Model-Based Development and Validation of Multirobot Cooperative System

Jüri Vain Dept. of Computer Science Tallinn University of Technology

Syllabus

Monday morning: (9:00 – 12.30)

- 9:00 9:45 Introduction
- 10:00 11:30 Hands-on exercises I: Uppaal model construction
- 11:45 12:30 Theoretical background I: XTA semantics,
- Lunch 12.30 13.30
- Monday afternoon: (13:30 16:30)
 - 13.30 14:15 Applications I: model learning for Human Addaptive Scrub Nurse Robot
 - 14.30 15.15 Theoretical background II: model checking
 - 15.30 16:15 Hands-on exercises II: model checking
- □ Tuesday morning: (9:00 12.30)
 - 9:00 9:45 Theoretical background III: Model based testing
 - 10:00 10:45 Applications II: reactive planning tester
 - 11:00 12:30 Hands-on exercises III (model refinement)

Lecture #L2 : Model construction Lecture Plan

- Extended Timed Automata (XTA) (slides by Brien Nielsen, Aalborg Univ.)
 - Syntax
 - Semantics (informally)
 - Example
- Learning XTA
 - Motivation: why learning?
 - Basic concepts
 - Simple Learning Algorithm
 - Adequacy of learning: Trace equivalence

Timed automata Dumb Light Control

WANT: if press is issued twice quickly then the light will get brighter; otherwise the light is turned off.

Timed automata Dumb Light Control Alur & Dill 1990

Solution: Add real-valued clock x

States:

(location, x=v) where $v \in \mathbf{R}$

Timed Automata Alur & Dill 1990 Synchronizing Reset action press? x:=0 press? press? Off Light Bright $x \le 3$ Guard press? Conjunctions x: real-valued ·x>3 of x~n

States:

(location, x=v) where $v \in \mathbf{R}$

clock

Doctoral course 'Advanced topics in Embedded Systems'. Lyngby'08

Transitions:

Timed Automata Alur & Dill 1990

States:

(location, x=v) where $v \in \mathbf{R}$

delay 4.32
$$\rightarrow$$
 (Off, x=0)
press? \rightarrow (Light, x=0)

Doctoral course 'Advanced topics in Embedded Systems'. Lyngby'08

- - -

States:

(location, x=v) where $v \in \mathbf{R}$

Transitions: (Off , x=0) delay 4.32 \rightarrow (Off , x=4.32) press? \rightarrow (Light , x=0) delay 2.51 \rightarrow (Light , x=2.51)

Timed automata: Semantics

C	+-	+-	~ •	
Э	ιa	ιe	S.	

(location , x=v) where $v \in \mathbf{R}$

Transitions	:	
	(Off , x=0)	
delay 4.32	\rightarrow (Off, x=4.32)	
press?	\rightarrow (Light, x=0)	
delay 2.51	\rightarrow (Light, x=2.51)	
press?	\rightarrow (Bright , x=2.51)	

Embedded Systems'. Lyngby'08

Intelligent Light Control Using Invariants

x:=0

x=100

Timing Uncertainty

Unpredictable or variable

- response time,
- computation time
- transmission time etc:

LightLevel must be adjusted between 5 and 10

Light Control Network

Comitted Locations

S0 to s5 executed atomically

Urgent Channels and Locations

Locations marked U ***No delay** in committed location. Interleaving permitted Channels declared "urgent chan" Time doesn't elapse when a synchronization is possible on a pair of urgent channels Interleaving allowed

Other Uppaal features

- Bounded domain
 - Int [1..4] a;
- C-like data-structures and user defined functions in declaration section
 - structs, arrays, and typedef
- select a:T CONSTRUCT
- Forall, exists in expr
- Scalar sets (for giving unique ID's)
- Process and channel priorities
- Value passing (emulation)

See Uppaal Help for details!

Learning XTA: about terminology

General term is Machine Learning

- Passive vs active
- Supervised vs unsupervised
- Reinforcement learning (reward guided)
- Computational structures used:
 - FSA
 - Hidden Markov Model
 - Kohonen Map
 - D NN
 - Timed Automata
 - etc

Learning XTA (lecture plan)

- Problem context
- Simplifying assumptions
 - I/O observability
 - Generally non-deterministic models
 - Fully observable (output determinism)
- The learning algorithm
- Estimating the quality of learning

Problem context: SNR scene and motion analysis

SNR Control Architecture

Scrub Nurse Robot (SNR): Motion analysis

Photos from CEO on HAM, Tokyo Denki University

Motion recognition

Motion recognition using statistical models

- working->extracting, - extracting->passing, - passing->waiting, - waiting->receiving, - receiving->inserting, - inserting->working

SNR Control Architecture

(Timed) automata learning algorithm

Input:

- Time-stamped sequence of observed i/o events (timed trace *TTr(Obs*))
- Observable inputs/outputs X_{Obs} of actors
- **Rescaling operator** \mathcal{R} : $X_{Obs} \rightarrow X_{XTA}$
 - where X_{XTA} is a model state space
- Equivalnece relation "~" defining the quotient state space X /~

Output:

Extended (Uppaal version) timed automaton XTA s.t. $TTr(XTA) = R(TTr(Obs)) /_{\sim} \% = equivalence of traces$

Algorithm 1: model compilation (one learning session)

Initialization

 $L \leftarrow \{I_0\}$ $T \leftarrow \emptyset$

 $h \leftarrow I_0$

 $h' \leftarrow I_0$ $h_{cl} \leftarrow 0$

 $l \leftarrow l_0$ $cl \leftarrow 0$

 $g_cl \leftarrow \emptyset$

 $q_x \leftarrow \emptyset$

 $k_{k'} \leftarrow 0,0$

- % L set of locations, I_0 (auxiliary) initial location
- % T set of transitions
 - % *k*,*k'*-indexes distinguishing transitions between same location pairs
 - % h history variable storing the id of the previous motion
 - % h' variable storing the id of the motion before previous
 - % h_{cl} clock reset history
 - % / destination location of the current switching event
- % *cl* clock variable of the automaton being learned
- % g_cl 3D matrix of clock reset intervals
- % \overline{g}_x 4D matrix of state intervals that define switching cond.s

1					
			1: while <i>E</i> ≠	Ø do	
			2:	$e \leftarrow get(E)$	% get the motion switching event record from buffer E
			3:	$h' \leftarrow h, h \leftarrow l$	6 6
			4:	$l \leftarrow e[1], cl \leftarrow (e[2] - h_{cl}), X \leftarrow e[1]$	ə[3]
Г	Encodo		5:	if <i>I</i> ∉ <i>L</i> then	% if the motion has never occurred before
	Encoue		6:	$L \leftarrow L \cup \{l\},$	
	new	Create	7:	$T \leftarrow T \cup \{t(h,l,1)\}$	% add transition to that motion
	motion	a new	8:	$g_cl(h,l,1) \leftarrow [cl, cl]$	% add clock reset point in time
		eg.class	9:	for all <i>x_i</i> ∈ X do	
			10:	$g_x(h,l,1,x_i) \leftarrow [\mathbf{x_i}, \mathbf{x_i}]$	% add state switching point
			11:	end for	
		Match	12:		% If switching e in existing equivalence class
		with	13:	If $\exists K \in [1, t(N, I, .)], \forall X_i \in X_i$:	$\mathbf{X}_{i} \in g_{X}(n, l, \kappa, x_{i}) \land cl \in g_{cl}(n, l, \kappa)$ then
		existing	14. 15:		$^{9/}$ if switching a axtanda the equival class
		ed class	15. 16 [.]	if $\exists k \in [1 \mid f(b \mid f)] \forall \mathbf{v} \in Y$	70 in switching electerics the equival class Y : y \subset a $x(h \downarrow k x)$ \hat{R}^{i}_{k} $c \downarrow \subset$ a $c \parallel (h \downarrow k)$ \hat{R}^{c}_{k}
		09.01400	10. 17·	then $II \supseteq A \in [1, [i(II, I, .)]], \forall A_i \in Z$	$\mathbf{A}, \mathbf{A}_{i} \in \mathbf{\mathcal{G}}_{\mathbf{A}}(\mathbf{n}_{i},\mathbf{n}_{i},\mathbf{A}_{i})^{+} \land \mathbf{C}_{i} \in \mathbf{\mathcal{G}}_{\mathbf{C}}(\mathbf{n}_{i},\mathbf{n}_{i},\mathbf{A}_{i})^{+}$
		Extend	18.	if $c < a c (h/k)^2$ then	$a c((h \mid k) \leftarrow [c \mid a c((h \mid k))^{+}]$ end if
	Freedo		19:	if cl > $a cl(h k)^+$ then	$a c(h k) \leftarrow [a c(h k)] c[a c(h k)]$
	Encode		20:	for all $x_i \in X$ do	
	motion	eq.class	21:	if $\mathbf{x}_i < q x(h.l.k.)$	$(x)^{-}$ then $a x(h,l,k,x) \leftarrow [\mathbf{x}_{i}, a x(h,l,k,x))^{+}]$ end if
	previously		22:	if $x_i > q_i(h, l, k, x)$	$(x_i)^+$ then $q(x_i(h,l,k,x_i) \leftarrow [q(x_i(h,l,k,x_i)^-, x_i)]$ end if
(observed		23:	end for	
			24:	else % if switch	ing e exceeds allowed limits of existing eqv. class
			25:	$k \leftarrow t(h,l,.) + 1$	
		Create	26:	$T \leftarrow T \cup \{t(h,l,k)\}$	% add new transition
			27:	$g_cl(h,l,k) \leftarrow [cl, cl]$	% add clock reset point in time
			28:	for all $x_i \in X$ do	
		eq.class	29:	$g_x(h,l,k,x_i) \leftarrow [\mathbf{x}_i, \mathbf{x}_i]$	% add state switching point
			30:	end for	
			31:	end if	
			3Z:		0/ add appignment to provide a transition
			33:	$a(n,n,\kappa) \leftarrow a(n,n,\kappa) \cup \mathbf{X}_{c}$	% add assignment to previous transition
			34: ena whi		

35: **for all** $t(I_{j}, I_{j}, k) \in T$ **do** guards and updates % compile transition $g(I_{i},I_{j},k) \leftarrow CI \in g_CI(I_{i},I_{j},k) / \land S \in [1,|X|] \quad X_{i} \in g_X(I_{i},I_{j},k,X_{s})'$ 36: $a(I_i, I_j, k) \leftarrow X_c \leftarrow random(a(I_i, I_j, k)), cl \leftarrow 0'$ % assign random value in a 37: Finalize TA syntax 38: end for formatting 39: for all $I_i \in L$ do 40: % $inv(I_i) \leftarrow \backslash \backslash_k g(t_{ki}) / \backslash \neg \backslash \backslash_i g(t_{ji})'$ compile location invariants 41: end for

Interval extension operator:

(.) $R: [x^{-}, x^{+}] R = [x^{-} - \delta, x^{+} + \delta]$, where $\delta = R - (x^{+} - x^{-})$

Learning example (1)

Given

- Observation sequence E =
- System configuration

- Rescaling operator *R* with region [0,30] for all x_i
- Granularity of the quotient space X / 2

Lction	A	I ₁ ^{bug} O ₁ ^{bug}	I_2 O_2	I I Num Ol and	I2 ^{sug} O2 ^{sug}	
Nurse	Surgeon	nY	nX	sY	sX	Time
idle	idle	64	214	52	123	1
prepare_instr	S	34	237	76	\$	17
pick_instr	S	85	222	93	\$	42
hold_wait	S	55	191	57	\$	48
pass	get	46	212	123	81	70
withraw	\$	72	245	132	\$	78
s	insert	26	\$	85	118	79
S	work	85	\$	73	116	86
idle	S	66	202	73	\$	88
S	extract	44	\$	59	121	107
stretch	s	88	244	77	\$	109
wait_return	s	35	259	86	\$	122
receive	return	63	199	116	59	124
move_back	wait	93	211	139	92	130
put_on_tray	s	55	194	75	\$	134
pick_instr	s	33	201	104	\$	137
pass	get	26	201	110	92	142
wait_return	insert	76	230	68	133	150
S	work	55	\$	76	121	158
s	extract	27	\$	63	146	171
receive	return	22	170	105	138	177
move_back	idle	62	169	66	147	180
put_on_tray	\$	90	268	124	\$	184
idle	S	20	20	73	S	186

Learning example (2)

Does XTA exhibit the same behavior as the traces observed?

Question 1: How to choose the equivalence relation "~" do define a feasible quotient space?

Question 2: How to choose the equivalence relation to compare traces TTr(XTA) and TTr(Obs)?

 $TTr(XTA) = R(TTr(Obs)) /_{\sim}$?

How to choose the equivalence relation "~" do define a feasible quotient space?

- □ Granularity parameter γ_i defines the maximum length of an interval $[x_i, x_i^+]$, of equivalent (regarding ~) values of x_i where $x_i^-, x_i^+ \in X_i$ for all X_i (i = [1,n]).
- Partitioning of *dom* X_i (i = [1,n]) to intervals (see line 16 of the algorithm) is implemented using interval expansion operator (.)^R:

 $[x^{-}, x^{+}]^{\ddagger R} = [x^{-} - \delta, x^{+} + \delta], \text{ where } \delta = R - (x^{+} - x^{-})$

On Question 2:

Possible candidates:

- Equivalence of languages?
- Simulation relation?
- Conformace relation?
- **.**..?

How to choose the equivalence relation to compare languages? Nerode's right congruence.

□ Given a language $\mathcal{L}(\mathcal{A})$, we say that two words $u, v \in \Sigma^*$ are *equivalent*, written as $u \equiv_{\mathcal{L}(\mathcal{A})} v$, if, $\forall w \in \Sigma^*$: $uw \in \mathcal{L}(\mathcal{A})$ iff $vw \in \mathcal{L}(\mathcal{A})$.

 $\Box \equiv_{\mathcal{L}(\mathcal{A})} \subseteq \Sigma^* \times \Sigma^* \text{ is a right congruence, i.e., it is an equivalence relation that satisfies} \\ \forall w \in \Sigma^* \colon u \equiv_{\mathcal{L}(\mathcal{A})} v \Rightarrow uw \equiv_{\mathcal{L}(\mathcal{A})} vw.$

- We denote the equivalence class of a word w wrt. $\equiv_{\mathcal{L}(\mathcal{A})}$ by $[w]_{\mathcal{L}(\mathcal{A})}$ or just [w]
- □ A language $\mathcal{L}(\mathcal{A})$ is regular iff the number of equivalence classes of Σ* with respect to $=_{\mathcal{L}(\mathcal{A})}$ is finite.

Timed Conformance

•Derived from Tretman's IOCO

Let I, S be timed I/O LTS, P a set of states
TTr(P): the set of *timed traces* from P
eg.: σ = coin?.5.req?.2.thinCoffee!.9.coin?

Out(P after σ) = possible *outputs* and *delays* after σ
 eq. out ({|2,x=1}): {thinCoffee, 0...2}

•I rt-ioco S =def

• $\forall \sigma \in \mathsf{TTr}(\mathsf{S})$: Out(I after σ) \subseteq Out(S after σ)

TTr(I) ⊆ TTr(s) if s and I are input enabled

Intuition

no illegal output is produced and required output is produced (at right time)

See also [Krichen&Tripakis, Khoumsi]

Conclusions

Proposed XTA learning makes the on-line synthesis of model-based planning controllers for HA robots feasible.

Other aspects:

- *learning is incremental*, i.e., pre-existing knowledge about the agent's behaviour can be re-used;
- formal semantics of XTA models functional correctness and performance can be verified on the model before used for planner synthesis;
- *adjustable level of abstraction* of the model generated.