
02917: Advanced Topics
in Embedded Systems

Martin Fränzle

Carl von Ossietzky Universität

Dpt. of Computing Science

Res. Group Hybrid Systems

Oldenburg, Germany

02917: Introduction – p.1/49

Multiple viewpoints

Requirements
analysis

Programming

"How?"

Algorithmics
"What?"

Aspects

Requirements
analysis

Programming

"How?"

Algorithmics
"What?"

Aspects

Consistent?

Requirements
analysis

Programming

"How?"

Algorithmics
"What?"

Aspects

Consistent?

"Consistent?"

Tests & proofs

Validation / verification

02917: Introduction – p.2/49

Formal Methods
• Formal methods are mathematically-based techniques for the

specification, development and verification of software and
hardware systems. [R.W. Butler, 2001]

• Motivated by the expectation that appropriate mathematical
analyses can contribute to the reliability and robustness of a
design. [M. Holloway, 1997]

• Alternative to less exhaustive analyses:

(Cartoon)

02917: Introduction – p.3/49

Embedded computer systems

Cogito,
ergo sum!

Estimates for number of embedded systems in current
use exceed 1010.

[Rammig 2000, Motorola 2001]

02917: Introduction – p.4/49

Application domains

• Consumer & household products:
CD players, TV sets, handheld games, electronic pets, cameras, alarm
clocks, remote controls, dishwashers, microwave ovens, ...

• Office, telecommunications, etc.:
Printers, network controllers, mobile phones, keyboards, CRTs and
flatscreens, ...

• Environmental control:
λ control, programmable heating systems, exhaust control, ...

• Traffic systems and traffic management:
Cars (body, powertrain, suspension, brakes), signalling devices, balises,
interlocks, autopilots, traffic information, ...

• Medicine:
Measurement devices (thermometers, RR’s, X-ray, sonographic imaging,
EEG, ECG ...), treatment devices (perfusors, respirators, microwave
radiation treatment, ...)

• Supplies:
Power plants, distribution networks, ...

02917: Introduction – p.5/49

The roles, they are a changing...

Phase 1: Added value through add-on functionality:
• automatic climate control,
• adaptive power steering,
• keyless entry,
• navigation system.

Phase 2: Integration into/hooking onto vital safety components:
• anti-locking brake,
• electronic stability control,
• electric power steering,
• electronically variable transmission ratio of steering column.

Phase 3: Replacement of vital safety components:
• steer-by-wire,
• brake-by-wire,
• driver-less go (automatic parking, autonomous lane change, . . .).

02917: Introduction – p.6/49

A little mishap...

Source of problem:
• Car geometry:

- center of gravity
- wheelbase

• Reduced component-
count axles

Solution:
• Patched with embed-

ded control (“ESP”)

How to validate the patch?

02917: Introduction – p.7/49

Continuity?

Around 1999, the car industry fought for a unification of European
and American crash test scenarios because

“it is hardly possible to adjust the firing delay of the airbag to
both the ECE and the NCAP frontal crash.”

ECE test: 56km
h

,
NCAP test: 64km

h
.

02917: Introduction – p.8/49

A Suggestion: Formal Methods

The term refers to a broad set of notations and tools for
1. Mathematically rigorous documentation of requirements

• less ambiguous than prose
• amenable to formal analysis (check for consistency, check for

adherence to well-formedness criteria,...)

2. Mathematically rigorous models of designs
• rigorous semantics, removes ambiguity of design documentation in

prose, albeit only wrt. the viewpoint focused at
• early availability of abstract, yet concise model of the system under

design
• amenable to formal analysis (check for absence of design flaws, like

deadlock, wrong interfaces,...; check for side-conditions of design
steps,...)

3. Check of consistency between such
• correctness of a design relative to requirements
• replacability of a design by another one

02917: Introduction – p.9/49

State-Based Models

02917: Introduction – p.10/49

Open (contin. time & state) dynamical system

state
observable

internal state

environmental
influence

disturbances ("noise")

control
System boundary

System

• Time is continuous: R≥0,
• internal state is a bunch of real-valued (or complex-val ued)

functions of time: ~x(.) : Time→ Rn,
• observable state is a time-invariant function (usually projection)

thereof,
• environment influence is a bunch of real-valued (or

complex-valued) functions of time: ~u(.) : Time→ Rm.

02917: Introduction – p.11/49

Some state-based models

• Finite automata
• discrete state space, finitely many states
• evolution through discrete transitions

• Differential equations
• continuous state space
• continuous flows

• Hybrid systems
• continuous and discrete state components
• both jumps (= discrete transitions) and continuous flows

02917: Introduction – p.12/49

State-based models:

Finite Automata

02917: Introduction – p.13/49

Finite-state models

arise naturally in
• descriptions of hardware components,
• because these are computational devices with finite (though sometimes

large...) memory,

• descriptions of communication protocols,
• because these engage into an alternation of finitely many different

phases,

• descriptions of embedded computer systems,
• because these are computers with finite memory.

02917: Introduction – p.14/49

The coffee vending machine — architecture

Vending machine

cout

Financial
administr.

Brewer
control

caf

canc
coin req

02917: Introduction – p.15/49

The coffee vending machine — dynamics

brewidle wait

no payno pay

(*, *, *, req, −caf)(cin, *, *, *, −caf)

(*, −canc, *, −req, −caf)

(*, canc, *, −req, −caf)

(*, *, *, *, caf)

Brewer control

paid
(cin, *, −cout, *, *)

(*, *, −cout, *, caf)

(*, canc, cout, *, −caf)

(*, −canc, −cout, *, −caf)

Financial administration

(−cin, *, −cout, *, *)

(−cin, *, *, *, −caf)

02917: Introduction – p.16/49

An example run

brewidle wait

no payno pay

(*, *, *, req, −caf)(cin, *, *, *, −caf)

(*, −canc, *, −req, −caf)

(*, canc, *, −req, −caf)

(*, *, *, *, caf)

Brewer control

paid
(cin, *, −cout, *, *)

(*, *, −cout, *, caf)

(*, canc, cout, *, −caf)

(*, −canc, −cout, *, −caf)

Financial administration

(−cin, *, −cout, *, *)

(−cin, *, *, *, −caf)

brewidle wait

no payno pay

(*, *, *, req, −caf)

(*, −canc, *, −req, −caf)

(*, canc, *, −req, −caf)

(*, *, *, *, caf)

Brewer control

paid

(*, *, −cout, *, caf)

(*, canc, cout, *, −caf)

(*, −canc, −cout, *, −caf)

Financial administration

(−cin, *, −cout, *, *)

(−cin, *, *, *, −caf)

(cin, *, −cout, *, *)

(cin, *, *, *, −caf)
brewidle wait

no payno pay

(*, *, *, req, −caf)

(*, canc, *, −req, −caf)

(*, *, *, *, caf)

Brewer control

paid

(*, *, −cout, *, caf)

(*, canc, cout, *, −caf)

Financial administration

(−cin, *, −cout, *, *)

(−cin, *, *, *, −caf)

(*, −canc, *, −req, −caf)

(*, −canc, −cout, *, −caf)

(cin, *, −cout, *, *)

(cin, *, *, *, −caf)
brewidle wait

no payno pay

(*, canc, *, −req, −caf)

(*, *, *, *, caf)

Brewer control

paid

(*, *, −cout, *, caf)

(*, canc, cout, *, −caf)

Financial administration

(−cin, *, −cout, *, *)

(−cin, *, *, *, −caf)

(cin, *, −cout, *, *)

(cin, *, *, *, −caf)

(*, −canc, *, −req, −caf)

(*, *, *, req, −caf)

(*, −canc, −cout, *, −caf)

brewidle wait

no payno pay

(*, canc, *, −req, −caf)

Brewer control

paid

(*, canc, cout, *, −caf)

Financial administration

(−cin, *, −cout, *, *)

(−cin, *, *, *, −caf)

(cin, *, −cout, *, *)

(cin, *, *, *, −caf)

(*, −canc, *, −req, −caf)

(*, *, −cout, *, caf)

(*, *, *, *, caf)

(*, *, *, req, −caf)

(*, −canc, −cout, *, −caf)

brewidle wait

no payno pay

(*, *, *, req, −caf)

(*, −canc, *, −req, −caf)

(*, canc, *, −req, −caf)

(*, *, *, *, caf)

Brewer control

paid

(*, *, −cout, *, caf)

(*, canc, cout, *, −caf)

(*, −canc, −cout, *, −caf)

Financial administration

(−cin, *, −cout, *, *)

(−cin, *, *, *, −caf)

(cin, *, −cout, *, *)

(cin, *, *, *, −caf)
brewidle wait

no payno pay

Brewer control

paid

Financial administration

(−cin, *, −cout, *, *)

(−cin, *, *, *, −caf)

(cin, *, −cout, *, *)

(cin, *, *, *, −caf)

(*, −canc, *, −req, −caf)

(*, *, *, req, −caf)

(*, −canc, −cout, *, −caf)

(*, *, *, *, caf)

(*, *, −cout, *, caf)

(*, canc, cout, *, −caf)

(*, canc, *, −req, −caf)

brewidle wait

no payno pay

(*, *, *, req, −caf)

(*, −canc, *, −req, −caf)

(*, canc, *, −req, −caf)

(*, *, *, *, caf)

Brewer control

paid

(*, *, −cout, *, caf)

(*, canc, cout, *, −caf)

(*, −canc, −cout, *, −caf)

Financial administration

(−cin, *, −cout, *, *)

(−cin, *, *, *, −caf)

(cin, *, −cout, *, *)

(cin, *, *, *, −caf)
brewidle wait

no payno pay

Brewer control

paid

Financial administration

(−cin, *, −cout, *, *)

(−cin, *, *, *, −caf)

(cin, *, −cout, *, *)

(cin, *, *, *, −caf)

(*, −canc, *, −req, −caf)

(*, *, *, req, −caf)

(*, −canc, −cout, *, −caf)

(*, *, *, *, caf)

(*, *, −cout, *, caf)

(*, canc, cout, *, −caf)

(*, canc, *, −req, −caf)

02917: Introduction – p.17/49

The coffee vending machine
Product automaton: Financial admin. * Brewer ctrl.

(*, −canc, −cout, req, −caf)

no pay no pay no pay

paid paid paid

(*, −canc, −cout, −req, −caf)

(−cin, *, −cout, *, caf)

(−cin, *, −cout, req, −caf)

(−cin, −canc, −cout, −req, −caf)

(−cin, −can, −cout, *, −caf)

(*, canc, cout, −req, −caf)

(−cin, *, −cout, *, −caf)

(−cin, −can, −cout, *, −caf)

(*, canc, cout, −req, −caf)

(cin, *, −cout, *, −caf)

(*, *, −cout, *, caf)

brew

idle wait brew

idle wait(−cin, canc, −cout, −req, −caf)

(*, ca
nc, c

out, r
eq, −

caf)

Product automaton: Financial admin. * Brewer ctrl.

(*, −canc, −cout, req, −caf)

no pay no pay no pay

paid paid paid

(*, −canc, −cout, −req, −caf)

(−cin, *, −cout, *, caf)

(−cin, *, −cout, req, −caf)

(−cin, −canc, −cout, −req, −caf)

(−cin, −can, −cout, *, −caf)

(*, canc, cout, −req, −caf)

(−cin, *, −cout, *, −caf)

(−cin, −can, −cout, *, −caf)

(*, canc, cout, −req, −caf)

(cin, *, −cout, *, −caf)

(*, *, −cout, *, caf)

brew

idle wait brew

idle wait(−cin, canc, −cout, −req, −caf)

(*, ca
nc, c

out, r
eq, −

caf)

Unreachable states!

Product automaton: Financial admin. * Brewer ctrl.

(*, −canc, −cout, req, −caf)

no pay no pay no pay

paid paid paid

(*, −canc, −cout, −req, −caf)

(−cin, *, −cout, req, −caf)

(−cin, −canc, −cout, −req, −caf)

(−cin, −can, −cout, *, −caf)

(*, canc, cout, −req, −caf)

(−cin, *, −cout, *, −caf)

(−cin, −can, −cout, *, −caf)

(*, canc, cout, −req, −caf)

(*, *, −cout, *, caf)

brew

idle wait brew

idle wait(−cin, canc, −cout, −req, −caf)

(cin, *, −cout, *, −caf)
(*, ca

nc, c
out, r

eq, −
caf)

(−cin, *, −cout, *, caf)

Free coffee!

02917: Introduction – p.18/49

Embedded systems in-the-large

Would you like to draw the automaton?

02917: Introduction – p.19/49

State-based models:

Differential equations

02917: Introduction – p.20/49

Open (contin. time & state) dynamical system

state
observable

internal state

environmental
influence

disturbances ("noise")

control
System boundary

System

• Time is continuous: R≥0,
• internal state is a bunch of real-valued (or complex-valued)

functions of time: ~x(.) : Time→ Rn,
• observable state is a time-invariant function (usually projection)

thereof,
• environment influence is a bunch of real-valued (or

complex-valued) functions of time: ~u(.) : Time→ Rm.

02917: Introduction – p.21/49

Continuous modeling with DEs

1. Add further, derived state components: the derivatives
~·
x(.),

~··
x(.), . . . of the state components.

2. Formulate dynamics as equations between
~·
x(.),

~··
x(.), ~u(.), . . .

N.B. Higher-order derivatives x(n), n > 1, can always be removed by
1. adding a fresh state variable y(.),

2. adding the equation y(t) = x(n)(t),

3. replacing every occurrence of x(n+1) by
·
y.

02917: Introduction – p.22/49

Differential equation w/o input / disturbance
The DE describes dynamics of the system by

• providing a state space Rn,
• providing a (piecewise) continuous vector field f : Rn → Rn

constraining the possible evolutions through the equation

dx

dt
= f(x)

The initial value x0 ∈ Rn defines the start state of the dynamic
evolution.

A solution in the sense of Carathéodory is a time-dependent signal
x : [0, a)→ Rn such that
• x is piecewise differentiable,
• ∀t ∈ [0, a) • x(t) = x0 +

∫t
0
f(x(s))ds.

Then dx
dt (t) = f(x(t)) for almost all t ∈ [0, a).

02917: Introduction – p.23/49

Differential equation with input
The DE describes dynamics of the system by

• providing a state space Rn,
• providing an input space Rm,
• providing a (piecewise) contin. vector field f : Rn+m → Rn

constraining the possible evolutions through the equation

dx

dt
= f(x, u)

The initial value x0 ∈ Rn defines the start state of the dynamic
evolution.

A solution wrt. a (piecewise) continuous input u : [0, a)→ Rm is a
time-dependent signal x : [0, a)→ Rn such that
• x is piecewise differentiable,
• ∀t ∈ [0, a) • x(t) = x0 +

∫t
0
f(x(s), u(s))ds.

Then dx
dt (t) = f(x(t), u(t)) for almost all t ∈ [0, a).

02917: Introduction – p.24/49

Example: spring-mass system w. disturbance

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �m

� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �

u(t)

y(t)

• Basic model:
··
y (t) = F(t)

m

F(t) = k (l(t) − l0)

l(t) = u(t) − y(t)

• Replace higher-order derivatives:

Add v(t) =
·
y (t).

Gives
·
y (t) = v(t)
·
v (t) = k

m
(u(t) − y(t) − l0)

02917: Introduction – p.25/49

State-based modeling:

Hybrid systems

02917: Introduction – p.26/49

Hybrid Systems

1

Plant

ControlAnalog
switch

Continuous
controllers

D/A

Discrete
supervisor

A/D

Plant

observable
state

environmental
influence

disturbances ("noise")

control

selection

setpoints

active control law

setpoints
part of
observable
state

task selection

2

Loads of
continuous
computations

interleaved
with discrete
decisions

Plant

ControlAnalog
switch

Continuous
controllers

D/A

Discrete
supervisor

A/D

Plant

observable
state

environmental
influence

disturbances ("noise")

control

selection

setpoints

active control law

setpoints
part of
observable
state

task selection

02917: Introduction – p.27/49

Hybrid Automata

ball is moving down
ball is moving up

vertical position of the ball

velocity

−10

0

−20

10

0 5 10 15 20

20
y

x

•
x= y

x ≥ 0

•
y= −9.81

x = 0.0∧ y ≤ 0.0 /
y ′ = −0.8 · y

x = 20.0∧ y = 0.0

y < 0

y > 0

x :

y :

ball is moving down
ball is moving up

vertical position of the ball

velocity

−10

0

−20

10

0 5 10 15 20

20
y

x

y < 0

y > 0

x :

y :

•
x= y

x ≥ 0

•
y= −9.81

x = 0.0∧ y ≤ 0.0 /
y ′ = −0.8 · y

x = 20.0∧ y = 0.0

ball is moving down
ball is moving up

vertical position of the ball

velocity

−10

0

−20

10

0 5 10 15 20

20
y

x

y < 0

y > 0

x :

y :

•
x= y

x ≥ 0

•
y= −9.81

x = 0.0∧ y ≤ 0.0 /
y ′ = −0.8 · y

x = 20.0∧ y = 0.0

ball is moving down
ball is moving up

vertical position of the ball

velocity

−10

0

−20

10

0 5 10 15 20

20
y

x

y < 0

y > 0

x :

y :

•
x= y

x ≥ 0

•
y= −9.81

x = 0.0∧ y ≤ 0.0 /
y ′ = −0.8 · y

x = 20.0∧ y = 0.0

ball is moving down
ball is moving up

vertical position of the ball

velocity

−10

0

−20

10

0 5 10 15 20

20
y

x

y < 0

y > 0

x :

y :

•
x= y

x ≥ 0

•
y= −9.81

x = 0.0∧ y ≤ 0.0 /
y ′ = −0.8 · y

x = 20.0∧ y = 0.0

ball is moving down
ball is moving up

vertical position of the ball

velocity

−10

0

−20

10

0 5 10 15 20

20
y

x

y < 0

y > 0

x :

y :

•
x= y

x ≥ 0

•
y= −9.81

x = 0.0∧ y ≤ 0.0 /
y ′ = −0.8 · y

x = 20.0∧ y = 0.0

ball is moving down
ball is moving up

vertical position of the ball

velocity

−10

0

−20

10

0 5 10 15 20

20
y

x

y < 0

y > 0

x :

y :

•
x= y

x ≥ 0

•
y= −9.81

x = 0.0∧ y ≤ 0.0 /
y ′ = −0.8 · y

x = 20.0∧ y = 0.0

ball is moving down
ball is moving up

vertical position of the ball

velocity

−10

0

−20

10

0 5 10 15 20

20
y

x

y < 0

y > 0

x :

y :

•
x= y

x ≥ 0

•
y= −9.81

x = 0.0∧ y ≤ 0.0 /
y ′ = −0.8 · y

x = 20.0∧ y = 0.0

ball is moving down
ball is moving up

vertical position of the ball

velocity

−10

0

−20

10

0 5 10 15 20

20
y

x

y < 0

y > 0

x :

y :

•
x= y

x ≥ 0

•
y= −9.81

x = 0.0∧ y ≤ 0.0 /
y ′ = −0.8 · y

x = 20.0∧ y = 0.0

02917: Introduction – p.28/49

State and Dimension Explosion
Number of continuous variables linear in num-
ber of cars
• Positions, speeds, accelerations,
• torque, slip, ...

Number of discrete states exponential in num-
ber of cars
• Operational modes, control modes,
• state of communication subsystem, ...

Symmetry reduction often impossible
• Latency in ctrl. loop depends on number

of cars due to communication subsystem.
• Hidden channels due to coupled dynam-

ics.

• Need a scalable approach
• Trying to achieve this through strictly symbolic methods.

02917: Introduction – p.29/49

Semantic Modeling of ES

“Embedded Systems are Predicates”
(c©E. Hehner)

02917: Introduction – p.30/49

Symbolic transition system
Given a predicate language L, a symbolic transition system STS over
L comprises
• a set V of variable names belonging to L,

plus a sort-preserving renaming operation . ′ assigning to each
variable in V a “copy” v ′ 6∈ V ,

• an initialization predicate I ∈ L with free (I) ⊆ V ,
• a (symbolic or predicative) transition relation T ∈ L with

free (T) ⊆ V ∪ V ′.
A run of symb. trans. sys. STS is a (finite or infinite) sequence
r = 〈σ1, σ2, σ3, . . .〉 of L-interpretations such that

Initiation: σ1 |= I and
Consecution: σi,i+1 |= T for each i < len(r), where

σi,i+1(x) =

{
σi(x) iff x 6∈ V ′
σi+1(x) iff x ∈ V ′

02917: Introduction – p.31/49

Parallel composition

Assume STS1 = (V1, I1, T1) and STS2 = (V2, I2, T2)

• control (i.e., constrain v ′) a subset Outi ⊂ Vi of variables,
• leave the remaining variables unconstrained.

Synchronous execution: If Out1 ∩Out2 = ∅ then

STS‖ = (V1 ∪ V2, I1 ∧ I2, T1 ∧ T2)

yields step-synchronous parallel execution.

Asynchronous execution:

STS‖ = (V1∪V2, I1∧I2, (T1 ∧
∧

v∈O2\O1

v ′ = v

︸ ︷︷ ︸
framing

) ∨ (T2 ∧
∧

v∈O1\O2

v ′ = v

︸ ︷︷ ︸
framing

))

yields (non-fair) interleaving.
02917: Introduction – p.32/49

Symbolic Representation: Principle
A: A:

σσ

↼
x= 10∧ x = 0∧ y =

↼
y

2
− 1

x = 0∧ y = 0

∃∆t.

x =

↼
x +∆t

y =
↼
y +∆t

x ≤ 10

x := 0, y := 0

dy
dt

= 1

x = 10→ x := 0, y := y
2
− 1

dx
dt

= 1

x ≤ 10

• symbolic representation of linear size
• provided ODEs are of appropriate kind.

02917: Introduction – p.33/49

Generalizing the concept: Simulink+Stateflow

02917: Introduction – p.34/49

‘Algebraic’ blocks

outputinput
f

• time-invariant transfer function output(t) = f (input(t))

• made 1st-order by making time implicit: Flow ≡ output = f (input)

• no constraints on initial value: Init ≡ true,
• discontinuous jumps always admissible Jump ≡ true,

All the formulae are elements of a suitably rich
1st-order logics over R.

02917: Introduction – p.35/49

Integrators

outputinput 1/s
init

• integrates its input over time: output(t) = init +
∫t
0

input(u) du.

• made semi-1st-order by using derivatives: Flow ≡ doutput
dt

= input

• initial value is rest value: Init ≡ output = init,

• discontinuous jumps don’t affect output Jump ≡ output =
↼

output,

02917: Introduction – p.36/49

Getting started with STS: NuSMV

02917: Introduction – p.37/49

Model checking

Device Specification

Device Descript.
architecture behaviour
of processor is

process fetch
 if halt=0 then
 if mem_wait=0 then
 nextins <= dport
 ...

Model Checker

♦(π ⇐ φ)

Hello world

This is DeDuCe V 1.4

Give me your design

Approval/
Counterexample

02917: Introduction – p.38/49

NuSMV
• NuSMV (A. Cimmati, E. Clarke, F. Giunchiglia, A. Morichetti, M.

Roveri et al.) is an optimized reengineering of the symbolic
model checker SMV (K. McMillan, 1993)

• It is dedicated to finite state systems, providing
• Booleans, bounded integers, enumerations as data types.

• It has a structured, symbolic language for describing initial state
sets and transitions:
• either declarative

TRANS
next(output) = !input;

where totality of the transition relation has to be guaranteed
by the user, or

• “imperative” (single assignment!) providing such guarantee
ASSIGN
next(output) := !input;

02917: Introduction – p.39/49

The imperative syntax

An inverter taking one step delay:
MODULE main
VAR
input : boolean;
output : boolean;

ASSIGN
init(output) := 0;
next(output) := !input;

Note that input is unconstrained!

02917: Introduction – p.40/49

The imperative syntax

An inverter taking arbitrary delay (and missing transient inputs):
MODULE main
VAR
input : boolean;
output : boolean;

ASSIGN
init(output) := 0;
next(output) := (!input) union output;

Note that output has a non-deterministic assignment!

02917: Introduction – p.41/49

The imperative syntax

MODULE inverter(input)
VAR
output : boolean;

ASSIGN
init(output) := 0;
next(output) := !input;

MODULE main
VAR
gate1 : inverter(gate3.output);
gate2 : inverter(gate1.output);
gate3 : inverter(gate2.output);

This is synchronous execution, while...

02917: Introduction – p.42/49

The imperative syntax

MODULE inverter(input)
VAR
output : boolean;

ASSIGN
init(output) := 0;
next(output) := !input;

MODULE main
VAR
gate1 : process inverter(gate3.output);
gate2 : process inverter(gate1.output);
gate3 : process inverter(gate2.output);

this is asynchronous execution, and...

02917: Introduction – p.43/49

The imperative syntax

MODULE inverter(input)
VAR
output : boolean;

ASSIGN
init(output) := 0;
next(output) := !input;

FAIRNESS
running;

MODULE main
VAR
gate1 : process inverter(gate3.output);
gate2 : process inverter(gate1.output);
gate3 : process inverter(gate2.output);

is fair asynchronous execution.
02917: Introduction – p.44/49

Rules governing the “imperative” fragment

In order to ensure totality of the transition relation, there is a

single assignment rule: For each variable, there is at most one
assignment (which may contain case distictions).

next(abr) :=
case forget = 0 : ab;

forget = 1 : abr;
esac;

Note that assignments to both v and next(v) do also constitute
multiple assignments to v!

non-circular dependencies rule: Circular dependencies are to be
broken by “delays”, i.e. a variable may only depend on older
values of itself.

02917: Introduction – p.45/49

Specification patterns for the exercises

You’ll need the following types of CTL (computation tree logic
formulae):

φ holds invariably: AGφ
• On all computation paths, φ holds generally.

φ leads to ψ: AG (φ->AFψ)

• On all computation paths, it holds generally that if φ holds
then necessarily (= on all computation paths), ψ holds
eventually.

Tutorial available at
http://nusmv.irst.itc.it/NuSMV/tutorial/v24/tutorial.pdf

02917: Introduction – p.46/49

Course Schedule

(this week)

02917: Introduction – p.47/49

Schedule

4 Slots a day, 2 in the morning, 2 in the afternoon.

Monday:

1. Introductory lecture
2.+3. Exercise class: State-exploratory verification using NuSMV

4. Lecture: CTL and CTL model checking

Tuesday:

1. Lecture: Checking Circuit Equivalence
2.+3. Exercise class: dito

4. Lecture: Satisfiability solving of large propositional formulae

02917: Introduction – p.48/49

Schedule (cntd.)

Wednesday:

1. Lecture: Symbolic methods for finite-state model checking
2.+3. Exercise class: Circuit equivalence (cntd.)

4. Lecture: Symbolic methods for real-time

Thursday:

1. Lecture: Arithmetic satisfiability solving
2.+3. Exercise class: Using arith. SAT solving for scheduling

4. Lecture: Hybrid state-space exploration I

Friday:

1. Lecture: Hybrid state-space exploration II

2. Exercise class: Introduction to the projects,
time to continue with previous exercises

3. Lecture: Game-theoretic synthesis
02917: Introduction – p.49/49

	Multiple viewpoints
	Formal Methods
	Embedded computer systems
	Application domains
	The roles, they are a changing...
	A little mishap...
	Continuity?
	A Suggestion: Formal Methods
	
	Open (contin. time & state)
dynamical system
	Some state-based models
	
	Finite-state models
	The coffee vending machine --- architecture
	The coffee vending machine --- dynamics
	An example run
	The coffee vending machine
	Embedded systems in-the-large
	
	Open (contin. time & state)
dynamical system
	Continuous modeling with DEs
	Differential equation w/o input / disturbance
	Differential equation with input
	Example: spring-mass system w. disturbance
	
	Hybrid Systems
	Hybrid Automata
	State and Dimension Explosion
	
	Symbolic transition system
	Parallel composition
	Symbolic Representation: Principle
	Generalizing the concept: Simulink+Stateflow
	`Algebraic' blocks
	Integrators
	
	Model checking
	NuSMV
	The imperative syntax
	The imperative syntax
	The imperative syntax
	The imperative syntax
	The imperative syntax
	Rules governing the ``imperative'' fragment
	Specification patterns for the exercises
	
	Schedule
	Schedule (cntd.)

