0

d

00

d

0

d

0 10

c c

bb

d

a

1 0 1

d

Size exponential in number of variables!

02917: Symbolic Methods for Finite State II – p.5/20

ROBDDs

Obs.: A lot of the tests in the decision diagram are redundant.

Idea: Combine equivalent sub-cases,
i.e. reduce size of the diagram by
1. omitting nodes that have equivalent left and right sons,
2. sharing common sub-trees:
• remove duplicate terminal nodes; share instead
• remove duplicate internal nodes; share instead

Def.: The decision diagrams obtained by above rules are called
reduced ordered binary decision diagrams (ROBDDs).

May expect good performance if many
substructures are equivalent!

02917: Symbolic Methods for Finite State II – p.6/20

ROBDDs

An ROBDD for (a⇔ b) ∧ (c⇔ d), using node order a < b < c < d:

1

c

d d

b

a

b

0

Note how variable order affects size: Using a < c < b < d would yield a
layer with 4 nodes.
For n-bit comparison, we obtain a layer with 2n nodes if poor order is
chosen, yet maximum layer width 2 with appropriate order.

02917: Symbolic Methods for Finite State II – p.7/20

ROBDDS: Some properties
Given a variable ordering, ROBDDs provide a canonical
representation for Boolean functions
• simple equivalence check, once the ROBDDs have been built:
• linear in size of BDDs
• O(1) if sharing across BDDs is used

Applying a connective to two ROBDDs can be done by
simultaneous recursive descent through the two ROBDDs
(+acceleration by dynamic programming)
• (if x then φt else φe) ∧ (if x then ψt else ψe) ≡

(if x then φt ∧ ψt else φe ∧ ψe)

→ efficient
→ can construct ROBDDs for non-trivial circuits

Variable order strongly affects size.
• need reordering heuristics,
• even then, some circuits don’t permit any good order:

e.g., multipliers yield exponentially sized BDDs

02917: Symbolic Methods for Finite State II – p.8/20

ROBDD operations

Negation:
Operation: Constructs from an ROBDD B an ROBDD not(B)

with fnot(B) = ¬fB, where fB is the truth function encoded by
B.

Algorithm: Swap the terminal nodes:
• node 0 is replaced with 1
• node 1 is replaced with 0.

Complexity: O(1) w/o sharing across BDDs, O(|B|) w. sharing
across BDDs.

02917: Symbolic Methods for Finite State II – p.9/20

ROBDD operations
Boolean junctors:

Operation: Constructs from two ROBDDs B1, B2 and a Boolean junctor ⊕ an
ROBDD apply(⊕, B1, B2) with fapply(⊕,B1,B2) = fB1 ⊕ fB2 .

Algorithm: Recursively proceed as follows:
• If both B1 and B2 are terminal nodes then yield terminal node
fB1 ⊕ fB2 .

• If the top nodes of B1 and B2 agree on their variable v then
1. compute L = apply(⊕, left(B1), left(B2)),
2. compute R = apply(⊕, right(B1), right(B2)),
3. build the OBDD (v, L, R),
4. reduce it.
• If the top nodes of B1 and B2 have different variables v1, v2 with
v1 < v2 in the variable order then
1. compute L = apply(⊕, left(B1), B2),
2. compute R = apply(⊕, right(B1), B2),
3. build the OBDD (v, L, R),
4. reduce it.
• ...

Complexity: O(|B1| · |B2|) if memoization is used to save recomputations
which may arise due to sharing of subgraphs.

02917: Symbolic Methods for Finite State II – p.10/20

ROBDD operations

Quantification:
Operation: Constructs from an ROBDD B and a variable v an

ROBDD exists(v, B) with fexist(v,B) = ∃v.fB.
Algorithm:

1. Replace each sub-BDD of B which has a root node n
labeled with v by the ROBDD apply(∨, left(n), right(n)).

2. Reduce the resulting BDD.
Complexity: O(|B|2).

Note that BDDs obtained by quantifying multiple variables
may thus grow exponentially in the number of quantified variables.

02917: Symbolic Methods for Finite State II – p.11/20

Symbolic techniques II:

State reachability in
finite-state reactive systems

02917: Symbolic Methods for Finite State II – p.12/20

The general framework

Model level

Formula
level

Trace level

Translator

Finite state
model

Prove engine

Approval/

Conjectured
state invariant

Logical
formulae

error trace

02917: Symbolic Methods for Finite State II – p.13/20

Mapping models to formulae (essence of)
• Each control location s is assigned a proposition ps;

each symbolic variable v is assigned dlog2 |dom v|e propositional variables;
• for describing transitions, propositional variables are duplicated:

- undecorated version encodes pre-state,
- primed version encodes post-state,

g / v := e ts 7→ φtr ≡ ps ∧ [g]︸︷︷︸∧ [v ′ = e]︸ ︷︷ ︸
proposit. encodings

∧ p ′t

trans(x, x ′) ≡
∧

s state

(
ps =⇒

∨

tr transition from s

φtr

)

• similar for describing initial state set, yielding predicate init(x).

• Translation can be done componentwise, using conjunction for
encoding parallel composition.

⇒ This saves computing the automaton product!
02917: Symbolic Methods for Finite State II – p.14/20

Verification/Falsification

Given: Transition pred. trans(x, x ′), initial state pred. init(x), conj. invar. φ(x).

QBF-based algorithm:
1. Start with R0(x) = init(x).

2. Test for satisfiability of Ri(x) ∧ ¬φ(x). If test succeeds then report violation
of goal.

3. Else build Ri+1(x) = Ri(x) ∨ ∃x̃. (Ri(x̃) ∧ trans(x̃, x)).

4. Test whether Ri+1(x) =⇒ Ri(x). If so then report satisfaction of goal.
Otherwise continue from step 2, with i+ 1 instead of i.

BF-based algorithm:
1. For given i ∈ N check for satisfiability of

¬

(
init(x0) ∧ trans(x0, x1) ∧ . . .∧ trans(xi−1, xi)

⇒ φ(x0) ∧ . . .∧ φ(xi)

)
.

If test succeeds then report violation of goal.

2. Otherwise repeat with larger i.
02917: Symbolic Methods for Finite State II – p.15/20

Algorithms by example

Model: VAR x : {0 . . . 3}; INIT x = 0; NEXT x := 3− x

Conjectured Invar.: ALWAYSx = 0

QBF: BDD-based MC

R0

low(x)

0 1

hi(x)

R1

low(x)

0 1

hi(x) hi(x)

R2

low(x)

0 1

hi(x) hi(x) &

low(x)

0 1

hi(x) hi(x)

1 0

hi(x)

low(x)low(x)

0 1

hi(x)

low(x)

0 1

hi(x) hi(x)

l0 ∧ h0 ∧

(l0 ∨ h0)

l0 ∧ h0 ∧ l1 = l0 ∧ h1 = h0 ∧

(l0 ∨ h0 ∨ l1 ∨ h1)

. . . ∧ . . . ∧ l2 = l1 ∧ h2 = h1 ∧

(. . . ∨ . . . ∨ l2 ∨ h2)

BF: SAT-based BMC
02917: Symbolic Methods for Finite State II – p.16/20

Comparison

BDD-based model-checking:
• Normalization within each step of

graph coloring.

⇓
1. Keeps size of intermediate

representations compact.
2. Detects saturation of graph

coloring.

• Tackles ≈ 500 state bits

SAT-based model-checking:
• Purely syntactic expansion,

followed by satisfiability check.

⇓
• Size of syntactic expansion grows

rapidly. E.g. wrt. number of
propositional variables used for
characterizing n step reachability:

statebits × (n+ 1)
+ auxbits︸ ︷︷ ︸

>90%

× n

• Tackles ≈ 1.000.000 propositions,
most of which are auxiliary.

[Use cases: verification of high-level models w. limited arithmetic.]

02917: Symbolic Methods for Finite State II – p.17/20

Symbolic methods III:

Beyond reachability

02917: Symbolic Methods for Finite State II – p.18/20

The pre operator

Observation: Given
• a predicative encoding S of a state set (with free variables ~x),
• a predicative encoding T of the transition relation

(with free variables ~x,~x ′),

the set pre(S) of states that have a successor in (i.e., satisfying) S
can be expressed symbolicly using QBF operators:

pre(S) = ∃~x ′.T ∧ S[~x ′/~x]

This can be used for determining all sequential predecessors of a
whole set of states in one sweep, thus implementing predecessor
colouring “in parallel”.

02917: Symbolic Methods for Finite State II – p.19/20

Symbolic CTL model checking
Using the pre operator, CTL model checking can be performed by
any QBF engine, e.g. by BDDs:

Formula Algorithm Result

propos. P return [P] Formula fP denoting P-states
EXφ return pre(fφ) Formula fEXφ denoting all

states satisfying EXφ

EGφ Incrementally build Formula fEGφ = Sn denoting
S0 = fφ

Si+1 = fφ ∧ pre(Si)

all states satisfying EGφ

until (Sn ⇐⇒ Sn+1) holds
φ EUψ Incrementally build Formula fφEUψ = Sn denoting

S0 = fψ

Si+1 = fψ ∨ (fφ ∧ pre(Si))

all states satisfying φ EUψ

until (Sn ⇐⇒ Sn+1) holds

If I characterizes initial states then I =⇒ fφ is to be checked finally.

02917: Symbolic Methods for Finite State II – p.20/20

	What you'll learn
	
	A decision tree
	Binary decision diagrams
	ROBDDs
	ROBDDs
	ROBDDS: Some properties
	ROBDD operations
	ROBDD operations
	ROBDD operations
	
	The general framework
	Mapping models to formulae (essence of)
	Verification/Falsification
	Algorithms by example
	Comparison
	
	The {it pre} operator
	Symbolic CTL model checking

