
Lecture Notes on Computer Vision

Henrik Aanæs
DTU informatics

e-mail: haa@imm.dtu.dk

November 27, 2009

2

Contents

I View Geometry 7

1 Single Camera Geometry - Modelling a Camera 9
1.1 Homogeneous Coordinates . 9
1.2 Modelling a Camera . 13
1.3 The Orthographic Projection Model . 16
1.4 The Pinhole Camera Model . 17
1.5 Radial Distortion - Refined Pinhole Model . 26
1.6 Camera Calibration . 30
1.7 End Notes . 31

2 Geometric Inference from Cameras - Multiple View Geometry 35
2.1 What does an Image Point Tell Us About 3D? . 35
2.2 Epipolar Geometry . 37
2.3 Homographies for Two View Geometry . 41
2.4 Point Triangulation . 45
2.5 A Light Projector as a ’Camera’ . 49
2.6 Camera Resection . 50
2.7 Estimating the Epipolar Geometry* . 52
2.8 Estimating a Homography* . 54
2.9 End Notes* . 56

II Image Features and Matching 57

3 Extracting Features 59
3.1 Importance of Scale . 59
3.2 The Aperture Problem . 61
3.3 Harris Corner Detector . 62
3.4 Blob Detection . 66
3.5 Canny Edge Detector . 68

4 Image Correspondences 71
4.1 Correspondence via Feature Matching . 71
4.2 Feature Descriptor Examples . 72
4.3 Matching via Descriptors . 74
4.4 Constrains in Search Space . 75

III Appendices 79

A A few Elements of Linear Algebra 81
A.1 Basics of Linear Algebra . 81
A.2 Linear Least Squares . 87
A.3 Rotation . 87
A.4 Change of Right Handed Cartesian Coordinate Frame . 90

3

4 CONTENTS

A.5 Cross Product as an Operator . 90
A.6 SVD – Generalized Eigen Values* . 91
A.7 Kronecker Product* . 93
A.8 Domain* . 94

CONTENTS 5

Preface

In it’s present form this text is intended for the DTU course 02501. In this regard many of the section titles have
been marked with an ”*”. This indicates that it is not part of the curriculum. The material in these sections have
been included to give the interested reader a more complete picture of the curriculum, and because experience
has shown that this is the material that students often ask about later on in their studies. This opportunity should
also be used to thank Christian Hollensen, Lasse Farnung Laursen, J. Andreas Bærentzen, Oline Vinter Olesen,
Rasmus Ramsbøl Jensen and Francois Anton for invaluable help in completing these notes, by clarifying things
for me and via proof reading.

/Henrik

6 CONTENTS

Part I

View Geometry

7

Chapter 1

Single Camera Geometry - Modelling a
Camera

Much of computer vision and image analysis deals with inference about the world from images thereof. Many
of these inference tasks require an understanding of the imaging process. Since such computer vision tasks
are implemented on a computer this understanding needs to be in the form of a mathematical model. This is
the subject here, where the relationship between the physical 3D world and 2D image there of is described,
and mathematically modelled. It should be mentioned that this is only a short introduction to the vast field of
(single) camera geometry, and that a good general reference for further reading is [14].

1.1 Homogeneous Coordinates

In order to have a more concise and less confusing representation of camera geometry, we use homogenous
coordinates, which are introduced here. At the outset homogeneous coordinates are a silly thing, in that all
coordinates — be they 2D or 3D — have an extra number or dimension added to them. We e.g. use three
real numbers to represent a 2D coordinate and four reals to represent a 3D coordinate. As will be seen later
this trick, however, makes sense and gives a lot of advantages. The extra dimension added is a scaling of the
coordinate, such that the 2D point x, y is represented by the vector sx

sy
s

 .

Thus the coordinate or point (3, 2) can, in homogeneous coordinates, be represented by a whole range of length
three vectors, e.g. 3

2
1

 =

 1 · 3
1 · 2
1

 ,

 6
4
2

 =

 2 · 3
2 · 2
2

 ,

 −6
−4
−2

 =

 −2 · 3
−2 · 2
−2

 ,

 30
20
10

 =

 10 · 3
10 · 2
10

 .

The same holds for 3D coordinates, where the coordinate x, y, z is represented as
sx
sy
sz
s

 .

An as an example the point (1,−2, 3) can be expressed in homogeneous coordinates as e.g.
1
−2
3
1

 ,

−1
2
−3
−1

 ,

2
−4
6
2

 ,

10
−20
30
10

 .

9

10 CHAPTER 1. SINGLE CAMERA GEOMETRY - MODELLING A CAMERA

This representation, as mentioned, has certain advantages in achieving a more compact and consist repre-
sentation. Consider e.g. the points (x, y) located on a line, this can be expressed by the following equation,
given a, b, c:

0 = ax + by + c . (1.1)

Multiplying both sides of this equation by a scalar s we achieve

0 = sax + sby + sc =

 a
b
c

T sx
sy
s

 = lTq , (1.2)

where l and q are vectors, and specifically q is the possible 2D points on the line, represented in homogeneous
coordinates. So now the equation for a line is reduced to the inner product between two vectors. A similar thing
holds in 3D, where points on the plane (x, y, z) are solutions to the equation, given (a, b, c, d)

0 = ax + by + cz + d⇒
0 = sax + sby + scz + sd

=

a
b
c
d

T

sx
sy
sz
s

= pTq . (1.3)

Where p and q are vectors the latter representing the homogeneous 3D points on the plane. Another operation
which can be performed differently with homogeneous coordinates is addition. Assume, e.g. that (∆x, ∆y)
should be added to (x, y), then this can be written as 1 0 ∆x

0 1 ∆y
0 0 1

 sx
sy
s

 =

 sx + s∆x
sy + s∆y

s

 =

 s(x + ∆x)
s(y + ∆y)

s

 , (1.4)

which is equivalent to the point (x+∆x, y +∆y), as needed. The same thing can be done in 3D1. This implies
that we can combine operations into one matrix and e.g. represent the multiplication of a point by a matrix
followed by an addition as a multiplication by one matrix. As an example let A be a 3×3 matrix, q = (x, y, z)
a regular (non-homogeneous) 3D point and ∆q another 3 vector, then we can write Aq + ∆q as[

A ∆q
000 1

] [
sq
s

]
=

[
sAq + s∆q

s

]
=

[
s(Aq + ∆q)

s

]
. (1.5)

In dealing with the pinhole camera model this will be a distinct advantage.

1.1.1 Points at Infinity*

There are naturally much more to homogeneous coordinates, especially due to their close link to projective
geometry, and the interested reader is referred to [14]. A few subtleties will, however, be touched upon here,
firstly points infinitely fare away. These are in homogeneous coordinates represented by the last entry being
zero, i.e.

2
1
−1.5

0

 , (1.6)

which if we try to convert it to regular coordinates corresponds to 2/0
1/0
−1.5/0

→
 ∞∞
∞

 . (1.7)

1Do the calculations, and see for your self!

1.1. HOMOGENEOUS COORDINATES 11

The advantage of the homogeneous representation in (1.6), as compared to a the regular in (1.7), is that the
homogeneous coordinate represents infinitely far away with a given direction, i.e. a good model of the suns
location. This is not captured by the regular coordinates, since c∞ = ∞, for any constant. One can naturally
represent directions without homogeneous coordinates, but not in a seamless representation. I.e. in homoge-
neous coordinates we can both estimate the direction to the sun and a nearby object in the same framework.
This also implies that in homogeneous coordinates, as in projective geometry, infinity is a place like any other.
As a last note on points at infinity, consider the plane

p =

0
0
0
1

 , pTq = 0 . (1.8)

which exactly contains all the homogeneous points, q, which are located at infinity. Thus p in (1.8) is also
known as the plane at infinity.

1.1.2 Intersection of Lines in 2D

As seen in (1.2), a point, q, is located on a line, l, iff2 lTq = 0. Thus the point, q, which is the intersection of
two lines, l1 and l2, will satisfy [

lT1
lT2

]
q = 0 . (1.9)

Thus q is the right null space of the matrix [
lT1
lT2

]
,

which also gives an algorithm for finding the q which is the intersection of two lines. Another way of achieving
the same is by taking the cross product between l1 and l2. The idea is that the cross product is perpendicular to
the two vectors, i.e. [

lT1
lT2

]
(l1 × l2) = 0 . (1.10)

Thus the intersection of two lines, l1 and l2, is also given by:

q = l1 × l2 . (1.11)

As an example consider the intersection of two lines l1 = [1, 0, 2]T and l2 = [0, 2, 2]T . Then the intersec-
tion is given by

q = l1 × l2 =

 −4
−2
2

 ,

which corresponds to the regular coordinate (−2,−1), which the active reader can try and plug into the relevant
equations and se that it fits. To illustrate the above issue of points at infinity, consider the two parallel lines
l1 = [1, 0,−1]T and l2 = [2, 0,−1]T . The intersection of these two lines is given by

q = l1 × l2 =

 0
−1
0

 ,

which is a point at infinity, as expected since these lines are parallel.

2”iff” means if and only if and is equivalent with the logical symbol ⇔.

12 CHAPTER 1. SINGLE CAMERA GEOMETRY - MODELLING A CAMERA

1.1.3 Distance to a Line*

A more subtle property of the homogeneous line representation, i.e. (1.2), is that it can easily give the distance
to the line, l, if the first two coordinates are normalized to one. I.e.

a2 + b2 = 1 for l =

 a
b
c

 .

In this case the distance of a point (x, y) is given by

dist =

∣∣∣∣∣∣lT
 x

y
1

∣∣∣∣∣∣ . (1.12)

Comparing to (1.2), it is seen that points on the line are those that have zero distance to it — which seems
natural.

x

y
l

X1

X2X3

n

m

c

n’*X1

Figure 1.1: The distance from a point Xi to the line l = [nT ,−c]T , is preserved by projecting the point onto a
line normal to l (with direction n). The distance is thus the inner product of Xi and n minus the projection of l
onto its perpendicular line, c.

The reasoning is as follows: Firstly, denote the normal n to the line is given by, see Figure 1.1, by

n =
[

a
b

]
.

For any given point, q = [x, y, 1]T , project it along the line l onto the line m. The line m passes through the
origo3 with direction n. It is seen, that these two lines, m and l, are perpendicular. The signed distance of this
projection (q onto m) to the origo is

nT

[
x
y

]
, (1.13)

see Figure 1.1, and is – obviously – located on m. It is further more seen, c.f. Figure 1.1, that the signed
distance of the projection, of q onto m, to l, is the same as the distance between q and l. This latter fact, is,

3origo is the center of the coordinate system with coordinates (0, 0).

1.2. MODELLING A CAMERA 13

among others, implied by projecting q parallel to l. The problem thus boils down to finding the signed distance
from the intersection of m and l to the origo, and subtracting that from (1.13). This distance can be derived
from any point q3 on l (following the notation in Figure 1.1), for which it holds, by (1.2),

lT

 x3

y3

1

 = nT

[
x3

y3

]
+ c = 0⇒ nT

[
x3

y3

]
= −c .

This implies (1.12), since the signed distance is given by

nT

[
x
y

]
− (−c) =

[
n
c

]T
 x

y
1

 = lT

 x
y
1

 ,

and thus the (unsigned) distance is given by (1.12). This is consistent with the usual formula for the distance
from a point to a line — as found in most tables of mathematical formulae — namely

dist =
|ax + by + c|√

a2 + b2
,

where it is noted that
√

a2 + b2 = a2 + b2 = 1, as assumed in our case.

1.1.4 Planes*

Moving from 2D to 3D, many of the properties of lines transfers to planes, with equivalent arguments. Specifi-
cally the distance of a 3D point, q to a plane, p, is given by

dist =

∣∣pTq
∣∣

||n||2
, p =

[
n
−α

]
,

where n is the normal to the plane. This normal can be found as the cross product of two linearly independent
vectors in the plane. To see this note that the normal has to be perpendicular to all vectors in the plane. From
the equation for a plane

pTq = 0 .

It can be deduced that if a point q is located on two planes p1 and p2, then[
pT

1

pT
2

]
q = 0 .

This describes the points at the intersection of the two planes, which (if the two planes are not coincident) is a
line in 3D.

1.2 Modelling a Camera

As mentioned, a mathematical model is needed of a camera, in order to solve most inference problems involving
3D. Specifically this model should relate the 3D model, the camera is viewing, and the generated image, see
Figure 1.2. The form of the model is naturally of importance. So before such models are derived, it is good to
consider what a good model is — which will be done in the following. Following this a few common models
are introduced, for further information the interested reader is referred to [14, 24].

1.2.1 What is a Good Model

As an example of modelling consider dropping an object from a given height and predicting it’s position, which
pretty much boils down to modelling the objects acceleration, see Figure 1.3. A simple high school physics
problem, would be most students reaction; the acceleration, a, is equal to g ≈ 9.81m/s2. This answer is indeed
a good one, and in many cases this is a good model of the problem. It is, however, not exact. This model does

14 CHAPTER 1. SINGLE CAMERA GEOMETRY - MODELLING A CAMERA

3D ObjectImage

Model

Figure 1.2: The required camera model should relate the 3D object viewed and the image generated by the
camera.

not include wind resistance – if the object was e.g. a feather – and more subtle effects like relativity theoretical
effects etc.

Two things should be observed from this example. Firstly, with very few exceptions, perfect models of
physical phenomena do not exist! Where ’perfect’ should be understood as exactly describing the physical
process. Thus noise is often added to a model to account for unmodelled effects. Secondly, the more exact a
model gets, the more complicated it usually gets, which makes calculations more difficult.

Figure 1.3: How fast will a dropped object accelerate?

So what is a good model? This answer depends on the purpose of the modelling. In Science the aim is to
understand phenomena, and thus more exact models are usually the aim. In engineering the aim is solving real
world problems via science, and thus a good model is one that enables you to solve the problem in a satisfactory
manner. Since camera geometry is most often used for engineering problems, the latter position will be taken
here, and we are looking for models with a good trade off between expressibility and simplicity.

1.2.2 Camera and World Coordinate Systems - Frame of Reference

Measurements have to be made in a frame of reference to make sense. With position measurements, e.g.
[1,−3.4, 3]T , this frame of reference is a coordinate system. A coordinate system is mathematically speaking
a set of basis vectors, e.g. the x-axis, y-axis and z-axis, and an origo. The origo, [0, 0, 0]T , is the center of
the coordinate system. Here the coordinates, e.g. [x, y, z], denote ’how much of’ each basis vector is need
to get to the point from the origo of the coordinate system. The typical coordinate system used is a right
handed Cartesian system, where the basis vectors are orthogonal to each other and have length one. Right
handed implies that the z-axis is equal to the cross product of the x-axis and y-axis. In this text, a right handed
Cartesian coordinate system will be assumed, unless otherwise stated.

Often, in camera geometry, we have several coordinate systems, e.g. one for every camera and perhaps a
global coordinate system, and a robot coordinate system as well. The reason being that often times it is better
and easier to express image measurements in the reference frame of the camera taking the image, see Figure 1.4.

1.2. MODELLING A CAMERA 15

UP

Front

Right

UP

Right

Right
Front

Front
UP

Figure 1.4: It is not only in camera geometry, where a multitude of reference frames exist. What is to the right
of the boy to the left is in front of the boy to the right.

Experience has, however, shown that one of the things that makes camera geometry difficult is this abundance
of coordinate systems, and especially the transformations between these, see Figure 1.5. Coordinate system
transformations4 will, thus, be shortly covered here for a right handed Cartesian coordinate system, and in a bit
more detail in Appendix A.

x

y

y’ x’

Figure 1.5: An example of a change of coordinate systems. The aim is to find the coordinates of the points in
the gray coordinate system, i.e. (x′, y′), given the coordinates of the point is the black coordinate system, i.e.
(x, y). Note, that the location of the point does not change (in some sort of global coordinate system).

From basic mathematics, it is known that we can transform a point from any right handed Cartesian coor-
dinate system to another via a rotation and a translation, see Appendix A.4. That is, if a point Q is given in one
coordinate system, it can be transferred to any other, with coordinates Q′ as follows

Q′ = RQ + t , (1.14)

where R is a 3 by 3 rotation matrix, and t is a translation vector of length 3. Rotation matrices are treated
briefly in Appendix A. As seen in (1.5) this can in homogeneous coordinates be written as

Q′ =
[

R t
000 1

]
Q . (1.15)

4This is also called basis shift in linear algebra.

16 CHAPTER 1. SINGLE CAMERA GEOMETRY - MODELLING A CAMERA

The inverse transformation, R′, t′ is given by (note that the inverse of a rotation matrix is given by its transpose,
i.e. R−1 = RT)

Q′ = RQ + t⇒
RTQ′ = Q + RTt⇒

RTQ′ −RTt = Q⇒
R′ = RT , t′ = −RTt .

Finally note, that it does matter if the coordinate is first rotated and the translated, as in (1.14), or first translated
and then rotated, i.e. in general

RQ + t 6= R(X + t) = RQ + Rt .

1.3 The Orthographic Projection Model

One of the simplest camera models is the orthographic or parallel projection. This assumes that light hitting the
image sensor travels in parallel lines, see Figure 1.6-left. Assuming that the camera is aligned with the world
coordinate system, such that it is viewing along the z-axis, then a world point Qi = [Xi, Yi, Zi]T will project
to the image point qi = [xi, yi]T = [Xi, Yi]T . This is equivalent to projecting the world point along the z-axis,
and letting the xy-plane being the image plane, see Figure 1.6-right. Mathematically this can be written as (in
homogeneous coordinates) sxi

syi

s

 =

 1 0 0 0
0 1 0 0
0 0 0 1

sXi

sYi

sZi

s

 . (1.16)

Im
ag

e
Pl

an
e

Light Rays

3D Object

X

Y

Z

World Point

Image Point

Figure 1.6: Left: Illustration of an orthographic camera, where it is assumed that light only travels in par-
allel lines, thereupon illuminating the photosensitive material. Right: This is mathematically equivalent to
projecting a world coordinate along an axis, here the z-axis, onto a plane, in this case the xy-plane.

There are two ’errors’ with the model in (1.16). Firstly, this model assumes that the camera is viewing along
the z-axis, which will seldom be the case. This is equivalent to saying that the world and the camera coordinate
system are equivalent. As described in Section 1.2.2, we can transform the coordinates of the points, Qi —
which are expressed in the world coordinate system — into the camera coordinate system, via a rotation and a
translation, transforming (1.16) into

 sxi

syi

s

 =

 1 0 0 0
0 1 0 0
0 0 0 1

 [
R t

]
sXi

sYi

sZi

s

 .

The second ’error’ (1.16), is that the unit of measurement of the world coordinate system and of the image is
seldom the same. So a pixel might correspond to a 10m by 10m area. Thus there is a need to scale the result by

1.4. THE PINHOLE CAMERA MODEL 17

a constant c, giving us the final orthographic projection model

qi = PorthoQi , Portho =

 c 0 0 0
0 c 0 0
0 0 0 1

 [
R t

]
. (1.17)

1.3.1 Discussion of the Orthographic Projection Model

Figure 1.7: Examples of orthographic projections in technical drawings (Left) and maps (Right). The right
image is taken from Wikipedia.

Although the orthographic projection model does not resemble any common camera well, it is still a very
used model. Examples of its use are architectural and technical drawings, see Figure 1.7-Left, and maps, see
Figure 1.7-Right, which is in the form of the so called orthophotos.

A main issue with the orthographic projection model is that it indifferent to depth. Consider (1.16), where
a change in the z-coordinate of the 3D world point Qi will not change the projected point. Here the z-axis is
the depth direction. This implies that there is no visual effect of moving an object further away from, or close
to, the camera. There is thus no perspective effect. Hence in applications where depth is of importance the
orthographic projection model is seldom suitable.

1.4 The Pinhole Camera Model

The most used camera model in computer vision and photogrammetry is the pinhole or projective camera
model. This model is also the one manufactures of ’normal’ lenses often aim at having their optics resemble.
In this text this model will be assumed, unless otherwise stated. Needless to say that this is an important model
to understand and master, so in the following it will be derived in some detail.

1.4.1 Derivation of the Pinhole Camera Model

The idea behind the pinhole model is that the image sensor is in-caged in a box with a small pinhole in it, as
illustrated in Figure 1.8. The light is then thought to pass through this hole and illuminate the image sensor.

The coordinate system of the pin hole camera model is situated such that the image plane is coincident with
the xy-plane and the z axis is along the viewing axis. To derive the pinhole camera model consider first the
xz-plane of this camera model, as seen in Figure 1.9. In this 2D world camera it is seen that

x =
x

1
=

X

Z
. (1.18)

18 CHAPTER 1. SINGLE CAMERA GEOMETRY - MODELLING A CAMERA

Focal point

Figure 1.8: Illustration of an ideal pinhole camera, where it is assumed that light only passes through a tiny (i.e.
pin) hole in the camera housing, and thus illuminating the photosensitive material.

which constitutes the camera model – somewhat simplified. This is simplified in the sense that the image
plane is assumed to be unit distance from the origo, and the camera coordinate system aligned with the global
coordinate system. One thing to note is that in Figure 1.8 the image plane is behind the origo of the coordinate
system and in Figure 1.9, it is in front. Apart from a flipping of the image plane these are equivalent, as
illustrated in Figure 1.10

z-axis (optical axis)

x-
ax

is (X,Z)

Origo (0,0)
Image plane

(0,Z)

(x,1)

(0,1)

Figure 1.9: The point (X, Z) is projected onto the image plane with coordinates x. It is seen that the triangles
4(0, 0), (0, 1), (x, 1) and 4(0, 0), (0, Z), (X, Z) are scaled versions of each other , and thus x/1 = X/Z.
Here the image plane is assumed to be unit distance from the origo, and the camera coordinate system aligned
with the global coordinate system.

Extending from this 2D camera to 3D, it is seen that, since the x and y axis are orthogonal, the model from
(1.18), is still valid for the x image coordinate and that an equivalent model holds for the y image coordinate,
i.e.

x =
X

Z
, y =

Y

Z
. (1.19)

1.4. THE PINHOLE CAMERA MODEL 19

Figure 1.10: Except for a flipping of the image plane, a projection in front of or behind the focal point, or origo,
are equivalent, as long as the distance from the focal point is the same.

See Figure 1.11. This can be written with the use of homogeneous coordinates, where the 2D point, q, is
homogeneous coordinates and the 3D point, Q is in regular coordinates (assuming that the depth Z 6= 0):

qi = Qi (1.20) sixi

siyi

si

 =

 Xi

Yi

Zi

⇔
si = Zi sixi = Xi siyi = Zi ⇔

Zixi = Xi , Ziyi = Yi ⇔

xi =
Xi

Zi
, yi =

Yi

Zi

This camera model in (1.20), assumes that the camera and the global5 coordinate systems are the same. This
is seldom the case, and as explained in Section 1.2.2, this shortcoming can be addressed with a rotation and a
translation, making the camera model

qi =
[

R t
]
Qi .

This model, however, has not captured the camera optics, i.e. the internal parameters. This model, as an
example, assumes that the distance of the image plane from the origo is one, which it seldom is. The internal
parameters will be described in more detailed in the following. With the pinhole model these internal parameters
are represented by a linear model, expressible by the 3 by 3 matrix A, making the pinhole camera model

qi = A
[

R t
]
Qi = PQi , P = A

[
R t

]
, (1.21)

where Qi is now in homogeneous coordinates. Thus (1.21) constitutes the final and actual pinhole camera
model. Denoting P by it’s elements

P =

 p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

 ,

the pinhole camera model in (1.21) can be written out in terms of the world coordinates [Xi, Yi, Zi]T and image
coordinates [xi, yi]T as

xi =
p11Xi + p12Yi + p13Zi + p14

p31Xi + p32Yi + p33Zi + p34
,

yi =
p21Xi + p22Yi + p23Zi + p24

p31Xi + p32Yi + p33Zi + p34
. (1.22)

This hopefully illustrates that the use of homogeneous coordinates makes camera geometry more concise.
5The coordinate system of the 3D points.

20 CHAPTER 1. SINGLE CAMERA GEOMETRY - MODELLING A CAMERA

Image Plane

Focal Point

Image Point (x,y)

Optic
al-a

xis o
r z

-axis World Point (X,Y,Z)

Figure 1.11: An illustration of a projection in 3D where a 3D world point (X, Y, Z), projects to a 2D image
point (x, y). This projection can be found by determining where the straight line between the focal point and
the 3D point (X, Y, Z) intersects the image plane.

1.4.2 Camera Center*

Sometimes it is necessary to calculate the projection center of a camera, Qc, given its projection matrix P. This
is to be done in global coordinates. Applications include robot navigation where we want to know where the
camera center is – and thus the robot – from an estimate of the camera. It is seen that in the camera coordinate
system Qc = 0, thus

0 = A
[

R t
]
Qc ⇒ 0 =

[
R t

]
Qc ⇒ 0 = RQ̃c + t ⇒ Q̃c = −RTt . (1.23)

Where Q̃c is the inhomogeneous coordinates corresponding to Qc. An alternative way of calculating the camera
center is by noting that (1.23) states that Qc is the right null vector of P. Thus Qc can e.g. be found via the
following MatLab code

[u,s,v]=svd(P);
Qc=v(:,end);
Qc=Qc/Qc(4);

1.4.3 Internal Parameters

So far we have not dealt with the internal part of the camera, such as lenses, film size and shape etc. This
naturally also needs to be dealt with. As with cameras themselves there are naturally also many models for
these internal parameters. The model A presented here, used in (1.21), is by far the most common used linear
model, and has the form

A =

 f fβ ∆x
0 αf ∆y
0 0 1

 . (1.24)

The typical way to extend this model is via including non-linear terms, which is the subject of Section 1.5. In
the rest of this subsection the parameters of A will be covered.

Focal Length — f

The focal length, f , the distance from the focal point to the image plane in the above derivation, which was set
to one. That is (1.18) should actually have been

x

f
=

X

Z
⇒ x =

fX

Z
,

1.4. THE PINHOLE CAMERA MODEL 21

which is the effect this parameter has when (1.24) is applied in (1.21). If this is not clear please derive this, by
setting ∆x = 0, ∆y = 0, β = 0 and α = 1, and assuming that the camera coordinate system and the global
coordinate system are identical – i.e. R = I and t = 0. It is this focal lens which determines if we have6 a
wide angle lens e.g. f = 10mm, a normal angle lens e.g. 50mm or a zoom lens e.g. 200mm. The focal length
is also directly linked to the field of view, as treated in Section 1.4.4.

Image Coordinate of Optical Axis — ∆x,∆y

As illustrated in Figure 1.11 and Figure 1.9, the optical axis tends to intersect the image plane around the
middle. This intersection we sometimes call the optical point. If nothing else is done the image origo, pixel
coordinate (0, 0), would thus be at this optical point, due to the nature of the camera coordinate system. This
is inconsistent with the usual way we represent images on a computer, where we like the origo to be in one of
the image corners — e.g. the upper left. To address this, we want to translate the image coordinate system with
a vector [∆x, ∆y]T , such that the chosen image corner translates to 0, 0. The value of this vector, [∆x,∆y]T ,
is equal to the coordinate of the optical point in the image coordinate system. To see this, note that before the
translation the optical point has coordinate (0, 0) so after adding [∆x,∆y]T , it will have coordinate (∆x,∆y),
see Figure 1.12. As seen in (1.4), this translation can be done as in (1.24).

dX,dY

Intersection with
optical axis

Figure 1.12: The translation vector, [∆x,∆y]T , needed to get the upper left corner to the origo, is the vector
from this image corner to the optical point.

Affine Image Deformation — α & β

The last two internal parameters, α and β, are not as relevant as they have been, and are mainly concerned with
what happens when celluloid film was processed and scanned. In this case some deformation of the film could
occur, which is here modelled by a scaling, α and a shearing, β, see Figure 1.13. Since we today mainly deal
with images recorded directly onto an imaging chip, it is often safe to assume that α = 1 and β = 0.

Another reason that α and β are kept in the model is that this gives P twelve degrees of freedom corre-
sponding to its twelve elements. This has the advantage in some algorithms, e.g. for estimating P, where a 3
by 4 matrix, with no constraints, can be estimated.

1.4.4 Properties of the Pinhole Camera Model

To restate the pinhole camera model from (1.21), it projects a 3D world point Qi onto a 2D image point (both
in homogeneous representation), via

qi = PQi , P = A
[

R t
]

, A =

 f fβ ∆x
0 αf ∆y
0 0 1

 ,

where P is a 3 by 4 matrix, A are the internal parameters, R is a rotation and t a translation. In this subsection
some of the properties of the pinhole camera will be discussed.

6The interpretation of the angles is for a standard consumer camera with a 35mm celluloid film.

22 CHAPTER 1. SINGLE CAMERA GEOMETRY - MODELLING A CAMERA

Slope=β/α

α

1

1

1

x x

y y

Figure 1.13: The scaling by a factor of α and a shearing of a factor of β is illustrated on a regular grid.

Internal parameters, A 5
Rotation, R 3
Translation, t, 3
Scale 1
Total 12

Table 1.1: The total number of degrees of freedom of the pinhole camera model. As for further insight into
parametrization of a rotation see Appendix A.

Degrees of Freedom

The number of parameters in this model is accounted for in Table 1.1, where some or all may be known. The
total number of parameters is equal to twelve, the same as the number of elements in the 3 by 4 matrix P. The
scale comes from the fact, that in this transformation between homogeneous coordinates, scale does not matter,
so it is a degree of freedom, i.e.

qi ≈ sqi = sPQi ,

where s is a scalar and ≈ means homogeneous equivalent. The fact that the pinhole model has twelve degrees
of freedom indicates that any full rank 3 by 4 matrix can be a projection matrix P, which also holds true. As
mentioned above this makes many algorithms easier.

Field of View

One of the properties often enquired about a camera is its field of view, i.e. how wide an angle is the field
of view. This tells us how much is viewed by the camera, and is an important fact in setting up surveillance
cameras, e.g. for industrial inspection or security reasons. This also gives rise to a taxonomy of lenses based on
viewing angle (and accompanying sensor sizes) , c.f. Table 1.2. Since the image sensor is square, the viewing
’volume’ is pyramid shaped, and the angle of this pyramid is a matter of definition. If nothing else is stated,
the field of view is — usually – thought to mean the diagonal angle, see Figure 1.14. If another angle, e.g. the
vertical or horizontal, is sought, the derivation here can be adapted in a straight forward manner, by using a
different length l.

The center of the field of view derivation is noting that the distance from the projection center to the image
plane is the focal length f , as depicted in Figure 1.14. Consider the triangle composed of the diagonal of the
image plane and the projection center, see Figure 1.14-right. This angle of this triangle opposite the image

Narrow angle 0◦ <θ≤ 45◦

Normal Angle 45◦ <θ≤ 75◦

Wide Angle 75◦ <θ≤ 105◦

Super wide angle 105◦ <θ< 360◦

Table 1.2: A taxonomy of lenses based on field of view, θ, c.f. [5].

1.4. THE PINHOLE CAMERA MODEL 23

Image Plane

Projection Center
l

Field of View, θ

l

f

θ

θ/2

Figure 1.14: A schematic view of the pinhole camera model in relation to the field of view, θ. It is seen that we
can form a right angled triangle, with one angle equaling θ/2 and the length of the two sides f and l/2.

plane is also equal to the field of view, θ, and its height is f and its base is the diagonal length of the image
plane l. Splitting this triangle in half, see Figure 1.14-right, will give us a right triangle, and thus

tan
(

θ

2

)
=

l/2
f
⇒

θ

2
= arctan

(
l/2
f

)
⇒

θ = 2 arctan
(

l/2
f

)
. (1.25)

As an example consider an image with dimensions 1200 × 1600, and thus with the length of the diagonal
equaling

l =
√

12002 + 16002 = 2000pixels .

This image is taken with a focal length of 2774.5pixels, thus

θ = 2arctan
(

l/2
f

)
= 2arctan

(
2000/2
2774.5

)
= 39.64◦ ,

equaling a narrow angle lens, according to Table 1.2.

Images of Straight Lines are Straight

The pinhole camera model, c.f. (1.21), is not a linear model in itself, e.g. as seen by (1.22). The pinhole camera
model, however, has some linear properties, in that it maps straight lines in 3D world coordinates to straight
lines in 2D. In other words the image of a straight line will be straight, if we assume the pinhole camera model.
To see this, denote a given line by

Q + αS

where Q and S are homogeneous 3D points, and α is a free scalar parameter. Projecting this via the pinhole
camera model gives

lh(α) = P(Q + αS) = PQ + αPS = q + αs , (1.26)

where q and s are the homogeneous image points that are the projections of Q and S. It is seen that lh(α) in
(1.26) is a line in 2D homogeneous space. To see that this is also a line is inhomogeneous space, i.e. that

l(α) =

[
lhx(α)
lhs (α)

lhy(α)
lhs (α)

]T

=
[
qx + αsx
qs + αss

qy + αsy
qs + αss

]T

24 CHAPTER 1. SINGLE CAMERA GEOMETRY - MODELLING A CAMERA

is a line, where the x, y, s subscripts denote the coordinates, take the derivative wrt. α, i.e.

∂

∂α
l(α) =

[
sx(qs + αss)− ss(qx + αsx)

(qs + αss)2
sy(qs + αss)− ss(qy + αsy)

(qs + αss)2

]T

=
[
sxqs − ssqx + (sxss − sssx)α

(qs + αss)2
syqs − ssqy + (syss − sssy)α

(qs + αss)2

]T

=
1

(qs + αss)2
[

sxqs − ssqx syqs − ssqy

]T
,

which is a constant vector times a scalar function. The direction of the derivative,

∂
∂α l(α)

|| ∂
∂α l(α)||

,

is thus constant, and the direction of the line in the image. Furthermore the line will go through q, hereby fully
defining the line.

1.4.5 Examples

Figure 1.15: Two images of the same scene, taken with a camera modelled well by the pinhole camera model.
The difference between the images is that the left image is taken with a focal length of ca. 70mm and the right
with a focal length of ca. 18mm. The position of the camera is also varied such that the position and size
of the mannequins torso is approximately the same. This illustrates the effect of perspective, which is a main
difference between the pinhole and the orthographic camera model.

As an example of the pinhole camera model, consider Figure 1.15 and Figure 1.16. For the example in
Figure 1.16, we are given the 3D point

Q =

−1.3540
0.5631
8.8734
1.0000

 ,

1.4. THE PINHOLE CAMERA MODEL 25

Figure 1.16: An image of a model house onto which we have projected a 3D point of a window onto the image
via the pinhole camera model, denoted by the red dot.

and are informed that the pinhole camera has the external parameters

R =

 0.9887 −0.0004 0.1500
0.0008 1.0000 −0.0030
−0.1500 0.0031 0.9887

 , t =

 −2.1811
0.0399
0.5072

 .

The internal parameters are given by (this is a digital camera)

f = 2774.5
∆x = 806.8
∆y = 622.6

α = 1
β = 0

so

A =

 2774.5 0 806.8
0 2774.5 622.6
0 0 1

 ,

and the combined pinhole camera model is given by

P = A
[

R t
]

=

 2622.1 1.5 1213.9 −5642.4
−91.1 2776.4 607.2 426.5
−0.2 0 1.0 0.5

 .

The 3D point Q thus projects to

q = PQ =

 2622.1 1.5 1213.9 −5642.4
−91.1 2776.4 607.2 426.5
−0.2 0 1.0 0.5

−1.3540
0.5631
8.8734
1.0000

 =

 1579.7
7500.7

9.5

 = 9.5

 166.5
790.8

1

 .

So the inhomogeneous image point corresponding to Q is (166.5, 790.8), as depicted in Figure 1.16.

26 CHAPTER 1. SINGLE CAMERA GEOMETRY - MODELLING A CAMERA

1.5 Radial Distortion - Refined Pinhole Model

The standard pinhole model presented above, c.f. Section 1.4, does not model a camera accurate enough for
some higher precision measurement task. This is an effect that typically increases with the field of view of the
less and with a lowering of the lens cost. Therefore, when higher precision is required the pinhole model is
refined. There are several ways of doing this, all associated with making a better internal model of the camera.
The most common way of doing this, and what will be covered here, is dealing with radial distortion. The
effects of radial distortion are illustrated in Figure 1.17. The problem addressed is that straight 3D lines are
not depicted straight, as they should be according to the pinhole camera model, c.f. Section 1.4.4. This error
increases with the distance from the center of the image, i.e. near the edges.

Figure 1.17: The effects of radial distortion, Left: An image with (allot) of radial distortion. Notice the
rounding of the face, and that the edges are curved, especially close to the edges. Right: The same image
without radial distortion. This image can be produced from the left image, if the radial distortion parameters
are known.

Radial distortion is largely ascribed to a modern photographic lens having several lens elements. As the
name indicates, radial distortion is a distortion in the radial ’direction’ of the image, i.e. objects should appear
closer to, or further from the center of the image then they do. Thus the distance from the center of the image,
r, is a good way of parameterizing the effect, see Figure 1.18.

Lens

Image Plane

Ray consistent with projective model

Actual ray

r

Δr

E�ect in Image Plane

Optical axisr

Δr Δα

α

f

Figure 1.18: Left: Radial distortion is a nonlinear modelling of the effect, that a ray of light is ’bent’ with the
amount of ∆α, where ∆α is a function of the angle α to the optical axis. Since the radius, r, and the angle α

are related by α = arctan
(

r
f

)
, such a change in α results in a change of the radius ∆r, as a function of the

radius r. Right: In the image plane, points of equal radius from the optical axis form a circle. All points on
such a circle have the same amount of radial distortion, ∆r.

To refine the pinhole camera model (1.21), such that we can do non-linear corrections based on the radial
distance, we have to split the linear model of the internal camera mode, i.e. A in (1.24). This is done in

1.5. RADIAL DISTORTION - REFINED PINHOLE MODEL 27

the following manner, we define the distorted projection coordinate7, pd = [sxd, syd, s]T , and the corrected
projection coordinate, pc = [sxc, syc, s]T , such that the transformation from 3D world coordinates Qi to 2D
image coordinates qi is given by

pd
i = Ap

[
R t

]
Qi ,[

xc
i

yc
i

]
=

[
xd

i

yd
i

]
(1 + ∆(ri)) ,

qi = Aqpc
i , (1.27)

Where ∆(ri) is the radial distortion, which is a function of the radius

ri =
√

xd
i
2 + yd

i
2

. (1.28)

As mentioned the A of (1.24) has been split into Ap and Aq, where

Ap =

 f 0 0
0 f 0
0 0 1

 , (1.29)

Aq =

 1 β ∆x

0 α ∆y

0 0 1

 . (1.30)

Much of the computations in (1.27) are done in standard inhomogeneous coordinates, i.e. [xd
i y

d
i] and [xc

iy
c
i].

The reason is that the distortion is related to actual distances, and as such the formulae would ’break down’ if
there were an arbitrary scaling parameter present. In is noted that if ∆(ri) = 0 then pc

i = pd
i and

qi = Aqpd
i = AqAp

[
R t

]
Qi = A

[
R t

]
Qi ,

Equaling (1.21), as expected.
Via the camera model in (1.27), we have extended the pinhole camera model, such that we can incorporate

a nonlinear radial distortion ∆(ri) as a function of the distance to the optical axis. What needs to be done is to
define this radial distortion function ∆(ri). The defacto standard way of modelling ∆(ri) is as a polynomial
in ri. There is no real physical rationale behind this modelling, and the use of polynomials — i.e. a Taylor
expansion — in this manner is a standard ’black box’ way of fitting a function. The polynomial used to fit ∆(ri)
does not include odd terms as well as the zeroth order term, a motivation for this is given in Section 1.5.2.The
standard way of expressing the nonlinear radial distortion is thus

∆(ri) = k3r
2
i + k5r

4
i + k7r

6
i + . . . , (1.31)

where k3, k5, k7, . . . are coefficients.
Often times radial distortion is brought into image algorithms, by warping the image such that it appears

as it would have without radial distortion, see Figure 1.17. For computing this warp, and e.g. for use in some
camera optimization algorithms, it is useful to have the inverse radial distortion map (1.27), this is found in [15].
The effects of radial distortion have also had a nomenclature attached to them, namely barrel and pincushion
distortion, see Figure 1.19. Lastly, it should be mentioned, that radial distortion is only one non-linear extension
of the internal camera parameters — although typically the first non-linear component included — and that
others exist e.g. tangential distortion, c.f. e.g. [15].

1.5.1 An Example

Here the example on page 24 is extended by assuming that the image in Figure 1.4.5 had not been warped to
correct for radial distortion, but that we are given the parameters for the radial distortion, namely

k3 = −5.1806e− 8 , k5 = 1.4192e− 15 .

7I have chosen this nomenclature, because it is technically correct, and because it is not very likely that it will be confused with
other terms, c.f. Section 1.7.2.

28 CHAPTER 1. SINGLE CAMERA GEOMETRY - MODELLING A CAMERA

Figure 1.19: The effects of radial distortion on a regular grid, Left: Barrel distortion. Right: Pincushion
distortion.

Then, according to the values supplied on page 24

Ap =

 2774.5 0 0
0 2774.5 0
0 0 1

Aq =

 1 0 806.8
0 1 622.6
0 0 1

Ap

[
R t

]
=

 2743.1 −1.0 416.2 −6051.6
2.3 2774.5 −8.4 110.7
−0.2 0.0 1.0 0.5

Inserting this into (1.27), we get

pd = Ap

[
R t

]
Q

=

 2743.1 −1.0 416.2 −6051.6
2.3 2774.5 −8.4 110.7
−0.2 0.0 1.0 0.5

−1.3540
0.5631
8.8734
1.0000

=

 −6072.9
1595.3

9.5

 = 9.5

 −640.27
168.19
1.0000

Thus xd = −640.27 and yd = 168.19 and

r =
√

xd2 + yd2 =
√
−640.272 + 168.192 = 661.99

∆(r) = k3r
2 + k5r

4 = (−5.1806e− 8) · 4.3823e5 + (1.4192e− 15) · 1.9205e11 = −0.0224[
xc

yc

]
=

[
xd

yd

]
(1 + ∆(r)) =

[
−640.27
168.19

]
(1− 0.0224) =

[
−625.9074
164.4202

]

q = Aqpc =

 1 0 806.8
0 1 622.6
0 0 1

 −625.9074
164.4202

1

 =

 180.90
787.03

1

 .

So the inhomogeneous image point corresponding to Q is (180.90, 787.03), with the use of radial distortion.
The result is depicted in Figure 1.20. Visually comparing between the results in Figure 1.16 and Figure 1.20
it is hard to see how they differ, hence the difference image is presented in Figure 1.21. To further quantify

1.5. RADIAL DISTORTION - REFINED PINHOLE MODEL 29

the effect of radial distortion, let us consider the numerical deviation of the projection with and without radial
distortion (c.f. page 1.4.5)∣∣∣∣∣∣∣∣[180.90

787.03

]
−

[
166.5
790.8

]∣∣∣∣∣∣∣∣
2

=
∣∣∣∣∣∣∣∣[14.40
−3.77

]∣∣∣∣∣∣∣∣
2

= 14.89 pixels .

Figure 1.20: The same scenario as in Figure 1.16, except that the image has not been warped to account for
radial distortion, and that has been incorporated into the camera or projection model.

1.5.2 Motivation for Equation (1.31) *

The polynomial in (1.31) is an expression that (using (1.27))[
xc

i

yc
i

]
=

[
xd

i

yd
i

]
(1 + ∆(ri))

=
[

xd
i

yd
i

]
(1 + k3r

2
i + k5r

4
i + k7r

6
i + . . .)

=
[xd

i y
d
i]T

ri
(r + k3r

3
i + k5r

5
i + k7r

7
i + . . .) ,

Where the reason for dividing [xd
i y

d
i]T by ri is that [xd

i yd
i]T

ri
becomes a direction with unit length. And we see

that ∆r in Figure 1.18 is given by

r + ∆r = ri (1 + ∆(ri)) = ri + k3r
3
i + k5r

5
i + k7r

7
i +

This is seen to be the Taylor expansion of an odd fuction8. The reason why r + ∆r should only be an odd
function, lies in the fact that the basis for the distortion is a change in the light ray angle α — as illustrated in
Figure 1.18. By standard trigonometry it is seen

α + ∆α = tan
(

r + ∆r

f

)
⇒ f arctan (α + ∆α) = r + ∆r .

8An odd function f is one for which f(x) = −f(−x). An even function is one for which f(x) = f(−x). Any function can be
expressed completely as a sum of an odd and an even function.

30 CHAPTER 1. SINGLE CAMERA GEOMETRY - MODELLING A CAMERA

Figure 1.21: The difference image between the images in Figure 1.16 and Figure 1.20. Notice how the deviation
of the two images increases away from the center, which is consistent with the effect of radial distortion being
largest there.

When the focal length, f , is factored out before the radial distortion is applied, as in (1.27), this becomes

arctan (α + ∆) = r + ∆r .

Since arctan is an odd function so should r + ∆r be. The motivation for not including a zeroth term in (1.31)
is that this would be equivalent to a constant scaling of the radius ri. Such a scaling can also be achieved by
changing the focal length f . Thus a zeroth order term in (1.31) would be indistinguishable from a different
focal length, and would thus be a redundant over-parametrization of the camera model, and thus not done.

1.6 Camera Calibration

After having presented the orthographic and pinhole camera model — the latter with or without non-linear
distortion — the question arises how to obtain the parameters of such models, given a camera. This is also
known as camera calibration. There are several ways of doing this, some of the most advanced will do it
automatically from an image sequence c.f. e.g. [14]. The most standard way of camera calibration is, however,
taking images of known 3D objects, typically in the form of known 3D points Qi. The latter is so common that
it is sometimes just referred to as camera calibration.

By taking images of known 3D points, we will get pairs of known 2D-3D points, i.e. (qi, Qi). The task
is then finding the parameterized model that best fit these data or 2D-3D point pairs. With the pinhole camera
model, this amounts to finding the P that makes the PQi most equal to qi. Here ”most equal to” typically
implies minimizing the 2-norm of the inhomogeneous differences, c.f. Section 2.4.3. Therefore, define the
function Π(qi), which takes a homogeneous coordinate and returns a inhomogeneous coordinate, i.e.[

x
y

]
= Π

 sx
sy
s

 =
[

sx
s
sy
s

]
.

The camera calibration problem thus becomes

min
P

∑
i

||Π(qi)−Π(PQi)||22 . (1.32)

1.7. END NOTES 31

Known 3D Object

Ca
m

er
a

3D Points, {Q1,Q2,…}

Measurements

Project via Camera
Model with
parameters, Θ

Image

Compare and
Re�ne par. Θ

2D Image Model, {q1,q2,…}

Modeled World Real World

Figure 1.22: The camera calibration procedure works by modelling the 3D world via 3D point measurements.
These measured 3D points are the projected into the model image plane via the camera model. These 2D model
measurements are compared to the real image of the known 3D object. Based on this comparison the camera
model parameters, Θ , are refined iteratively, such that the model and the real image fit as well as possible.

This is a non-linear optimization problem in the parameters of the camera model, here the 12 parameters of
P. As with radial distortion, c.f. Section 1.5, we project to inhomogeneous, because we need to work in actual
distances. The camera calibration process is illustrated in Figure 1.22. In setting up, or choosing, the 3D camera
calibration object, it in necessary that it spans the 3D space — i.e. that all the points do not lie in a plane, else
(1.32) becomes ill-posed.

There are several free online software packages for doing camera calibration, e.g. an implementation of
the method in [15] is available from the authors homepage. Another software package, available from http:
//www.vision.caltech.edu/bouguetj/calib_doc/, implements a more convenient method of
camera calibration, since the calibration object is easier to come by. It consist of taking images of a checker
board patter from several angles.

1.7 End Notes

Here a few extra notes will be made on camera modelling, by briefly touching on what is modelled in other
contexts, and on what notation other authors use. Furthermore, the pinhole camera model, being the most
central, is summarized in Table 1.3.

1.7.1 Other Properties to Model*

As mentioned in Section 1.2, a model in general only captures part of a phenomena, here the imaging process of
a camera. The camera models presented here thus only captures a subset of this imaging process, albeit central
ones. Here a few other properties that are sometimes modelled are mentioned briefly. A property of the optics,
arising from a larger then infinitesimal aperture or pinhole is depth of field. The effect of a — limited – depth of
field is that only objects at a certain distance interval are in focus or ’sharp’, see Figure 1.23-Right. Apart from
depth of field limitation being a nuisance, and used as a creative photo option, it has also been used to infer the
depth of objects by varying the depth of field and noting when objects were in focus, c.f. e.g. [7]. Along side
the geometric camera properties, a lot of effort has also been used on modelling the color or chromatic camera
properties, and is a vast field in itself. Such chromatic camera models can e.g. be calibrated via a color card as
depicted in Figure 1.23-Left.

http://www.vision.caltech.edu/bouguetj/calib_doc/
http://www.vision.caltech.edu/bouguetj/calib_doc/

32 CHAPTER 1. SINGLE CAMERA GEOMETRY - MODELLING A CAMERA

Figure 1.23: Left: Example of depth of field of a camera, note that it is only the flower and a couple of straws
that are in focus. Right: Example of a color calibration card. This colors of the squares in the card a very well
know. As such the image can be chromatically calibrated.

1.7.2 Briefly on Notation

Our world is not a perfectly and systemized place. Just as Esperanto9 has not become the language of all
humans, enabling unhindered universal communication, the notation of camera models have not either. In fact,
the proliferation of camera geometry use in a vast number of fields, has spawned serval different notations.
Apart from the specific names given to the entities, the notation also varies in how many different terms the
camera model is split into. A further source of confusion is the definition of the coordinate system. As an
example, in computer graphics the origo of the image is in the lower left corner. This is in contrast to the
upper left corner typically used in computer vision. Another example is that the image x-axis and y axis are
sometimes swaped by multiplying A, and thus P by 0 −1 0

1 0 0
0 0 1

 .

Thus, when stating to use a new frame work using camera geometry, e.g. a software package, it is thus important
to check the notation. It is, however, worth noting that it is the same underlying models in play.

9Esperanto was introduced in 1887

1.7. END NOTES 33

SUMMARY OF THE PINHOLE CAMERA MODEL

The output and input are 3D world points, Qi, and 2D image point, qi.
Std. Pinhole camera model, (1.21) & (1.24)

qi = PQi

with

P = A
[

R t
]

, A =

 f fβ ∆x
0 αf ∆y
0 0 1

and

R Rotation , t Translation
f Focal length , ∆x,∆y Coord. of Optical Axis

α, β Affine image def.

Pinhole camera model with radial distortion, (1.27)

pd
i = Ap

[
R t

]
Qi ,[

xc
i

yc
i

]
=

[
xd

i

yd
i

]
(1 + ∆(ri)) ,

qi = Aqpc
i ,

Where
∆(ri) = k3r

2
i + k5r

4
i + k7r

6
i + . . .

is the radial distortion, and a function of the radius

ri =
√

xd
i
2 + yd

i
2

,

and

Ap =

 f 0 0
0 f 0
0 0 1

 , Aq =

 1 β ∆x

0 α ∆y

0 0 1

 .

Where pd = [sxd, syd, s]T are distorted projection coordinate, and pc =
[sxc, syc, s]T are corrected projection coordinate. Note that[xd

i y
d
i] and [xc

iy
c
i]

are in inhomogeneous coordinates.

Table 1.3: Summary of the Pinhole Camera Model

34 CHAPTER 1. SINGLE CAMERA GEOMETRY - MODELLING A CAMERA

Chapter 2

Geometric Inference from Cameras -
Multiple View Geometry

In Chapter 1 the focus was on modelling how a given 3D world point would project to a 2D image point via a
known camera. Here the inverse problem will be considered, i.e. what does 2D image observations tell about
the 3D world and cameras. In fact 3D geometric inference is one of the main uses of camera models or camera
geometry. Another related matter – also covered here – is that camera models also provide constraints between
images viewing the same 3D object. Although this 3D object might be unknown, both images still have to
be consistent with it, thus providing constraint. Lastly, multiple view geometry is a vast field and the amount
of results are staggering, as such only a fraction of this material is covered here, and the interested reader is
referred to [14] for a more in depth treatment.

2.1 What does an Image Point Tell Us About 3D?

In this chapter we will mainly be working with image features in the form of image points. There are naturally
a whole variety of possible image features, e.g. lines, curves, ellipsoids etc. but points are the simplest to work
with. The theory developed for points will also generalize to the majority of other features, and will give the
basic understanding of 3D estimation.

p1

Q1

Image Plane

Figure 2.1: The back-projection of the point Q1 is the dotted line in the direction of the vector p1. Thus the
3D point Q1, which projects to q1, must lie on this back-projected line.

Dealing with 2D image points, the question arises; what does a point tell us about 3D? Assuming that we
are given a camera described by the pinhole camera model, (1.21) — and we know this model — a 2D image
point tells us that the 3D point, it is a projection of, is located on a given line, see Figure 2.1. To derive this
mathematically, denote by pi the image coordinate before the internal parameters are applied1, i.e.

pi = A−1qi .

1In this chapter the pi deviate from the pi in Chapter 1 by a factor of f .

35

36 CHAPTER 2. GEOMETRIC INFERENCE FROM CAMERAS - MULTIPLE VIEW GEOMETRY

Then by taking outset in the pinhole model

qi = A
[

Rt
]
Qi ⇒

pi = A−1qi =
[

Rt
]
Qi ⇒

αpi = A−1qi =
[

Rt
]
Qi ⇒

αRTpi − t = Q̃i ,

where Q̃i is inhomogeneous 3D coordinate corresponding to Qi, and α is a free scalar. The reason we can
multiply by α like we do, is that pi is a homogeneous coordinates. It is thus seen that

αRTpi − t = Q̃i , (2.1)

which is equal to a line through t and with direction RTpi, as proposed. In other words an image point back-
projects to a 3D line. So if the camera coordinate system was equal to the global coordinate system, i.e. R = I
and t = 0, then pi would be the direction the point Qi was in - from the origo of the coordinate system.

The physical explanation for this is, that a camera basically records light that hits its sensor after passing
through the lens. Prior to that light is assumed to travel in a straight line2. The camera thus records that a bundle
of light has hit it from a given direction, pi, but has no information on how far the light has travelled. Thus
the distance to the object omitting or reflecting the light is unknown. This is the same as saying that relative
to the camera coordinate system, we do not know the depth of an object, as illustrated in Figure 1.9. These
line constraints on 3D points, are the basic building blocks of camera based 3D estimation, and used in the
remainder of this chapter.

2.1.1 Back-Projection of an Image Line

To illustrate how the analysis of image points, and because the result is needed later, we will now consider what
a straight image line back-projects to, i.e. what constraint an image line poses to the 3D geometry ’creating’
it. The answer is a plane. This can be seen since each point on the image line constraints the 3D geometry
to a line. Each of these constraining 3D lines go trough the optical center of the camera, and the straight line
corresponding to the 2d image line, see Figure 2.2. The collection of all these lines thus constitutes a plane,
and all 3D points on it.

Plane, L

Line , l
image plane

Figure 2.2: The image of a line back-projects to a plane. All 3D points projecting to this 2D image line must
thus be on this back-projected plane.

An alternative version of this argument will be given here using the theory of homogeneous coordinates,
see Section 1.1. This argument is hopefully more constructive and straight forward. The points, qi on the 2D
image line are given by

lTqi = 0 , (2.2)

2It is herby assumed that the camera and the objects it is photographing are in the same medium, e.g. air, and that the light does not
go through any transparent project like water. These phenomena can be modelled but are outside the scope of this text.

2.2. EPIPOLAR GEOMETRY 37

where l denotes the line coefficients. These points are the projection of a set of 3D points Qi, by use of the
pinhole model (1.21), which combined with (2.2) gives

lTqi = lTPQi = LT Qi = 0 , LT = lTP , (2.3)

where L is a 4 vector and the coefficients of the 3D plane that (2.3) is the equation of. In other words the points
projecting to the line, l are constraint to a plane with the equation L = PTl.

2.2 Epipolar Geometry

When describing how to infer 3D information about the world from images thereof, we will first consider the
constraint two images viewing the same scene poses to the images themselves. This is directly related on the
cameras relative orientation to each other and is also referred to as epipolar geometry.

To derive the epipolar eometry, assume that two cameras are viewing the same 3D point, Q, with unknown
coordinates. Assume also that the coordinate system of the first camera is equal to the global coordinate system,
i.e.

P1 = A1

[
I 0

]
, P2 = A2

[
R t

]
.

This is done without loss of generality and is illustrated in Figure 2.3. The coincidence of the first cameras
coordinate system and the global coordinate system is made for notational convenience. If this is not the case
the coordinate systems can be transformed accordingly, c.f. Appendix A. Denote by q1 and q2 the projections
of the 3D point Q in the two cameras respectively, and also p1 = A−1

1 q1 and p2 = A−1
2 q2.

p1

t

Rp1+t n

Image plane 1 Image plane 2

Figure 2.3: The two camera centers and the point p1 define a plane that also includes the back-projection of
point q1. The normal of this epipolar plane is n, and the intersection of this plane ad camera two’s image plane
is the projection of the back-projected line of q1 into camera two.

We wish to investigate what constraints q1 poses on q2, and thus the constraints on possible images of the
same thing, even though the 3D structure is unknown. The general idea is, that the back-projected 3D line of q1
constrains the position of Q. This virtual back-projected 3D line can then be projected into camera two giving
a virtual 2D line in that image.This is illustrated in Figure 2.3. The projection of Q in camera two, equalling
q2, must then be on this virtual 2D line. This is the so called epipolar constraint. Also, the line q2 is constraint
to is called an epipolar line.

To derive this more formally, referring to Figure 2.3, note that the centers of cameras one and two and
p1 lie on a plane. This is the epipolar plane. The intersection of this epipolar plane and the image plane of
camera two is the epipolar line in image two. The epipolar plane is spanned by the vector between the two
camera centers and the vector between p1 and the center of camera two. In the coordinate system of camera
two (where the center of camera two is [0, 0, 0]T) these vector have the coordinates, as denoted in Figure 2.3

R

 0
0
0

 + t = t and Rp1 + t .

38 CHAPTER 2. GEOMETRIC INFERENCE FROM CAMERAS - MULTIPLE VIEW GEOMETRY

Which is a transformation from the global coordinate system of camera center one, [0, 0, 0]T , and p1, to the
coordinate system of camera two. The normal of the epipolar plane n is then given by the cross product of the
two vectors, i.e.

n = t× (Rp1 + t)
= t×Rp1 + t× t

= [t]×Rp1 + 0
= [t]×Rp1 . (2.4)

In (2.4) we express the cross product with t as an operator ([t]×) , see Appendix A.5. We also set t × t = 0
since the cross product between a vector and itself is zero. This normal n is expressed in the coordinate system
of camera two. In this coordinate system the epipolar plane also goes through the camera center of camera two,
namely origo [0, 0, 0]T . Thus any point, p, on this plane is given by

pTn = 0 . (2.5)

This will in particular hold for p2. Combining (2.4) and (2.5) yeilds

pT
2 [t]×Rp1 = 0 . (2.6)

This relationship is so fundamental that we name

E = [t]×R , (2.7)

the essential matrix, and thus
pT

2 Ep1 = 0 . (2.8)

Relating this to image points q1 and q2, we have that p1 = A−1
1 q1 and p2 = A−1

2 q2, which combined with
(2.6) gives

0 = pT
2 [t]×Rp1

=
(
A−1

2 q2

)T[t]×RA−1
1 q1

= qT
2 A−T

2 [t]×RA−1
1 q1 , (2.9)

where
F = A−T

2 [t]×RA−1
1 , (2.10)

is called the fundamental matrix, and thus
qT

2 Fq1 = 0 . (2.11)

Here, with some abuse of notation, A−T
2 =

(
A−1

2

)T .
To see the relation of (2.11) to lines, define l2 = Fq1, making (2.11) equivalent to

qT
2 l2 = 0 .

This is seen to be a line in image two, c.f. Section 1.1. Thus if F and q1 are known so is l2 and we have the
equation for the epipolar line, as depicted in Figure 2.3. Likewise, we can define lT1 = qT

2 F such that

lT1 q1 = 0 ,

defining the epipolar line in image one, for given F and q2.
It should be noted that both the essential and fundamental matrices do not include any terms relating to the

individual observations, i.e. p1 and p2. They are thus general for the specific camera setup, and do not depend
on a particular observation.

2.2. EPIPOLAR GEOMETRY 39

Figure 2.4: An image pair, with image one to the left and image two to the right. A point, q1, is annotated in
image one (blue dot). The corresponding epipolar line, l2, and 2D point, p2 is annotated in image two. This is
done by the black line and blue dot respectively.

2.2.1 An Example

As an example consider the images in Figure 2.4. The camera matrices of the two cameras are

P1 = A1

[
I 0

]
=

 3117.5 0 1501.9
0 3117.5 984.8
0 0 1

 1 0 0 0
0 1 0 0
0 0 1 0

 ,

P2 = A2

[
R t

]
=

 3117.5 0 1501.9
0 3117.5 984.8
0 0 1

 0.9885 −0.0388 −0.1459
0.0514 0.9952 0.0836
0.1419 −0.0902 0.9858

 3.5154
−0.2712
−1.3704

 .

The fundamental matrix is thus given by, (2.10)

F = A−T
2 [t]×RA−1

1

=

 3117.5 0 1501.9

0 3117.5 984.8
0 0 1

−1

T 0 1.3704 −0.2712
−1.3704 0 −3.5154
0.2712 3.5154 0

 ·
 0.9885 −0.0388 −0.1459

0.0514 0.9952 0.0836
0.1419 −0.0902 0.9858

 3117.5 0 1501.9
0 3117.5 984.8
0 0 1

−1

≈

 0.0000 0.0000 −0.0002
−0.0000 0.0000 −0.0008
0.0003 0.0009 0.0151

 .

Where ≈ is used instead of = due to numerical rounding. The annotated point in image one, corresponding to
the left image in Figure 2.4, is given by

q1 =

 1260
100
1

 .

The corresponding epipolar line in image two (right image in Figure 2.4) is then given by

l2 = Fq1 =

 0.0000 0.0000 −0.0002
−0.0000 0.0000 −0.0008
0.0003 0.0009 0.0151

 1260
100
1

 =

 −0.0002
−0.0010
0.5136

 .

This epipolar line is depicted in Figure 2.4 right. The point, q2, corresponding to q1 is given by

q2 =

 1330
269.8

1

 ,

40 CHAPTER 2. GEOMETRIC INFERENCE FROM CAMERAS - MULTIPLE VIEW GEOMETRY

which is seen to lie on the epipolar line l2, since

qT
2 l2 =

 1330
269.8

1

T −0.0002
−0.0010
0.5136

 ≈ 0 .

2.2.2 Some Additional Properties of Epipolar Geometry *

Here some additional properties of the fundamental and essential matrices will be covered. This is by no means
a complete treatment of the subject, and for a more complete presentation the interested reader is referred to
[14].

Epipoles*

Considering again the derivation of the fundamental matrix, where it is seen that all epipolar planes go through
the camera centers of the two cameras. Thus all epipolar lines in camera two must go through the projection
of camera center one, albeit it is often outside the physical boundary of the image. The similar thing holds for
image one, see Figure 2.5 and Figure 2.6. The projection of these camera centers are called the epipoles.

Image plane 1
Image plane 2

Epipoles

Epipolar Planes

Figure 2.5: Since all the epipolar planes intersect in a common line – i.e. line connecting the two camera centers
– all the epipolar lines will intersect in a common point, called the epipole. This epipole is often located outside
the physical image.

More formally consider the projection of camera center one into image two, which is given by:

e2 = A2

R

 0
0
0

 + t

 = A2t ,

Inserting this into (2.9), gives

eT
2 Fp1 = tTAT

2 A−T2 [t]×RA−1
1 q1

= tT[t]×RA−1
1 q1

= 0RA−1
1 q1

= 0q1 (2.12)

Here it is used that
tT[t]× =

(
[t]T×t

)T
= − ([t]×t)T − (t×t)T = 0 ,

Since the cross product between a vector and itself is zero. Equation (2.12) states that the epipole of camera
two will fulfil the epipolar geometry, i.e. (2.9), for all points in image one. Thus all epipolar lines in image two
goes through e2. The symetric property hold for the epipole in image one, e1

2.3. HOMOGRAPHIES FOR TWO VIEW GEOMETRY 41

Figure 2.6: A collection of epipolar lines in the right image one for each point in the left image. It is seen that
all the epipolar lines form a bundle intersecting in the same point, i.e. the epipole.

Degrees of Freedom of F*

The degrees of freedom (dof.) of the fundamental and essential matrices, which is equivalent with the number
of constraints needed to estimate them, is now considered. The fundamental matrix has 9 = 3 ·3 elements, so at
the outset it has nine dof. The fundamental matrix is, however, indifferent to scaling, as seen from (2.11), where
both sides can be multiplied by a scalar still giving the same result. A more subtle property of the fundamental
matrix is that it has rank two and that it’s determinant must be 0, i.e.

det(F) = 0 .

This is seen by [t]× having rank two (it cannot have full rank since [t]×t = 0, implying that it has a nontrivial
null space.) This rank constraint eliminates an additional dof. Thus the fundamental matrix has 7 = 9− 2 dof.

The Essential Matrix*

Firstly, note that the essential matrix can be viewed as a special case of the fundamental matrix with

A1 = A2 = I .

Secondly, the singular values of the essential matrix are {s, s, 0}, where s is some scalar. Therefor it is a rank
two matrix with the added constraint that the two non-zero singular values are equal. For a motivation of this
c.f. [14], where it will also be explained why the essential matrix has 5 dof.

2.3 Homographies for Two View Geometry

The term homography covers a class of geometric transformations, which have a wide use in computer vision,
computer graphics and other places where view geometry is used. Mathematically it can be described by a (full
rank) 3 by 3 matrix, H, that maps between homogeneous coordinates q1 and q2, as follows:

q1 = Hq2 . (2.13)

42 CHAPTER 2. GEOMETRIC INFERENCE FROM CAMERAS - MULTIPLE VIEW GEOMETRY

Note that any full rank 3 by 3 matrix describes a homography, and hence the inverse of a homograpy is also a
homograpy, i.e.

q2 = H−1q1 . (2.14)

For a more thorough description of the theory of homographies the reader is referred to [14].
In the context of this chapter homographies form a good model for describing two view geometry in the

cases where a planar surface is viewed and/or there is no motion between the views (i.e. t = 0 in (1.21)). In the
latter case [t]× = 0, and the essential and fundamental matrices, c.f. (2.7) and (2.10), are zero, making these
models useless. The fundamental matrix cannot be estimated from an image of a pure planar structure either.
Thus the homography is in some sense a fall back solution for the special cases where the epipolar geometry
fails.

The fact that the homography describes the viewing of a plane also makes it very used for texture mapping,
e.g. in computer graphics. The reason being that the triangular mesh is by far the most common 3D surface
representation. The individual faces of such a mesh are planes.

2.3.1 Photographing a Plane

A plane can be described by a point in that plane C and two linear independent vectors in that plane A and B,
see Figure 2.7. This also serves as a local coordinate system for that plane such that any point Q in that plane
can be described as

Q = aA + bB + C =
[

A B C
] a

b
1

 (2.15)

Where (a, b) is the local coordinate of Q, and [A,B, C] is a 3× 3 matrix. Here denoted by qp = [a, b, 1]T the
homogeneous coordinate of (a, b). Assuming that the plane in question is viewed by a camera described by the
pinhole camera model, c.f. (1.21), the image q1 of Q is given by

q1 = PQ = P
[

A B C
0 0 1

]
qp . (2.16)

Since P is a 3× 4 matrix

H = P
[

A B C
0 0 1

]
,

Is a 3× 3 matrix representing the homography that maps from qp to q1. Combining this with (2.16) gives

q1 = Hqp , (2.17)

Denoting the homograpic map, which we aimed to derive. It can be shown, c.f. [14], that if the camera center
is not in the plane in question, then H will have full rank.

2.3.2 Photogrammetry in a Plane

In many 3D inference problem, especially in surveillance, it is known that something or some one is located
on the ground, and we want to know where. Frequently this ground is well approximated by a plane, and thus
homographies are useful. As an example consider the chess board in Figure 2.8. Here the homography between
the image of the chess board (right image) and the chess board it self is given by

H =

 0.0191 −0.0302 5.7963
0.0203 0.0484 −13.1140
−0.0000 0.0026 1.0000

 .

The coordinate system used for the chess board is one where the axis are aligned with the board with, (0, 0) is at
one corner and one square equals one unit of measurement. This will allow us to determine where a piece is on
the chess board from an image coordinate. Consider the the depicted chess piece, which has image coordinates
(404, 255), thus the position of this piece on the board is given by:

q1 = H

 404
255
1

 =

 5.8157
7.4609
1.6575

 ≈
 3.5087

4.5013
1.0000

 ,

2.3. HOMOGRAPHIES FOR TWO VIEW GEOMETRY 43

A

BC

Figure 2.7: All point on a plane in 3D, can be represented by a point in the plane, C, plus a linear combination
of two vectors in the plane, A and B. Here the linear combination of A and B consists of a local coordinate
system.

H

Figure 2.8: An image of a chess board to the right, and a warped version of it, via the homography H, to the
left. The left image is a pseudo view of how the chess board would look from straigh above, or a so called
fronto parallel view.

Where ≈ here indicates homogeneous equivalent. Thus the chess piece is located at ca. (3.5, 4.5), which is
what is seen in Figure 2.8-Left, when the origo – (0, 0) – is at the upper left corner. To continue the example
consider the three other points annotated in Figure 2.8-Right:

q2 = H

 75
239
1

 =

 0.0164
−0.0093
1.6244

 ≈
 0.0101
−0.0057
1.0000

 ,

q3 = H

 417
456
1

 =

 −0.0013
17.4630
2.1840

 ≈
 −0.0006

7.9958
1.0000

 ,

q4 = H

 577
275
1

 =

 8.5156
11.9504
1.7053

 ≈
 4.9936

7.0078
1.0000

 .

44 CHAPTER 2. GEOMETRIC INFERENCE FROM CAMERAS - MULTIPLE VIEW GEOMETRY

This homography can also be used to map the image to give a pseudo view of how the image would look, if
the plane was viewed in a fronto parallel manner. This is actually how the image in Figure 2.8-Left is produced3.
This is done via an image warp, where the particular homography dictates how the individual pixels should be
mapped. In this case it is noted that the chess piece now covers several squares, which is not consistent with
how it would look if the real scene were seen from above. This is the reason for the ’pseudo’ in ’pseudo view’.
The reason is that the chess piece is not in the plane and does thus not fit the model used. Another view on
the mater is, that the chess piece covers the exact same part of the chess board as in Figure 2.8-Right, which is
image that is warped.

2.3.3 Two Cameras Viewing a Plane

If two cameras are viewing a plane, then the relationship between the two images taken is also a homography.
To see this denote, as above, by Q a 3D point in the plane. Let also Q have coordinates qp, in some arbitrary
coordinate system in this plane. Assume that we have a pair of corresponding points q1 and q2 in the two
images respectively and that they are depictions of Q. Then two homographies, H1 and H2, exist such that

q1 = H1qp , q2 = H2qp ⇒ qp = H−1
2 q2 .

This implies that
q1 = H1qp = H1H−1

2 q2 .

Since H1 and H2 are both assumed full rank 3 × 3 matrices H = H1H−1
2 is also a full rank 3 × 3 matrix

defining a homography. Therefor, the transfer from q1 to q2 is given by

q1 = Hq2 , (2.18)

where H is the sought after homography.

2.3.4 Two View Geometry Without a Baseline

The baseline between two cameras is the distance between their respective camera centers. If this baseline
becomes zero, i.e. the camera centers are co-located, then the t = 0 in (2.7) and (2.10), making these models
meaningless. In this special case, the homography can be used instead. Without loss of generality we can
assume that the coordinate system of the first camera is equal to the global coordinate system. This implies that
the camera center of the second camera is also the origo. Thus the pinhole camera model for the two cameras
are given by:

P1 = A1

[
I 0

]
, P2 = A2

[
R 0

]
.

To find the relationship between two corresponding points, q1 and q2, in the two images respectively, assume
that they are the projection of the 3D point Q. Then by the pinhole model, (1.21), we have that

q1 = A1

[
I 0

]
Q ⇒

p1 = A−1
1 q1 =

[
I 0

]
Q = Q̃ ,

Where Q̃ is the inhomogeneous coordinate corresponding to the homogeneous coordinate Q. Continuing

q2 = A2

[
R 0

]
Q

= A2RQ̃

= A2RA−1
1 q1 (2.19)

Here A1, R and A2 are all full rank 3× 3 matrices, therefor so is

H = A2RA−1
1 , (2.20)

which denotes the homography relating corresponding observations.

2.4. POINT TRIANGULATION 45

Figure 2.9: Two landscape images taken from the same spot, i.e. zero baseline. The black lines and dots
illustrate the 20 points correspondences manually annotated.

Figure 2.10: Based on the 20 annotated point correspondences in Figure 2.9, a homography is estimated and
the left image is warped to fit the right, resulting in this figure.

An example: Image Panoramas

A place where a homography is often used to relate two images taken with zero base line is in generating image
panoramas. This is done from a series of images taken from the same spot, c.f. Figure 2.10. This result is
generated from the two images in Figure 2.9, where 20 point correspondences have been annotaed manually,
and the method of Section 2.8 is used to estimate the needed homography. This homography is then used
to warp the left image of Figure 2.9, c.f. Section 2.3.2. The two images are averaged together resulting in
Figure 2.10. It is noted that much better and automated methods exist for both finding the correspondences
between the images, and for blending them together. The aim here is, however, illustrating the theory and not
making nice results.

2.4 Point Triangulation

One of the classical task of 3D inference from cameras, is making 3D measurements from two or more known
cameras. This is known as triangulation, and in the case of points; point triangulation. Specifically we have
a set of cameras, where we know the internal and external calibration of the all the cameras, and we want to
find the position of an object that is identified in all cameras. This boils down to finding the coordinates of a
3D point Q from it’s known projections, qi i = [1, . . . , n], in n known cameras, Pi. This will be covered here,

3The homography has been scaled by a factor of 40 (diag(40, 40, 1) · H), such that each chess board square would be 40 × 40
pixels, instead of 1× 1.

46 CHAPTER 2. GEOMETRIC INFERENCE FROM CAMERAS - MULTIPLE VIEW GEOMETRY

firstly through a linear algorithm, upon which it is discussed how the estimate can become statistically more
meaningful.

p1

Image plane 1 Image plane 2

Q

p2

Figure 2.11: The result of point triangulation is the 3D point, Q, closest to the back-projections of the observed
2D points.

The basis of point triangulation, as seen in Figure 2.11, is that the back-projected line of each observed 2D
points, qi, forms a constraint on the position of the 3D point, Q. So in the absence of noise, one would only
have to find the intersection of these 3D lines. Two, or more, lines do not in general intersect in 3D, so with
noise, we need to find the 3D point that is closest to thee lines. What is meant by closest will be discussed in
Section 2.4.3.

2.4.1 A Linear Algorithm

Here a linear algorithm for 3D point triangulation is presented. To ease notation, the rows of the Pi will here
be denoted by a superscript, i.e.

Pi =

 P 1
i

P 2
i

P 3
i

 ,

and thus the pinhole camera model, (1.21), can be expanded as follows

qi =

 sixi

siyi

si

 =

 P 1
i

P 2
i

P 3
i

Q ⇒

sixi = P 1
i Q , siyi = P 2

i Q , si = P 3
i Q ⇒

xi =
sixi

si
=

P 1
i Q

P 3
i Q

, yi =
siyi

si
=

P 2
i Q

P 3
i Q

. (2.21)

Doing a bit of arithmetic on (2.21) results in

xi =
P 1

i Q

P 3
i Q

, yi =
P 2

i Q

P 3
i Q

⇒

P 3
i Qxi = P 1

i Q , P 3
i Qyi = P 2

i Q ⇒
P 3

i Qxi − P 1
i Q = 0 , P 3

i Qyi − P 2
i Q = 0 ⇒(

P 3
i xi − P 1

i

)
Q = 0 ,

(
P 3

i yi − P 2
i

)
Q = 0 . (2.22)

Here (2.22) is seen to be linear constraints in Q. Since Q has three degrees of freedom we need at least three
such constraint to determine Q. This corresponds to projections in at least two known cameras, since each
camera poses two linear constraints in general. Comparing with Section 1.1 it is seen that the x and y parts of
(2.22) correspond to planes. E.g. knowing the x-coordinate of Q’s image in a given camera, defines a plane

2.4. POINT TRIANGULATION 47

with coefficients P 3
i xi − P 1

i , which Q lies on. The intersection of the planes the x and y coordinates pose is
the 3D line corresponding to the back-projection of the 2D point qi.

The way Q is calculated from all these linear constraints, is to stack them all in matrix4

B =

P 3
1 xi − P 1

1

P 3
1 yi − P 2

1

P 3
2 xi − P 1

2

P 3
2 yi − P 2

2
...

P 3
nxi − P 1

n

P 3
nyi − P 2

n

,

Then (2.22) is equivalent to
BQ = 0 .

With noisy measurements, however, this will not hold perfectly, and we instead solve

min
Q
||BQ||22 . (2.23)

This is seen to be a least squares problem, which is straight forward to solve c.f. Appendix A, as illustrate in
the following MatLab code

[u,s,v]=svd(B);
Q=v(:,end);

2.4.2 An Example

Figure 2.12: Two images with known camera models. Two points corresponding to the same 3D point have
been annotated, such that this 3D point can be estimated.

As an example of point triangulation consider the case in Figure 2.12. Here two points corresponding to
the same 3D point have been annotated in the two images with coordinates 5

q1 =

 1800
730
1

 , q2 =

 930
600
1

 ,

and the corresponding cameras are given by

P1 =

 3274 −447 −1027 47431
1120 2952 848 6798

1 0 1 4

 , P2 =

 3315 314 941 11949
398 3024 1177 −2417
0 0 1 −2

 .

4If n = 2 there is naturally only four rows of B corresponding to P1 and P2.
5This Example is made from real data, as such rounding errors occur.

48 CHAPTER 2. GEOMETRIC INFERENCE FROM CAMERAS - MULTIPLE VIEW GEOMETRY

The linear equations in the form of B are then given by

B =

P 3

1 xi − P 1
1

P 3
1 yi − P 2

1

P 3
2 xi − P 1

2

P 3
2 yi − P 2

2

 =

−2068 212 2342 −39501
−631 −3047 −314 −3582
−3160 240 −27 −13571
−298 −3071 −587 1371

 ,

The solution to (2.23) is then given by

Q =

−4.5257
−1.5911
13.0108

1

 ,

This is the linear estimate of the 3D point.

2.4.3 A Statistical Issue*

As mentioned, there is an issue with the linear algorithm presented in Section 2.4.1. This issue is that the
pinhole camera mode, as expanded in (2.21), and the localization of the 2D points qi are assumed to be perfect
and without noise. This is not realistic. Thus a more accurate (2.21) should look as follows

xi =
P 1

i Q

P 3
i Q

+ εx
i , yi =

P 2
i Q

P 3
i Q

+ εy
i . (2.24)

Where (εx
i , εy

i) is the noise of the point 2D location, (xi, yi). Redoing the calculations of (2.22) based on (2.24)
instead of (2.21) gives

xi =
P 1

i Q

P 3
i Q

+ εx
i , yi =

P 2
i Q

P 3
i Q

+ εy
i ⇒

P 3
i Qxi = P 1

i Q + P 3
i Qεx

i , P 3
i Qyi = P 2

i Q + P 3
i Qεy

i ⇒(
P 3

i xi − P 1
i

)
Q = P 3

i Qεx
i ,

(
P 3

i yi − P 2
i

)
Q = P 3

i Qεy
i . (2.25)

Where P 3
i Q is equal to the distance from the camera to the 3D point, as can be seen from the derivation in

Section 1.4. So with the error model as in (2.24), the minimization problem in (2.23) is equivalent to

min
Q
||BQ||22 =

min
Q

n∑
i=1

(
P 3

i Qεx
i

)2 +
(
P 3

i Qεy
i

)2 =

min
Q

n∑
i=1

(
P 3

i Q
)2

∣∣∣∣∣∣∣∣[εx
i

εy
i

]∣∣∣∣∣∣∣∣2
2

. (2.26)

That is observations made by cameras further from the 3D point are weighted more. Given that the error model
in (2.24) is the correct one, this is not a meaningful quantity to minimize. It is however the result a a linear
algorithm which is computationally feasible and in general gives decent results. Algorithms with this property
are said to minimize an algebraic error measure.

On The Error Model*

The error model given in (2.24) basically states that the meaningful error is on the image point location, c.f.
Figure 2.13-Left. The motivation for this is that the two main sources of error is identifying, where in an image
entity is actually seen, c.f. Figure 2.13-Right, and unmodelled optical phenomena, such as radial distortion.
Both these entities are captured well by a deviation in the point location, as in (2.24).

2.5. A LIGHT PROJECTOR AS A ’CAMERA’ 49

Observed Point

Modelled Point (=PQ)

Distance

Figure 2.13: Left: A Schematic view of the distance to be minimized, namely the distance between the observed
point at the one originating from the model. In the point triangulation case the model is q = PQ. Right: An
illustration that even though an image apparently has many well defined corners, when we zoom in at a pixel
level, the localization is still somewhat uncertain. This will in general hold for most image features.

Non-linear Minimization*

If a statistically more meaningful estimate is needed, compared to the linear algorithm in Section 2.4.1, then
the procedure is to solve a nonlinear optimization problem, similar to that of (1.32) in Section 1.6. What we
want to minimize, w.r.t. Q, is

min
Q

n∑
i=1

∣∣∣∣∣∣∣∣[εx
i

εy
i

]∣∣∣∣∣∣∣∣2
2

= min
Q

n∑
i=1

||Π(qi)−Π(PQi)||22 . (2.27)

Here the function Π(·) appears again, which takes homogeneous coordinates and produces the inhomogeneous
correspondent. In (2.27) the two norm squared is used, which is consistent with a Gaussian nose model for the ε,
and is equal to minimizing the squared Euclidian distance. This is the standard assumption and methodology.
There is, however, some debate as to norm to use, especially in relation to outlier suppression. This norm
issue is beyond the scope of this text. Lastly it should be mentioned, that the non-linear optimization methods
used to solve (2.27), requires an initial guess. This guess is typically supplied by the linear algorithm from
Section 2.4.1.

2.5 A Light Projector as a ’Camera’

One of the main problems in reconstructing 3Dsurfaces or geometry from images, is that it is hard to determine
the correspondence between the relevant 2D features or image points. I.e. it is often hard to get the 2D input
of Figure 2.12. To address this issue light projectors are often used to make a known light pattern, making
correspondences easier to achieve, c.f. Figure 2.15-Left. Much of the camera geometry derived in this chapter
is, however, indifferent to which way the light travels, i.e. if it enters a camera or leaves a projector. In particular,
much of the theory builds on the back-projection of image observations, and the light emitted from a projector
can be seen as the embodiment of this back-projection. In the following a particular instance of such an active
3D capturing system will be covered, namely the laser scanner.

2.5.1 Laser Scanners

A laser scanner basically consists of a camera and a laser emitting a point or a plane. Here the laser plane
version is considered, c.f. Figure 2.14 and Figure 2.15. The idea is that the emitted laser plan will hit and
deflect off a surface, and that deflected light will hit the camera, as illustrated in Figure 2.14. Each light point
hitting the camera is then known to lie on the back-projection of that point and on the laser plane. The laser
plane is assumed known.

50 CHAPTER 2. GEOMETRIC INFERENCE FROM CAMERAS - MULTIPLE VIEW GEOMETRY

Laser

Laser Plane

Camera

Figure 2.14: A schematic illustration of a laser scanner. The laser emits a laser plane that hits the surface and
reflects light into the camera. The intersection of the laser plane and the back-projected line defines a 3D point
Q.

Referring to the derivation in Section 2.4.1, the 3D line back-projecting from a point, (x, y) can be seen as
the intersection of two planes, namely(

P 3x− P 1
)
Q = 0 ,

(
P 3y − P 2

)
Q = 0 .

Where P is the known camera matrix. Assuming that the laser plane is given by

LT ·Q = 0 ,

and following the deriviation in Section 2.4.1, we have three linear constraints on the 3D point Q, which lies
on the surface we wish to reconstruct. In particular we have

BQ =

 P 3x− P 1

P 3y − P 2

LT

Q = 0 . (2.28)

The solution is thus the right null space of B. Since there is three linear constraint and three degrees of freedom,
then a Q can be found that perfectly fulfills all three linear constraints. Thus, there is no need to consider noise
models in this minimal case. As an example consider some results from the digital michelangelo project c.f.
[18], as depicted in Figure 2.15.

2.6 Camera Resection

Just as a 3D point was estimated from the corresponding 2D projections in known cameras, c.f. Section 2.4,
a camera can be estimated from known 3D points and the corresponding 2D projections. This is known as
camera resectioning or estimating the camera pose, and can amongst others be used to determine the position
of a camera. This is useful in e.g. mobil robot navigation, where camera resectioning can determine where the
robot is from observed known 3D points.

Camera resectioning is highly related to camera calibration, as covered in Section 1.6, in that both tasks are
concerned with estimating the camera parameters. Here the material covered in Section 1.6 will be extended
by a linear algorithm for determining a pinhole camera. This algorithm is useful in its own right, but is also
often used to initialized optimization problems of (1.32). This linear algorithm, as the one in Section 2.4.1 does
not minimizes a statistical meaningful error, but minimizes an algebraic error in stead. If resectioning is to be
done for a camera with known internal parameters, special purpose algorithms exist, c.f. e.g. [12].

2.6. CAMERA RESECTION 51

Figure 2.15: results from the digital michelangelo project c.f. [18]. Left: The laser plane and camera set up
applied to the head of David. Right: The scanned result, where allot of 3D points have been scanned and used
as vertices of a triangular mesh, which is rendered here.

2.6.1 A Linear Algorithm

First the linear constraints the known 3D point, Qi = [Xi, Yi, Zi, 1]T and it’s corresponding 2D observation
qi = [xi, yi, 1]T poses on the the 3× 4 pinhole camera matrix P. Given the pinhole camera model (1.21)

qi = PQi ⇒ 0
0
0

 = [qi]×PQi

=

 0 −1 yi

1 0 −xi

−yi xi 0

 P11 P12 P13 P14

P21 P22 P23 P24

P31 P32 P33 P34

Xi

Yi

Zi

1

=

 0 −1 yi

1 0 −xi

−yi xi 0

 P11Xi + P12Yi + P13Zi + P14

P21Xi + P22Yi + P23Zi + P24

P31Xi + P32Yi + P33Zi + P34

=

 −P21Xi + yiP31Xi − P22Yi + yiP32Yi − P23Zi + yiP33Zi − P24 + yiP34

P11Xi − xiP31Xi + P12Yi − xiP32Yi + P13Zi − xiP33Zi + P14 − xiP34

−yiP11Xi + xiP21Xi − yiP12Yi + xiP22Yi − yiP13Zi + xiP23Zi − yiP14 + xiP24

=

 0 −Xi yiXi 0 −Yi yiYi 0 −Zi yiZi 0 −1 yi

Xi 0 −xiXi Yi 0 −xiYi Zi 0 −xiZi 1 0 −xi

−yiXi xiXi 0 −yiYi xiYi 0 −yiZi xiZi 0 −yi xi 0

 vec(P)

= bT
i · vec(P) . (2.29)

Where

vec(P) =
[

P11 P21 P31 P12 P22 P32 P13 P23 P33 P14 P24 P34

]T
.

The first step of the calculations in (2.29) requires an explanation. Since the pinhole camera model is formulated
in terms of homogeneous coordinates, qi and PQi are thus equal only up to scale. This makes the equation a
bit harder to work with. Viewing qi and PQi as vectors in 3D, it is seen that the pinhole camera model states
that they are vectors with the same direction, and with (possible) different lengths. This implies that the cross
product between the two must be zero, which is the argument used to get from the first to the second line of
(2.29).

52 CHAPTER 2. GEOMETRIC INFERENCE FROM CAMERAS - MULTIPLE VIEW GEOMETRY

As in Section 2.4.1 vec(P), and thus P, is estimated from (2.29) by stacking the bT
i into a matrix

B =

bT

1

bT
2
...

bT
n

 ,

and solving
min

vec(P)
||B · vec(P)||22 . (2.30)

Even though the bT
i are of dimension 3 × 12 the in general only have rank two, and thus one 2D-3D point

correspondence only pose two linear constraints on P. Since P has eleven degrees of freedom (12 = 3 · 4
minus one for overall scale) six 2D-3D point correspondences are needed as a minimum. Most often more
2D-3D point correspondence more are advantageous, since it serves to reduce noise.

Use of the Kronecker Product*

The amount of terms in (2.29) illustrates the power of using the Kronecker product, c.f. Appendix A.7, in that

QT
i ⊗[qi]× =

 0 −Xi yiXi 0 −Yi yiYi 0 −Zi yiZi 0 −1 yi

Xi 0 −xiXi Yi 0 −xiYi Zi 0 −xiZi 1 0 −xi

−yiXi xiXi 0 −yiYi xiYi 0 −yiZi xiZi 0 −yi xi 0

 ,

and that (c.f. Appendix A.7) 0
0
0

 = [qi]×PQi =
(
QT

i ⊗ [qi]×
)
· vec(P) , (2.31)

Which is equivalent to (2.29). Actually using the Kronecker product as in (2.31) is often preferable to the
formulation in (2.29), simply due to the number of typing mistakes avoided.

2.7 Estimating the Epipolar Geometry*

Just like the fundamental matrix can be used as a constraint on point correspondences, it can also be estimated
from such point correspondences. As in Section 2.4.1 linear algorithms – minimizing an algebraic error — will
first be considered, followed by a brief mention of non-linear methods.

2.7.1 The 8-Point Algorithm*

Assume that n point correspondences q1i,q2i i ∈ [1, . . . , n], are given, where

q1i =

 x1i

y1i

1

 , q2i =

 x2i

y2i

1

 .

Inserting this into (2.11), gives for each i

0 = qT
2iFq1i

=

 x2i

y2i

1

T F11 F12 F13

F21 F22 F23

F31 F32 F33

 x1i

y1i

1

=

 x2i

y2i

1

T F11x1i + F12y1i + F13

F21x1i + F22y1i + F23

F31x1i + F32y1i + F33

= F11x1ix2i + F21x1iy2i + F31x1i + F12y1ix2i + F22y1iy2i + F32y1i + F13x2i + F23y2i + F33

=
[

x1ix2i x1iy2i x1i y1ix2i y1iy2i y1i x2i y2i 1
]
vec(F)

= bT
i · vec(F) , (2.32)

2.7. ESTIMATING THE EPIPOLAR GEOMETRY* 53

Where
vec(F) =

[
F11 F21 F31 F12 F22 F32 F13 F23 F33

]T
.

As in the previous sections, the bT
i are arranged in a matrix

B =

bT

1

bT
2
...

bT
n

 ,

and a solution is found via
min

vec(F)
||B · vec(F)||22 . (2.33)

Since this algorithm does not exploit the the fact that the fundamental matrix has a determinant of zero, c.f.
Section 2.2.2, eight constraints are needed to determine F. Since each point correspondence yields one linear
constraint this algorithm is known as the 8-point algorithm. Like many of the linear algorithm presented in this
chapter, the 8-point algorithm minimizes an algebraic error.

7-Point Algorithm*

The constraint that the determinant of F is zero, not used in the 8-point algorithm, can relatively easily be
incorporated. Thus only seven constraints are needed giving rise to the 7-point algorithm. If only seven point
correspondences are used the B in (2.33), will have a null space of dimension two. The solution to (2.33) will
therefore be a linear combination

F = αF′ + F† ,

spanning this 2D subspace. The correct solution is then found by inserting this in to the constraint

det(F) = det(αF′ + F†) = 0 . (2.34)

This is a third order polynomial in α, which will have one or three real solutions. Once alpha is determined, so
will F, since F′ and F† are known. For further details, among others how to chose between the possible three
solutions in RANSAC, the interested reader is referred to [14].

5-Point Algorithm*

If the epipolar geometry is to be estimated from cameras with known internal parameters, then the essential
matrix suffices. There are two ways of estimating the essential matrix, the first is to estimate the fundamental
matrix, and then try to deduce the essential matrix from here by multiplying the estimated F with the internal
parameters A1 and A2. This approach has the disadvantage, that with noise a valid essential matrix is unlikely
to appear. This latter issue can, however, likely be dealt with via a non-linear optimization step. Another
disadvantage is that this will require at least seven points to estimate, where 5 in theory are all that is needed.

The other, somewhat more complicated, approach to essential matrix estimation is to compute it directly
from the observations. Doing this will result in solving a tenth degree polynomial in several variables, and the
derivation of this algorithm is beyond the scope of this text. The interested reader is referred to [21]. This
algorithm requires 5 point correspondences, hance the algorithm is called the 5-point algorithm.

Use of the Kronecker Product*

Just as in Section 2.6, the Kronecker product can make the calculations in (2.32) easier and less prone to typing
mistakes, c.f. Appendix A.7, in that

qT
1i ⊗ qT

2i =
[

x1ix2i x1iy2i x1i y1ix2i y1iy2i y1i x2i y2i 1
]

,

and that (c.f. Appendix A.7)
0 = qT

2iFq1i =
(
qT

1i ⊗ qT
2i

)
· vec(F) , (2.35)

Which is equivalent to (2.32).

54 CHAPTER 2. GEOMETRIC INFERENCE FROM CAMERAS - MULTIPLE VIEW GEOMETRY

2.7.2 Normalization of Points*

When implementing algorithms on a computer numerical considerations are almost always of importance.
When minimizing an algebraic error, especially in the fundamental matrix case, experience has shown that
most algorithms will fail without such considerations. In the fundamental matrix case this is recommended
done by changing the image coordinates, such that the mean and variance of the points in an image are zero
and one respectively. This can be done via a scaling, s, and a translation, [∆x,∆y]T , which in homogeneous
coordinates can be implemented as

T =

 s 0 ∆x
0 s ∆y
0 0 1

 .

This can be used to make a change of coordinates in each of the images, such that

q̃1i = T1q1i , q̃2i = T2q2i ,

Where T1 and T2 are the transformations needed in each of the two images. The mean and variance of the q̃1i

are then zero and one respectively. The same should hold for the q̃2i. The fundamental matrix is then estimated
using the q̃1i and q̃2i giving a F̃, such that

0 = q̃2i
TF̃q̃1i = qT

2iT
T
2 F̃T1q1i , (2.36)

Implying that the fundamental matrix sought is

F = TT
2 F̃T1 . (2.37)

2.7.3 Non-Linear Optimization*

To improve upon the estimate of the linear algorithms minimizing an algebraic error presented above, a non-
linear optimization is often used. Using the statistical optimal error is often too cumbersome and a first order
approximation to it is often minimized. This error measure is called the Sampson error and is given by

dSamp(F,q1i,q2i) =
qT

2iFq1i

(Fq1i)21 + (Fq1i)22 + (qT
2iF)21 + (qT

2iF)22

Here (Fq1i)2j denotes the jth coordinate of Fq1i squared, j being one or two. This is minimized over all point
correspondences, i.e. the following minimization problem is solved

min
F

n∑
i=1

dSamp(F,q1i,q2i)

In solving this minimization, experience has shown that care has to be taken in parametrization of F. A further
discussion of this parameterizations issue and on the error measures for minimizing F is found in [14].

2.8 Estimating a Homography*

The last entity we want to estimate in this chapter is a homography from 2D point correspondences, q1i and
q2i. This is done by first introducing a linear algorithm – minimizing an algebraic measure – whereupon a
non-linear approach incorporating better statistical reasoning will be covered.

2.8.1 A Linear Algorithm*

The linear algorithm for homography estimation resembles the linear algorithm for camera resectioning a lot.
Assume that n 2D point correspondences, i.e. q1i and q2i i ∈ {1, · · · } are given. The linear constraint such a

2.8. ESTIMATING A HOMOGRAPHY* 55

constraint poses on H is derived as follows, inserting into (2.13)

q1i = Hq2i ⇒ 0
0
0

 = [q1i]×Hq2i

=

 0 −1 y1i

1 0 −x1i

−y1i x1i 0

 H11 H12 H13

H21 H22 H23

H31 H32 H33

 x2i

y2i

1

=

 0 −1 y1i

1 0 −x1i

−y1i x1i 0

 H11x2i + H12y2i + H13

H21x2i + H22y2i + H23

H31x2i + H32y2i + H33

=

 −H21x2i + H31x2iy1i −H22y2i + H32y2iy1i −H23 + H33y1i

H11x2i −H31x2ix1i + H12y2i −H32y2ix1i + H13 −H33x1i

−H11x2iy1i + H21x2ix1i −H12y2iy1i + H22y2ix1i −H13y1i + H23x1i

=

 −x2i + x2iy1i − y2i + y2iy1i − 1 + y1i

x2i − x2ix1i + y2i − y2ix1i + 1− x1i

−x2iy1i + x2ix1i − y2iy1i + y2ix1i − y1i + x1i

 · vec(H)

= bT
i · vec(H) . (2.38)

Where
vec(H) =

[
H11 H21 H31 H12 H22 H32 H13 H23 H33

]T
.

As in the previous sections, the bT
i are arranged in a matrix

B =

bT

1

bT
2
...

bT
n

 ,

and a solution is found via
min

vec(H)
||B · vec(H)||22 . (2.39)

Also as in the previous sections it should also be mentioned that there are several advantages of using the
Kronecker Product in doing the calculations of (2.38), c.f. Appendix A.7.

2.8.2 Non-Linear Optimization*

To minimize a statistically more meaningful error, assume that the noise free measurements in the two images,
s1i and s2i, are given by

q1i = s1i + ε1i , q2i = s2i + ε1i ,

Where ε1i and ε2i are noise components that we want to minimize. For the true H we furthermore have the
following relationship

s1i = Hs2i ,

The minimization problem that we wish to solve is thus

min
n∑

i=1

(
||s1i − p1i||22 + ||s2i − p2i||22

)
= min

n∑
i=1

(
||Hs2i − p1i||22 + ||s2i − p2i||22

)
,

Which is a minimization problem in the elements of H and the s2i over all i ∈ {1, · · · , n}. A good solution to
minimizing the statistical meaningful error in the images – assuming Gaussian distribution of the ε – is therefor
solving

min
H,s2i

n∑
i=1

(
||Hs2i − p1i||22 + ||s2i − p2i||22

)
. (2.40)

56 CHAPTER 2. GEOMETRIC INFERENCE FROM CAMERAS - MULTIPLE VIEW GEOMETRY

2.9 End Notes*

As mentioned in the introduction to this chapter, it is only a small subset of multiple view geometry that is
covered here. To the authors best judgment, the part chosen are the most introductory, and the ones most often
use in practical 3D estimation with cameras. There are, however, two additional issues that the reader should
be aware of. Firstly, the estimation algorithms mentioned here are the easies to understand and the ’standard’
ones. They however either minimize an algebraic error or in the case of the non-linear algorithms are iterative
and have a risk of converging to a local minimum. Recently algorithms have been developed, that solve such
optimization problems in a guarantied optimal way, c.f. e.g. [17]. The second issue not dealt much with here
is the geometry of calibrated cameras, i.e. that the A are known. This case has large practical importance, but
unfortunately often gives rise to high order polynomial equations in many variables. As such these algorithms
are beyond the scope of this text, two few references are [12, 21, 26].

Part II

Image Features and Matching

57

Chapter 3

Extracting Features

Computer vision and image analysis is mostly concerned with doing inference from images. In doing so we
often resort to extracting features from the images, such as points and lines, which we believe have some
intrinsic meaning. One of the most important uses of such features is in helping to solve the correspondence
problem. This is the problem of finding the correspondence between the ’same thing’ depicted in two different
images, and is the subject of Chapter 4. This chapter, thus, serves as a prelude to the next. There are naturally
many types of features to be extracted from images, such as cars letters and so on, but here the focus is on point
and line features. The motivation behind this is that these are the most commonly used in a general setting. A
good reference on feature extraction for matching is [27]. As for the organization, the first two sections, namely
Section 3.1 and Section 3.2, present some general considerations in relation to feature extraction, upon which
two point detection and a line detection scheme is presented in Sections 3.3, 3.4 and 3.5 respectively.

Figure 3.1: Things appear at a scale, as illustrated in the above images. This scale can also vary, as e.g. the
leaves of the bush above. When extracting features, we often have to choose which scale we want to work at.
This is naturally related to what we want to extract, e.g. the leaves, the branches or the trees.

3.1 Importance of Scale

Figure 3.2: The maximum of the gradient magnitude is computed for the leftmost image and depicted in the
middle and right images. The difference between the middle and right image is the scale at which the gradient
is computed. Notice how different structures appear at the different scales.

The things or features that we want to extract from an image appear at a scale, c.f. Figure 3.1. This scale
depends e.g. on the camera position relative to the object, the camera optics, and the actual size of the object

59

60 CHAPTER 3. EXTRACTING FEATURES

photographed. When extracting features – as well as performing many other image processing tasks – we have
to chose what scale we want to work on. This is illustrated in Figure 3.2, where different scales extract different
structures.

To explain the choice of scale in more detail consider the one dimensional signal in Figure 3.3. When
detecting edges on this signal using a filter, we find one or several edges depending on the extent of this filter.
If we use a small filter all the ridges, which might otherwise be viewed as noise, will give an edge responses. If
we use a large filter only the one dominant edge will give a response. The dominant edge will, furthermore, not
be detected by a small filter, because this edge only becomes dominant on a larger scale. So one view of scale
relates to the size of the filters used. These filters are very often used to perform basic and preliminary image
processing. Another view is that scale, and the size of the filters used, distinguish between what is noise and
what is signal, in a frequency, or fourier setting.

Figure 3.3: Top: A sample one dimensional signal with one or more edges. Middle The sample signal filtered
with a small step edge. Bottom The sample signal filtered with a large step edge.

Image scale and the size of filters is naturally associated with image pyramids. An image pyramid is the
successive down scaling of an image, c.f. Figure 3.4. This successive down scaling of an image is referred to
as a pyramid, in that placing the images on top of each other will give a pyramid, due to the decreasing size of
the images. The relationship to image scale and filter size, is that instead of making the filters larger the image
can be made smaller. So in effect, running the same filter on a down sampled image is equivalent to working
on a coarser scale. Although this is a somewhat crude technique for working with image scale, this is often
used because reducing the image size reduces the computational requirements. This is opposed to increasing
the filter size, which most often increases the computational requirements.

3.1.1 Gaussian Kernels

When dealing with image scale, or scale space a working horse is the Gaussian filter, c.f. Figure 3.5. A Gaussian
filter is given by the following equation

gσ = g(x, σ) =
1(√

2πσ2
)D

exp
(
−||x||

2
2

2σ2

)
, (3.1)

3.2. THE APERTURE PROBLEM 61

Figure 3.4: A successive down sampling of an image. If these images were placed on top of each other, with a
pixel having the same size, they would form a pyramid. Hence the name image pyramid.

where gσ is a short hand, D1 is the dimension of x and σ controls the width of the kernel. The idea is that that
if we want to apply a given filter f to a an image I via convolution, i.e.

I ∗ f ,

The scale is typically adjusted by inserting a Gaussian filter, i.e.

I ∗ gσ ∗ f . (3.2)

Where the σ, is the measure of scale. This is opposed to altering the scale or size of the filter f itself. A
main reason for using the Gaussian filter in this way is that is has a lot of very nice practical and theoretical
properties, as are e.g. described in [25].

When doing feature extraction, a very commonly used filter, f , is a derivative of some order, as discussed
in Section 3.2. For computational reasons, the order of operations in (3.2), is as follows

I ∗ (gσ ∗ f) .

If f is a derivative, typical filters are shown in Figure 3.5.

Figure 3.5: An example of a Gaussian kernel, and its derivative and second derivative wrt. the x axis.

3.1.2 Scale and Feature Extraction

This section presents a very rudimentary outline of the vast area of scale space theory [25]. For more informa-
tion the interested reader is referred to [19, 25]. In the context of this text, the overall message of Section 3.1,
is that scale matters for the output of most image algorithms, and should thus be considered.

In the context of feature extraction. Images are often times taking in a non controlled setting, in this case the
scale is generally unknown. As an example consider the images in Figure 3.1. Here either of the three images
could be taken with the task of extracting features of the leaves, resulting in the need to work at radically
different scales. A technique, thus, often used is to do feature extraction at range of scales, with the aim of
using the ’desired’ scale in on instance.

3.2 The Aperture Problem

As a second general consideration, before specific feature extraction methodologies are introduced, the aperture
problem will be covered. As illustrated in Figure 3.6, the location of a feature can only be uniquely determined

1Often one or two.

62 CHAPTER 3. EXTRACTING FEATURES

Figure 3.6: An illustration of the aperture problem. Two features (the red and green dots) are annotated in the
left image. Consider finding these features in the right image, given that this image is a slightly transformed
version of the left. The red dot – located on the line – must be located on the line in the right image, although
it is undetermined where. As for the location of the green dot, all we can say is that it must be located in the
white area of the right image. This illustrated that we can only uniquely determine the position of a feature in
the direction of image gradients.

across an image gradient2. This is the statement of the aperture problem.

The implication of the aperture problem for feature extraction, is that we almost always would like a feature
to be distinct and well localized. In this context good features are toughs that are located on image gradients.
For point features there should be a large gradient in all/both directions, c.f. Figure 3.6. For line features, they
should be located along the gradients. When facing noise in the image, the localization becomes more accurate
the larger the image gradient, due to the improved signal to noise ration. This is a reason why many feature
extraction algorithms build on gradients, or derivatives of some order.

3.3 Harris Corner Detector

A feature often extracted from images are corners. In view of the aperture problem, discussed above, the corner
is a feature which has a high gradient in all directions. Probably the most popular corner detection algorithm
is the Harris corner detector [13], which will be presented here. To derive this, consider the change in image
intensity as a function of a shift in image position (∆x, ∆y), i.e.

I(x, y)− I(x + ∆x, y + ∆y) .

In order to have a strong corner this measure should be numerically large in all directions over a small weighted
window. This measure is, thus, squared to attain only the numerical size, and is ’averaged’ over a small region
to ensure it robustness to noise3. In practise we achieve this by convolving with a Gaussian gσ, and we consider
the measure

c(x, y,∆x,∆y) = gσ ∗ (I(x, y)− I(x + ∆x, y + ∆y))2 (3.3)

2This is under the assumption that only local operations are used.
3If no smoothing occurs C(x, y) will also only have rank one.

3.3. HARRIS CORNER DETECTOR 63

for each image position x, y. Denoting the image derivatives in the x and y direction by Ix and Iy respectively,
c(x, y,∆x,∆y) can be expanded as follows

c(x, y,∆x,∆y) = gσ ∗ (I(x, y)− I(x + ∆x, y + ∆y))2

≈ gσ ∗
(

I(x, y)−
(

I(x, y) +
[

Ix(x, y) Iy(x, y)
] [

∆x
∆y

]))2

= gσ ∗
([

Ix(x, y) Iy(x, y)
] [

∆x
∆y

])2

=
[

∆x ∆y
] [

gσ ∗ Ix(x, y)2 gσ ∗ Ix(x, y)Iy(x, y)
gσ ∗ Ix(x, y)Iy(x, y) gσ ∗ Iy(x, y)2

] [
∆x
∆y

]
=

[
∆x ∆y

]
C(x, y)

[
∆x
∆y

]
, (3.4)

Where ≈ denotes a first order approximation and

C(x, y) =
[

gσ ∗ Ix(x, y)2 gσ ∗ Ix(x, y)Iy(x, y)
gσ ∗ Ix(x, y)Iy(x, y) gσ ∗ Iy(x, y)2

]
. (3.5)

This matrix, C(x, y), can be interpreted as approximating the average degree of change around the image
position (or pixel) x, y. In a sense, it is a weighted variance matrix of the pairwise pixel differences. If we have
a corner, with a large gradient in all directions, the rate of change should be large in all direction, implying
that (3.4) should be large for ∆x, ∆y pointing in any direction. This again implies that C(x, y) should have
two large eigenvalues. If C(x, y), has one large and one small eigenvalue, the rate of change is large in one
direction and not the other, indicating a line4.

Figure 3.7: An example of r(x, y). The right image is r(x, y) computed on the left image. White is large
positive values, black is large negative values, and grey are small values.

To operationalize the above, denote the two eigenvalues of the symmetric positive semidefinite matrix
C(x, y) by λ1 and λ2. Then the corners are found at places where both eigenvalues are large, and not just one
of them. The latter indicating a line. This holds for the following measure, where large values indicate a corner,

r(x, y) = λ1λ2 − k(λ1 + λ2)2 , (3.6)

for some scalar k, (a typical value for k is 0.06). The reader should verify that r(x, y) will be

• Large and positive for two large eigenvalues.

• Large and negative for one large and one small eigenvalue.

• Small for two small eigenvalues.

4Please c.f. to Appendix A for an brief overview of eigenvalues.

64 CHAPTER 3. EXTRACTING FEATURES

This is illustrated in Figure 3.7. The Harris corner detector thus in essence works by finding large positive
values of r(x, y). The value of r(x, y) can, however, be calculated much more efficiently from C(x, y) then
indicated in (3.6). In deriving this computational trick, the notation is simplified by denoting the elements of
C(x, y) by, a, b, c such that

C(x, y) =
[

a c
c b

]
.

From linear algebra, c.f. Appendix A, it is known that a relationship between the eigenvalues of a 2× 2 matrix
and the determinant and trace is given by

λ1 · λ2 = det(C(x, y)) = ab− c2 ,

λ1 + λ2 = Trace(C(x, y)) = a + b .

Inserting this into (3.6) gives

r(x, y) = λ1λ2 − k(λ1 + λ2)2

= det(C(x, y))− k · Trace(C(x, y))2

= ab− c2 − k(a + b)2 . (3.7)

Which is computed efficiently compared to extracting eigenvalues of C(x, y).
At the outset the Harris corner detection algorithm thus consist of computing r(x, y) and labelling the

positions where
r(x, y) > τ , (3.8)

for some threshold τ as corners. As argued in Section 3.3.1, non-maximum suppression has to be applied. A
typical value for τ is 0.8 times the maximum r(x, y) value for the image in question, i.e.

τ = 0.8 max
x,y

r(x, y) .

Image

dI/dX

dI/dY

*

^2

^2

Smooth

Smooth

Smooth ab-c2-k(a+b)2

Threshold &
Non-Max Suppression

Corners

a

c

b
r

Figure 3.8: A flow diagram for the Harris Corner detection algorithm.

3.3.1 Non-Maximum Suppression

Smoothing is performed when calculating C(x, y) and subsequently r(x, y). Images are also often smooth to
some degree, therefore large values of r(x, y) are usually surrounded by other large values of r(x, y). Thus,
if (3.8) is the only criteria used for detecting corners, it will be expected that several pixels will be marked as
a corner, in an area around the corner. This is also observed in practise, and seen in Figure 3.7. We would,
however, like a unique position of our features, and therefor (3.8), is often supplemented with the criteria of only
keeping the local maxima. This is often referred to as non-maximum suppression, in that the non-maximum
values are discarded or suppressed. Using a 4-neighborhood, the maximum criteria, (3.8) is supplemented with,

3.3. HARRIS CORNER DETECTOR 65

has the following form5

r(x, y) > r(x + 1, y) ∧
r(x, y) ≥ r(x− 1, y) ∧
r(x, y) > r(x, y + 1) ∧
r(x, y) ≥ r(x, y − 1) (3.9)

It is noted that there is a mix between > and ≥ in (3.9), this is done in order to break the tie in case two
neighboring pixels have the same values, but are local maximums otherwise. This concludes the Harris corner
detection algorithm, and a flow diagram is given in Figure 3.8 along with and example in Figure 3.9.

Figure 3.9: An example of applying the Harris corner detector.

3.3.2 Sub-pixel Accuracy*

Lastly, it is noted that once the Harris corners have been found, as described above, and illustrated in Figure 3.8,
the position of the extracted corners can be refined to sub-pixel accuracy. This is often done when the extracted
features are used to estimate camera geometry, where the extra accuracy makes a meaningful difference. Sub-
pixel accuracy can be found by fitting a second order polynomial to the r(x, y) score of the two neighbors, in
the x and y direction respectively. The offset δx, δy from the extracted – integer valued – position, is then found
as the optimum of these second order polynomials. Here the formula for δx will be derived. The derivation and
formula are equivalent for δy.

A second order polynomial
f(x) = ax2 + bx + c ,

should be fitted to the three points

f(−1) = r(x− 1, y) = a− b + c , f(0) = r(x, y) = c , f(1) = r(x + 1, y) = a + b + c ,

corresponding to the origin of the coordinate system being at (x, y), where the corner is extracted, c.f. Fig-
ure 3.10. It can easily be validated that

a =
f(1) + f(−1)

2
− f(0)

b =
f(1)− f(−1)

2
c = f(0) .

5∧ denotes logical and.

66 CHAPTER 3. EXTRACTING FEATURES

Note, that since f(0) is larger than both f(1) and f(−1), due to r(x, y) being a local optimum, a is negative
corresponding to f(x) having a unique optimum. The offset δx is found by setting the derivative of f(x) equal
to zero, i.e.

∂f(x)
∂x

= 2ax + b = 0 ⇒

δx = − b

2a
= −

f(1)−f(−1)
2

2
(

f(1)+f(−1)
2 − f(0)

) = − f(1)− f(−1)
2f(1) + 2f(−1)− 4f(0)

.

This scheme works well in practice, and the corner position, with sub-pixel accuracy, is given by (x+δx, y+δy).
However, if r(x− 1, y), r(x, y) and r(x + 1, y) are too close in value, a may become so small that the scheme
becomes numerically unstable. Thus if the absolute value of δx or δy becomes larger than 1, no offset is used,
i.e. δx = 0 and/or δy = 0.

f(0)

f(1)

f(-1)

δx

ax2+bx+c

Figure 3.10: A schematic illustration of fitting a second order polynomial in order to find the sub-pixel offset
∆x.

3.4 Blob Detection

Considering again the aperture problem, another entity which has a high gradient in all directions is the blob,
i.e. an image location where the second derivative is large in both/all directions. For a 2D image the second
order derivative or hessian, H, is a 2× 2 matrix

H =
[

Ixx Ixy

Ixy Iyy

]
,

Here the the following short hand notation is used for ease of read, where I(x, y) is the image intensity at
position (x, y),

Ixx =
∂2I(x, y)

∂x2
, Ixy =

∂2I(x, y)
∂xy

, Iyy =
∂2I(x, y)

∂y2

A main issue in designing a blob detector from the Hessian, is how to measure the size of the Hessian, such that
a blob is determined in the presence of a large Hessian. In this regard there are two obvious or typical choices,
namely the determinant and the trace of the Hessian, corresponding to the product and sum of the Hessian’s two
eigenvalues respectively. In the following these eigenvalues will be denoted by λ1 and λ2. The two measures
are given by

det(H) = det
([

Ixx Ixy

Ixy Iyy

])
= IxxIyy + I2

xy = λ1λ2 . (3.10)

Trace(H) = Trace

([
Ixx Ixy

Ixy Iyy

])
= Ixx + Iyy = λ1 + λ2 . (3.11)

(3.12)

3.4. BLOB DETECTION 67

These measures are then formed into detector by thresholding, doing non-maximum suppression and possibly
determining sub-pixel accuracy as described in Section 3.3 (Section 3.3.1 and Section 3.3.2 specifically). It is
noted that the trace of the hessian is also called the Laplacian, and is denoted by

∇2I = Ixx + Iyy = I ∗ (
∂2gσ

∂x2
+

∂2gσ

∂y2
) . (3.13)

The lapalacia filter is illustrated in Figure 3.11.

+ =

Figure 3.11: The Lapalcian (trace of Hessian) filter, seen as the addition of the ∂2gσ

∂x2 and ∂2gσ

∂y2 filters.

3.4.1 Difference of Gaussian (DoG)

Another very popular blob detector is the difference of Gaussian(DoG) detector, which is among others part
of the very successful SIFT detector and descriptor framework [20]. The DoG detector applied to an image,
I(x, y), is formed by taking the difference of the image convolved with two Gaussian kernels of different width
or scale, i.e.

I ∗ g(s · σ)− I ∗ gσ = I ∗
(
g(s · σ)− gσ

)
, (3.14)

where s is a scalar and σ is the scale of the operation. An example of this filter is shown in Figure 3.12. A main
motivation for the DoG filter is that it is a close approximation to the Laplacian, as seen by comparing the DoG
filter in Figure 3.12 to the Laplacian in Figure 3.11. This approximation holds best for s ≈ 1.6. The DoG filter
is also used for other values of s, where it still keeps its Mexican hat like shape, which intuitively corresponds
to what we are looking for when searching for a blob.

Figure 3.12: The Difference of Gaussian(DoG). Note the similarity to the kernel in Figure 3.11. In scale space
the DoG detector is computed by first convolving with Gaussian kernels, c.f. Figure 3.13 , and the subtracting.

A reason for DoG detectors being popular, is that they are very efficient to implement in a scale space frame
work, c.f. Section 3.1. That is, if we are to search for features at multiple scales, then the DoG feature detector
is straight forward to implement. This is because the DoG occur as the difference between filter responses
at different scales, and as such DoG in scale space are computed by convolving the image, I , with Gaussian
kernels at different scales, and then computing the difference, c.f. Figure 3.13.

When the DoG features are extracted in scale, as done in the SIFT feature [20], then the non-maximum is
not only done in the image plane as in Section 3.3.1, but also by considering a scale down and a scale up. This
ensures that a feature has not only found it’s right location but also it’s right scale. The resulting features are
seen in Figure 3.14.

68 CHAPTER 3. EXTRACTING FEATURES

Figure 3.13: Result of applying the DoG filter to the image of Figure 3.14 at different scales, or places in the
image pyramid.

Figure 3.14: An example of extracting the DoG features across scale corresponding to the so-called SIFT
features [20].

3.5 Canny Edge Detector

Apart from point features we often want to extract edges or lines in an image. The most popular way of doing
this is via the Canny edge detector [4], also sometimes referred to as the Canny-Deriche detector, because R.
Deriche’s method of for efficiently smoothing with a Gaussian kernel is often used [23]6.

The Canny edge detector uses the gradient magnitude,
√

I2
x + I2

y , as an edge measure, c.f. Figure 3.15-
middle-left. Non-maximum suppression is also preformed on this measure, c.f. Section 3.3.1. But differently
from the point case, it should only be required that the and edge point is maximum perpendicular to the edge,
i.e. in the direction of the gradient, i.e. (Ix, Iy) and (−Ix,−Iy). The reason being that lines are extracted, and
here we are looking for linked points, and as such should not only consider the only point on an edge with
largest derivative. See Figure 3.15-middle-right.

As in the point case, thresholding is also applied, but here two thresholds are used, τ1 and τ2 with τ1 > τ2.
The idea is that all pixels with a gradient magnitude larger than τ1 are labelled as edges – provided that they
pass the non-maximum suppression criteria. Whereas pixels with a gradient magnitude between τ1 and τ2 are
labelled as edges, only if they are part of a line where part of it is above the τ1 threshold. Again under the
assumption that all edge pixels pass the non-maximum suppression criteria. The motivation is that if parts of
a line becomes weak, e.g. due to noise, it should still be included. This can be seen as a sort of hysteresis. In
practise this is done by extracting all possible edge pixels with a gradient magnitude above τ2, c.f. Figure 3.15-
bottom-left, and then only keeping the line segments where at least one pixel has a gradient magnitude above

6This technicality is not covered here.

3.5. CANNY EDGE DETECTOR 69

τ1, c.f. Figure 3.15-bottom-right. The latter operation can be performed via a connected components algorithm.
The resulting edge segments are the output of the Canny edge detector.

Figure 3.15: Illustration of the Canny edge detector. Top: The original color image, and the gray scaled version
on which the operation is performed. Middle: The gradient magnitude I2

x + I2
y , and the gradient magnitude

with the orientations used to do non-maximum suppression. There is also a small color wheel specifying the
relation between orientation and color. Bottom: The edges, passing the non-maximum suppression criteria,
and with a gradient magnitude above τ2, to the left. To the right the edge segments to from the left image with
at least one pixel with a gradient magnitude above τ1. The bottom right image is the result of the Canny edge
detection on the top image.

70 CHAPTER 3. EXTRACTING FEATURES

Chapter 4

Image Correspondences

As mentioned in Chapter 3, this chapter is concerned with the correspondence problem. The correspondence
problem is basically: Find the correspondence between two – or more – images. Understood as determining
where the same physical entities are depicted in the different images in question. See Figure 4.1. This is a
fundamental problem in image analysis, and a good general solution does not exist, although much progress
is being, and has been made. This also implies that there is a multitude of solution schemes for finding the
correspondence between images, which we will come nowhere near covering here. Here two methods will be
presented for matching point features between images. If more than two images are to be matched, as is often
the case, pair correspondences will be aggregated to a correspondence of the whole image set. It should also
be mentioned that the correspondence problem is also know as tracking, registration and feature matching to
mention a few of the other common used phrases.

Figure 4.1: The general correspondence problem, where the relationships between the same entities of an object
is mapped.

4.1 Correspondence via Feature Matching

As mentioned above, the method for finding the correspondence between images, which is mainly in focus
here, is feature matching. Feature matching is a three stage technique composed of

1. Extract a number of, hopefully salient, feature from the images. Here it is assumed that these features are
points, c.f. Chapter 3.

2. For each feature compute or extract a descriptor. This descriptor is typically based on a small window
around the feature.

3. The correspondence between the two sets of features, and thus the images, is found by minimizing some
distance between the two sets of descriptors. See Figure 4.2.

As might be expected, there are a multitude of ways of doing this. There are however some general com-
ments that can be made as to what in general characterizes good strategies. As for what features to extract –
which usually boils down to how to extract them, the features should be unique in the sense that it is clear
where the feature is. This should be seen in relation to the aperture problem, as discussed in Section 3.2. For

71

72 CHAPTER 4. IMAGE CORRESPONDENCES

if it is unclear where the feature is, then it will be unclear what went where, and as such violating the problem
statement of finding the position of the same underlying identity in two or more images. This also holds prac-
tical implications for many applications of the correspondence problem, such as 3D reconstruction, estimation
of camera movement etc.

Figure 4.2: Matching features by finding the features with the most similar neighborhoods — defined by a
window around the feature. Here ’Most Similar’ is defined by the feature descriptors and a distance between
them.

Another important issue to consider is that the features should be repeatable, in the sense that we should
be able to find the same features if the images changed slightly — whatever ’slightly’ means. The reasoning
being that we should hopefully extract features corresponding to the same underlying 3D entities in different
images. The same thing will seldom look exactly the same in two images due to changes in illumination, view
point, internal camera setting and plain sensor noise. Thus some flexibility should be incorporated into ones
feature extractor and e.g. requiring perfect correspondence with an image mask will in general not be a good
idea.

Lastly the features should also be distinguishable, i.e. it should be plausible that we can find that exact
image again in another image. The reason for this is obvious, since this is the task we want to perform with the
features. And naturally the chosen image descriptors should capture this distinguishability. In the following
two strategies for doing feature extraction and matching will be presented, to give the reader a feel for how
such things could be done. It should, however, be kept in mind that this is only a small subset of the available
methods. This is especially true if the problem domain is very limited, in which case special tailored solutions
can be made. As an example consider finding the targets in Figure 4.3, here the associated number would be a
very good descriptor, and a target like convolution kernel be a good feature extractor.

4.2 Feature Descriptor Examples

As mentioned in Section 4.1, after features are extracted, a descriptor is computed for each feature. These
descriptors are then compared via some measure, by which the matching is made. Here two such descriptors,
and associated measure are presented. These descriptors are calculated based on an area around the feature as
illustrated in Figure 4.2.

4.2.1 Correlation

A typical similarity measures between image patches is correlation. This corresponds to using the raw numeri-
cal values of the window around the feature as a descriptor. Using correlation can be interpreted as seeing one
patch as a kernel and convolving the other image with it. Correlation between two image patches, P1 and P2,

4.2. FEATURE DESCRIPTOR EXAMPLES 73

Figure 4.3: A image of a test field for calibrating cameras to the left. To the right an enlarged image section of
the left image depicting the targets.

can be obtained as follows: 1

1. Arrange the elements of P1 and P2 into vectors ~x1 and ~x2.

2. Calculate the mean of each vector, ~x1 and ~x2, µ1 and µ2, i.e. :

µ =
1
n

n∑
i=1

xi .

3. Calculate the variance of each vector, ~x1 and ~x2, var1 and var2, i.e. :

var =
1

n− 1

n∑
i=1

(xi − µ)2 .

4. Calculate the covariance, cov, between the two vectors, ~x1 and ~x2, i.e.:

cov =
1

n− 1

n∑
i=1

(x1i − µ1) (x2i − µ2) .

5. Then the cross-correlation, ρ, is given by:

ρ =
cov

√
var1 · var2

. (4.1)

Using correlation is a classical way of doing image feature matching, and works well in many – usually
simpler cases – it however has some drawbacks. First, if there is no or little variance in an image, the denom-
inator of (4.1) will be small or zero. In the later case (4.1) is undefined, in the first case noise will dominate.
This will, however, seldom be an issue, since features with high gradients are chosen, and as such the local
variance will be high. Secondly covariance is rather sensitive to rotation of the image, and other changes of
view point. This is seen since pixels are compared one to one. An example of when this will work well or not
is illustrated in Figure 4.4

4.2.2 SIFT Descriptors

A more complicated, but also more powerful way of computing feature descriptors are the so called SIFT
descriptors [20]. They are also based on a square patch around the feature, as in the correlation case. To
address the issue of invariance to rotation, this image patch is typically not aligned with the coordinate system
of the image, instead it is aligned with the local image gradient, as illustrated in Figure 4.5. This has the effect,
that if the image is rotated so is the image gradient, and as such this ’trick’ ensures invariance to rotation, which
is a benefit for natural images such as that of Figure 4.4. If the images are known not to rotate this ’trick’ should

74 CHAPTER 4. IMAGE CORRESPONDENCES

Figure 4.4: Three images of a building here at DTU. It is relatively easy to match the left and middle image
via correlation, since the image motion is moderate and there is no or little rotation. Matching the left and right
image will likely give problems using correlation due to the large amount of rotation.

Figure 4.5: Here it is illustrated how the local patch is aligned with the local gradient in the image.

not be used, in that it also introduces extra ambiguity into the descriptor. I.e. if it is known that matches should
look similar and are not rotated, this information should be used. Using such a rotated patch implies the need
for interpolation – typically bilinear – in order to get the values on the image patch grid.

Once the patch rotation and interpolated values have been determined, the descriptor is calculated as indi-
cated in Figure 4.72. First the gradient of the patch is calculated, then this field is transformed into a modulus
and argument representation, i.e.

mod =

√
∂I

∂x

2

+
∂I

∂y

2

, arg = atan2(
∂I

∂x
,
∂I

∂y
) .

The patch is then divided into a 4 by 4 grid. For each cell in this grid a 8 bin histogram is computed for the
angles weighted by the modulus. That is for each pixel, the angle or argument gives one of the eight bins in the
histogram, and this bin is then incremented by the modulus. This indicates that we have 8 values for each cell
and we have 4 · 4 = 16 cells giving 8 · 16 = 128 values in all. It is these 128 values which compose the SIFT
descriptor. Please note, that minor details have been left out, so for a more in depth description refer to [20].
These 128 dimensional SIFT descriptors need to be compared, in order to complete the matching. Noting that
these 128 vector represent a histogram, they are seen to be χ2-distributed, and as such a correct/good distance
between two descriptors, a and b, is then,

d(a, b) = 2
128∑
i=1

(ai − bi)2

ai + bi
. (4.2)

It should be noted that all entries of a and b are positive.

4.3 Matching via Descriptors

Following the outline of Section 4.1, the correspondence problems is then solved by matching pairs of descrip-
tors, one from each image. To formalize, denote the two set of descriptors by A and B, then we want to find or

1There are faster numerical schemes then this, but this best conveys the idea.
2The image patch is not aligned to the local image gradient. This figure should only illustrate the computation of the SIFT descriptor.

4.4. CONSTRAINS IN SEARCH SPACE 75

compute a set of matches, mij = (Ai, Bj), such that each element of A and B only appears once. It is noted,
that the size of A and B are usually not the same. One way of doing this is by minimizing,

min
∑
mij

d(Ai, Bi) , (4.3)

where d(·, ·) is the appropriate distance measure. This can be cast, with a bit of manipulation, as a linear
assignment problem, which have efficient solvers c.f. e.g. [16]. Another strategy which often works better, in
that it removes lower quality matches, is to define

Best(Ai) = min
j

d(Ai, Bi) , (4.4)

i.e. Best(Ai) is the best match for Ai in B. A similar measure is defined for the Bj . Then a match, mij , is
included if for a given i and j

Best(Ai) = Bj and Best(Aj) = Bi . (4.5)

That is Ai and Bj are each others most similar descriptors. As for efficiency of computation, the calculations
in (4.4) can be somewhat time consuming when a lot of features are present in each image. In that these
calculations have to be made for each possible descriptor pair, in the basic form. This is often done. However,
sometimes more efficient data structures such as KD-trees have been used, especially the structure in [2] has
been reported used.

4.4 Constrains in Search Space

An enhancement to the basic approach described in Section 4.1, is to constrain the search space. This is another
way of saying, that only some features in one image can match a given feature in the other. There are two main
reasons for this, firstly to limit the number of computations required. Secondly this is a way to incorporate prior
knowledge or assumptions of how the images are formed, reducing the number of errors.

A very popular constrain is on the numerical size of the optical flow. Another is if the camera geometry
is known, see Chapter 2, where the search space for a feature in one image can be constrained to a line. This
constraint is expressed by the fundamental or essential matrix. This is a very popular approach which is often
what makes a matching algorithm work in practice, see e.g. Figure 4.6.

76 CHAPTER 4. IMAGE CORRESPONDENCES

Figure 4.6: An example of the correspondence problem, where the two top images are to be matched. Features
are extracted as Harris corners, and matched via correlation. In the bottom row the blue arrows indicates the
displacements needed to get a match. On the left is an unconstraint matching, where as the camera geometry is
used to the right.

4.4. CONSTRAINS IN SEARCH SPACE 77

Figure 4.7: Illustration of how a SIFT descriptor is calculated. Given the patch, top row, the gradient is
calculated, middle row. The gradient field is formed into a modulus and argument representation, bottom left.
Lastly, bottom right, the patch is divided into a 4 by 4 grid where an 8 bin histogram is calculated over the
angles weighted by the modulus. In the last row the angle is denoted by the color.

78 CHAPTER 4. IMAGE CORRESPONDENCES

Part III

Appendices

79

Appendix A

A few Elements of Linear Algebra

This is an outline of a few elements from linear algebra used in this text, and which experience has shown needs
explanation. This is, however, not a course-note in linear algebra. So if linear algebra is not clear and present1,
please look it up, e.g. in [6, 8], since it is a basis for much of the subject presented in this text.

A.1 Basics of Linear Algebra

This section presents a very concise overview of the basics of linear algebra, intended as a reference and brush
up, e.g. if it is some time since the reader last worked with this subject.

1. A vector v is a collection of scalars, vi in a row or a column, i.e.

v =

v1

v2
...

vn

 .

2. A vector can be transposed, switching between rows and columns i.e.

vT =

v1

v2
...

vn

T

=
[

v1, v2, . . . , vn

]
.

3. Two vectors v and w can be multiplied as follows

vTw =
[

v1, v2, . . . , vn

]

w1

w2
...

wn

 =
n∑

i=1

viwi ,

Assuming that they have the same length — here n.

4. Thus the two norm, or Euclidian distance, of a vector, v can be written as

||v||2 =

√√√√ n∑
i=1

v2
i =
√

vTv .

1The first section is a small brush up though.

81

82 APPENDIX A. A FEW ELEMENTS OF LINEAR ALGEBRA

5. The angle, α, between two vectors v and w is given by

cos(α) =
vTw

||v|| · ||w||
.

So if two vectors, v and w, are orthogonal (perpendicular or 90 degrees to each other)

0 = cos(
π

2
) = vTw .

6. A Matrix A as an array of scalars, i.e (here an m by n matrix)

A =

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 ,

7. The transposed of a m×n matrix, A, is a n×m matrix, AT. Here element aji in AT is equal to element
aij in A.

8. We can view a matrix like a collection of vectors, e.g. each row, such that aT
i: = [ai1, . . . , ain]T , and the

A from above has the following form

A =

aT

1:

aT
2:
...

aT
m:

 .

Thus multiplication of a matrix by and a vector, Av, is given by the vector times the individual rows
(here the vector is multiplied to the right), i.e.

Av =

aT

1:v
aT

2:v
...

aT
m:v

 =

∑m

j=1 a1jvj∑m
j=1 a2jvj

...∑m
j=1 anjvj

 .

Here the vector v has to have length m and the resulting product will be a vector of length n (here A is
an m by n matrix). Similarly we can multiply a vector with a matrix, vTA, (here the vector is multiplied
to the left), as follows, denoting the the rows of A by a:j ,

vTA =
[

vTa:1 vTa:2 . . . vTa:n

]
=

[∑n
i=1 viai1

∑n
i=1 viai2 . . .

∑n
i=1 viain

]
.

Here the vector v has to have length n and the resulting product will be a vector of length m (here A is
an m by n matrix).

9. As matrix vector multiplication can be decomposed into vector-vector multiplication, by reducing the
matrix into a collection of vectors, so can matrix-matrix multiplication, AB. This is done by reducing A
into it’s rows, and B into it’s columns. i.e.

A =

aT

1:

aT
2:
...

aT
m:

 ,

B =
[

b:1 b:2 . . . b:n

]
.

A.1. BASICS OF LINEAR ALGEBRA 83

Then

AB =

aT

1:b:1 aT
1:b:2 . . . aT

1:b:l

aT
2:b:1 aT

2:b:2 . . . aT
2:b:l

...
...

. . .
...

aT
m:b:1 aT

m:b:2 . . . aT
m:b:l

=

∑n

k=1 a1kbk1
∑n

k=1 a1kbk2 . . .
∑n

k=1 a1kbkl∑n
k=1 a2kbk1

∑n
k=1 a2kbk2 . . .

∑n
k=1 a2kbkl

...
...

. . .
...∑n

k=1 amkbk1
∑n

k=1 amkbk2 . . .
∑n

k=1 amkbkl

Here the dimensions of A are m × n and the dimensions of B are n × l. It is noted the the number of
columns of A and thee number of rows in B should be equal, for this multiplication to be possible/well-
defined/allowed. This is due to the vectors ai: and b:j having to have the same length to be multiplied.

10. A matrix or a vector can be multiplied by a scalar, s, by multiplying all the elements with the scalar in
question, i.e.

sv =

sv1

sv2
...

svn

 .

11. Addition of matrices or vectors, of the same dimensions, is done by adding the individual elements, e.g.
(assuming the dimensions of A and B are m× n)

A + B =

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 +

b11 b12 . . . b1n

b21 b22 . . . b2n
...

...
. . .

...
bm1 bm2 . . . bmn

=

a11 + b11 a12 + b12 . . . a1n + b1n

a21 + b21 a22 + b22 . . . a2n + b2n
...

...
. . .

...
am1 + bm1 am2 + bm2 . . . amn + bmn

 .

12. Common rules for matrix — and thus vector2 — arithmetic are (given that the elements have the appro-
priate dimensions)

• Matrix multiplication is associative:

A(BC) = (AB)C .

• Matrix multiplication is distributive:

A(B + C) = AB + BC ,

(A + B)C = AC + BC

• Matrix multiplication is compatible with scalar multiplication:

c(AB) = (cA)B = (Ac)B = A(cB) = A(Bc) = (AB)c .

• Matrix multiplication is not commutative in general, i.e.

AB 6= BA .

2A vector can be seen as a matrix with one dimension equal to one.

84 APPENDIX A. A FEW ELEMENTS OF LINEAR ALGEBRA

• The order of multiplication is reversed when transposing a multiplication, i.e.

(AB)T = BTAT , (ABC)T = CTBTAT .

13. The inverse of square n× n matrix, A, is a n× n matrix, A−1 with the properties that

A−1A = AA−1 = I ,

Where I is the identity matrix, i.e. a matrix with all zeros, except for the diagonal which is one. It is
noted, that A−1 only exist if A has full rank, equivalent to it having a determinant different from zero.

14. The trace of a n× n square matrix, A is the sum of the diagonal elements, i.e.

Trace(A) =
n∑

i=1

aii .

In terms of eigen values, λi, the trace is equal to the sum, i.e. Trace(A) =
∑n

i=1 λi.

15. The determinant of a n× n square matrix, A is formally given by

det(A) =
∑
σ∈Sn

sgn(σ)
n∏

i=1

Ai,σ(i) .

where σ is a permutation of the numbers 1, . . . , n, and Sn is the set of all such permutations. The function
sgn is plus or minus one, depending on if σ is an even or an odd permutation. For 2 × 2 matrices, this
formula has the following appearance

det(A) = det
[

a11 a12

a21 a22

]
= a11a22 − a12a21 .

Similarly for 3× 3 matrices

det(A) = det

 a11 a12 a13

a21 a22 a23

a31 a32 a33

= a11a22a33 + a12a23a31 + a13a21a32 − a11a23a32 − a12a21a33 − a13a22a31 .

In terms of eigen values, λi, the determinant is equal to the product, i.e.

det(A) =
n∏

i=1

λi .

16. Some common rules for determinant arithmetic include

• The determinant of a matrix is equal to the determinant of it’s transposed, i.e.

det(AT) = det(A) .

• The determinant of product of a matrix product is equal to the product of the two matrices determi-
nant, i.e.

det(AB) = det(A) det(B) .

• The determinant of an inverted matrix is equal to one divided by the determinant of the matrix, i.e.

det(A−1) =
1

det(A)
.

The last rule implies, that if a matrix A is invertible it’s determinant must be different from zero, i.e. it
holds that

det(A) 6= 0 ⇔ A−1exists .

A.1. BASICS OF LINEAR ALGEBRA 85

17. The columns of a matrix, A, can be linear dependent, e.g. if there exists αj such that

a:1 =
n∑

j=2

αja:j ,

where a:j are the columns of A, then a:1 is linear dependent of the rest of the columns of A. The largest
set of columns of A, such that no column is is linear dependent on the other is the rank of A. This
is also referred to the maximum number of linear independant columns of A. The number of linear
independent columns is equal to the number of linear independent rows, thus there is no need to talk
about a column-rank and a row-rank. The rank of a matrix is also the dimension of the image of

f(v) = Av .

If all a matrix rows or columns are linear independent it is said to have full rank.

18. Let A be a square n× n matrix with full rank, and an n-dimensional vector b, then

Ax = b .

is a system or set of linear equations which uniquely determines x, i.e.

x = A−1b .

In practice A−1 would not be computed explicitly to solve for x, instead a more suitable numerical
routine would be used, e.g. LU-factorization.

19. A m × n matrix A can be seen as a mapping from <n to <m. If A has a rank lower than n (this also
includes n > m), A has a non-trivial (right) null space. The right null space is composed of the non-zero
vectors, x, for which i holds that

Ax = 0 .

The left null space can equivalently be defined as

xTA = 0 .

Lastly it should be noted that the dimension of the right null space k has the following relationship with
the rank of A

k + rank(A) = n .

A.1.1 Eigenvalues

A matrix, A, can have many interpretations, e.g. as measured data or an operator. In the latter case it can be
seen as a function of a vector v, i.e.

f(v) = Av .

When viewing a matrix as an operator, any n × n square matrix, A, has eigenvalues, λi, and eigenvectors, xi,
such that

Axi = λixi , ||xi||2 > 0 .

That is, that for a set of non-zero vectors, xi, applying A to the vector is equivalent to scaling the vector by a
factor of λi. For any set of eigenvector and eigenvalue, xi, λi it thus holds that

Axi − λixi = 0⇒ (A− λiI)xi = 0 .

If (A− λiI) is invertible then
xi = (A− λiI)−10 = 0 ,

which is contrary to our requirement that ||xi||2 > 0. Thus (A− λiI) cannot be invertible, and

det(A− λiI) = 0 .

86 APPENDIX A. A FEW ELEMENTS OF LINEAR ALGEBRA

Writing out the left side of this equation gives a polynomial in λi, which is called the characteristic polynomial
for A. Finding the roots of the characteristic polynomial, is one way of finding the eigenvalues. Once the
eigenvalues have been found the corresponding eigenvectors can be found by solving the following system of
linear equations

(A− λiI)xi = 0 .

The roots of the characteristic polynomial might very well be complex. However, for symmetric matrices, i.e.
A = AT, the eigenvalues are always real.

Eigenvalues and eigenvectors are a prime tools for the analysis of matrices. Among others the rank of a
matrix is equal to the number of non-zero eigenvalues. The condition number of a matrix is equal to the ratio
between the numerically largest and smallest eigenvalues. (This condition number is a prime indicator for the
numerical stability of many matrix operations).

The eigne vectors, where the vector v is multiplied to the right of A are also called right eigenvectors.
Correspondingly there also exist left eigenvectors. If nothing else is stated right eigenvectors are assumed. For
symmetric matrices the right and left eigenvector are equal — as would be expected.

A square matrix, A, can be decomposed or factored via its eigenvalues and vectors. Let X be the matrix
where the jth column is the jth normalized eigenvector of A. Let Λ be the diagonal3 matrix where the diagonal
element Λjj = λj . Then A can be decomposed into

A = XΛX−1 .

For symmetric matrices X is a orthonormal matrix, i.e. all the eigenvectors are orthogonal (i.e. perpendicular)
to each other, among others implying that X−1 = XT. If the determinant is 1 (and not -1) this is a rotation
matrix.

The eigen-decomposition implies, that the solution to

max
v
||Av||2 = max

v
vTATAv , ||v||2 = 1 , (A.1)

is v equal to the eigenvector corresponding tho the largest eigenvalue of ATA. The same holds for the equiv-
alent minimization problem, where the eigenvector corresponding to the smallest eigenvalue is chosen.

Product Optimization – Argument*

To see this we will use Lagrange multipliers, whereby (A.1) becomes, where γ is used for the Lagrange multi-
plier,

0 =
∂

∂V
vTATAv − γ(vTv − 1)

= ATAv − γv

=
(
ATA− γI

)
v ,

implying that a necessary condition is v that is an eigenvector of ATA. Noting that ATA is a symmetric
matrix X must be orthonormal. Therefor, setting v equal to the jth eigenvector of ATA, will make Xv equal
to a vector that is all zeros, except for the jth element, which will be 1. Letting

ATA = XΛXT ,

vTATAv = vTXΛXTv = ||ΛXTv|| = σj .

since X is just a rotation, which does not the norm. Thus the largest (respectively smallest) value of (A.1)
is obtained by choosing the largest (respectively smallest) σj . This corresponds to choosing the eigenvector
corresponding to the largest(respectively smallest) eigenvalue of ATA.

3All but the diagonal elements are zero.

A.2. LINEAR LEAST SQUARES 87

A.2 Linear Least Squares

A problem that we often want to solve is the so called least squares problem, i.e

min
x
||Ax− b||2 . (A.2)

To solve (A.2), denote the residual error vector ε by

ε = Ax− b ,

And (A.2) is equivalent to
min

x
||ε||2 .

It is then seen that

||ε||2 = εT ε

= (Ax− b)T (Ax− b)
= xTATAx− xTATb− bTAx + bTb

= xTATAx− 2bTAx + bTb ,

Where it is seen that xTATb = (xTATb)T = bTAx, since this is a scalar, and the transposed of a scalar is
the same scalar. To solve (A.2) we will set the derivative of ||ε||2 with respect to x equal to zero, i.e.

0 =
∂

∂x
||ε||2

=
∂

∂x
xTATAx− 2bTAx + bTb

= 2ATAx− 2ATb⇒
ATAx = ATb⇒

x = (ATA)−1ATb . (A.3)

This assumes that ATA has full rank and is invertible. If this is not the case the problem is not well constrained,
and there exist several solution for x. It is noted that (A.3) are often called the normal equations. A special
version of (A.2) is when b = 0, in which case the problem reduces to

min
x
||Ax||2 = min

x
xTATAx .

As seen in Appendix A.1.1, the solution is the eigenvector corresponding to the smallest eigenvalue of ATA.
Usually the solution is found via singular value decomposition (SVD) of A, since this is the most numerically
stabile.

A.3 Rotation

A rotation, R, is a square n× n matrix where,

• All rows, rT
i , are orthogonal to each other, and have norm 1,i.e.

∀i 6= j rT
i rj = 0 and ∀i rT

i ri = ||ri||22 = 1 .

• All columns, cj, are orthogonal to each other, and have norm 1,i.e.

∀i 6= j cT
i cj = 0 and ∀i cT

i ci = ||ci||22 = 1 .

• Has determinant +1.

88 APPENDIX A. A FEW ELEMENTS OF LINEAR ALGEBRA

The first two items are equivalent to

RTR =

cT
1

cT
2
...

cT
n

 [
c1 c2 . . . cn

]
=

1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 = I ,

RRT =

rT
1

rT
2
...

rT
n

 [
r1 r2 . . . rn

]
=

1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 = I ,

Thus the inverse of a rotation matrix is given by it’s transposed, i.e.

R−1 = RT . (A.4)

A rotation matrix is thus an orthonormal basis, and it can be used as a basis shift from one orthonormal basis
to another (to change between right handed Cartesian coordinate systems a translation is generally also needed
since a rotation does not change the location of origo).

Matrices fulfilling the first two requirements above, can have a determinant of either−1 or +1, an are called
orthonormal matrices. Thus a rotation is a special orthonormal matrix. An interpretation of a orthonomal matrix
with determinant −1 is that it is a reflection, e.g. −1 0 0

0 1 0
0 0 1

 ,

which has a determinant of −1 and is a reflection about the x-axis, when applied to a vector, i.e. −1 0 0
0 1 0
0 0 1

v .

Rotation Axis

Angle of Rotation, θ

Figure A.1: A rotation matrix rotates all points with an angle of θ around an axis.

In 2D a rotation matrix can be parameterized as

R(θ) =
[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]
,

where
R(θ)v ,

A.3. ROTATION 89

is a rotation of v by an angle of θ. Apart from the 2D rotation the 3D rotation is of special interest, since it
represents rotations in the space we inhabit. It is used to represent the rotation of a vector, v, around the origo,
to ṽ i.e.

ṽ = Rv .

In general4, a rotation matrix rotates all points with an angle of θ around an axis, see Figure A.1. This axis, a,
will have the property that

a = Ra ,

and is as seen to be an eigenvector of the rotation matrix – which also yeilds an algorithm for finding it. In
general a rotation matrix will only have one real (and two complex conjugate) eigenvalues, and the axis, a, is
the one corresponding to the real eigenvalue.

Several rotations can be combined, i.e.

R = R1R2R3 . . .

and the end result will still be a rotation, with a single axis of rotation.

A.3.1 Parametrization of Rotations in 3D

A rotation matrix has three degrees of freedom – two for the axis of rotation (a 3D vector with length 1), and
one for the angle of rotation. Often times it is necessary to parameterize a rotation matrix in terms of such 3
parameters (sometimes four are used as explained bellow). One way of doing this is to compose the rotation
matrix of rotations around the three coordinate axis, i.e.

R(ω, φ, κ) = Rz(κ)Ry(φ)Rx(ω) . (A.5)

These rotations can easily be composed by generalizing the rotation in 2D, i.e.

Rx(ω) =

 1 0 0
0 cos(ω) − sin(ω)
0 sin(ω) cos(ω)

 ,

Ry(φ) =

 cos(φ) 0 − sin(φ)
0 1 0

sin(φ) 0 cos(φ)

 ,

Rz(κ) =

 cos(κ) − sin(κ) 0
sin(κ) cos(κ) 0

0 0 1

 .

Multiplying out (A.5) gives

R(ω, φ, κ) =

 r11 r12 r13

r21 r22 r23

r31 r32 r33

 ,

where

r11 = cos(φ) cos(κ)
r12 = − sin(ω) sin(φ) cos(κ)− cos(ω) sin(κ)
r13 = − cos(ω) sin(φ) cos(κ) + sin(ω) sin(κ)
r21 = cos(φ) sin(κ)
r22 = − sin(ω) sin(φ) sin(κ) + cos(ω) cos(κ)
r23 = − cos(ω) sin(φ) sin(κ)− sin(ω) cos(κ)
r31 = sin(φ)
r32 = sin(ω) cos(φ)
r33 = cos(ω) cos(φ)

4When the angle of rotation is non-zero.

90 APPENDIX A. A FEW ELEMENTS OF LINEAR ALGEBRA

This parameterizations scheme is called Euler angles. There are, however, many orders in which there can be
rotated around the axis, so there is a multitude of Euler angle parameterizations.

A problem with using Euler angels is the so-called Gimbal lock, which implies that for some ω, φ, κ values
the parametrization looses a degree of freedom. This is another way of saying that this parametrization has
a singularity. It can be proven, that such singularities, c.f. e.g. [3], will always exist when using only three
parameters to parameterize a rotation. This, among others, has the effect that the derivative of the rotation
matrix, e.g.

∂R(ω, φ, κ)
ω

,

Becomes zero for certain ω, φ, κ configurations. This is e.g. a serious problem for many optimization problems
involving rotations, e.g.

min
ω,φ,κ

f(R(ω, φ, κ)) ,

for some function f . To address this problem other parameterizations exist. Notably, quaternions, c.f. e.g. [1,
10], which use four parameters to parameterize, and the Rodrigues formula which use a local parametrization.

A.4 Change of Right Handed Cartesian Coordinate Frame

A cartesian coordinate system or frame is an orthonormal one, i.e. all the coordinate axis are orthogonal and
have unit length. Right handed implies that the the z-axis is the cross product of the x-axis and y-axis. The
center or origo of such a coordinate system must be given, but can be arbitrary — with respect to some global
system. Assume that a point, x is given in the global5 right handed cartesian coordinate system, then we can
transform it into any other right handed Cartesian coordinate system, with coordinates x†, via

x† = R†x + t† ,

Where R† is a rotation and t† is a translation. The columns of R† are the coordinate vectors of the new
coordinate system. Note, that the coordinate axis of any right handed Cartesian coordinate system can be
expressed as a rotation matrix in this way and vice versa. If the requirement that detR = +1 was not enforced
we could also map to a left handed coordinate system. The translation vector, t†, is equal to the origin of the
new coordinate system in the global coordinate system. The reverse transformation is given by

x = R†TR†x

= R†T(R†x + t† − t†)
= R†T(x† − t†)
= R†Tx† −R†Tt† .

Here R†T and R†Tt† are a rotation and a translation respectively. Given another right handed Cartesian coor-
dinate system where x has coordinates x‡, the transforation to this coordinate system is given by

x‡ = R‡x + t‡

= R‡(R†Tx† −R†Tt†) + t‡

= R‡R†Tx† −R‡R†Tt† + t‡ .

Where again, R‡R†T and −R‡R†Tt† + t‡ are a rotation and a translation respectively. Thus demonstrating
that we can get from any right handed Cartesian coordinate system to another via a rotation and a translation.
Furthermore, it is demonstrated how this rotation and rotation should look, given the two coordinate systems
relation to the global coordinate system — or any other coordinate system for that matter.

A.5 Cross Product as an Operator

The cross product between two vectors a and b, denoted a× b, is given by

a× b =

 a1

a2

a3

×
 b1

b2

b3

 =

 a2b3 − a3b2

a3b1 − a1b3

a1b2 − a2b1

 . (A.6)

5Largely a matter of definition.

A.6. SVD – GENERALIZED EIGEN VALUES* 91

a

b

axb

Figure A.2: The cross product a × b between vector a and b. Note the right hand rule, which determines the
direction of a× b.

The cross product produces a vector, which is orthogonal to both a and b, and has the length

sin θ||a||2||b||2 ,

where θ is the angle between a and b, see Figure A.2. It is therefor also refereed to as the sine product. If
sa = b, where s is a scalar then the cross product is zero. This consistent with the sine of zero being zero.
More formally

a× b = a× sa =

 a1

a2

a3

×
s

 a1

a2

a3

 = s

 a2a3 − a3a2

a3a1 − a1a3

a1a2 − a2a1

 =

 0
0
0

 = 0 .

The cross product of a vector, a, with any other vector, b, can be formulated as a matrix vector multiplica-
tion. In other words, the cross product of a vector, a, with any other vector is a linear operator. To see this, we
can write (A.6) as a2b3 − a3b2

a3b1 − a1b3

a1b2 − a2b1

 =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 b1

b2

b3

 = [a]× · b , (A.7)

where [a]× is the skew symmetric matrix in question.

A.6 SVD – Generalized Eigen Values*

The singular value decomposition(SVD) [11] is a generalization of the eigne value decomposition of square
symmetric matrices to all matrices. That is that all matrices A can be written as (assume the dimensions of A
is m× n)

A = UΣVT , (A.8)

where U is a m × m orthonormal matrix and V is a n × n orthonormal matrix . A orthonormal or unitary
matrix is the same as a rotation matrix without the constraint that the determinant should be +1. That is that
the determinant of a orthonormal matrix can be −1 or +1. It is noted that orthonormal matrices form are
composed of a orthonormal basis, and thus UTU = UUT = I and VTV = VVT = I. The matrix Σ is a
m × n diagonal matrix, where the diagonal elements are the so-called singular values σi. The σi are positive
and ordered such that

σ1 ≥ σ2 ≥ . . . σk ≥ 0 , k = min(m,n) .

That is

Σ =
[

Σ̃ 0
]

, m ≤ n

Σ =
[

Σ̃
0

]
, m > n

Σ̃ = diag(σ1, σ2, . . . , σk) .

92 APPENDIX A. A FEW ELEMENTS OF LINEAR ALGEBRA

This is seen to be a generalization of the eigendecomposition of of symmetric square matrices, where
the resulting decomposition is also a orthonormal matrix of eigenvectors followed by a diagonal matrix of
eigenvalues and lastly followed by the same orthonormal matrix of eigenvectors transposed. This also leads
us to a way of deriving the singular value decomposition, noting that AT A and AAT are symmetric positive
semi-definite6 matrices,

ATA = (UΣVT)T (UΣVT) = VΣTUTUΣVT = VΣTΣVT ,

Thus VT are the eigenvectors of ATA. Similarly

AAT = (UΣVT)(UΣVT)T = UΣVTVΣTUT = UΣΣTUT ,

The eigenvectors of AAT are equal to U. Lastly the singular values are square root of the largest k eigenvalues
of AAT or ATA, subsequently ordered, i.e. (assuming the eigenvalues are ordered correctly)

σi =
√

λi(AAT) =
√

λi(ATA) .

The use of the SVD is widespread, in part because it is an efficient algorithm, and in part because it yields nice
interpretations of matrices and good accompanying algorithms. When interpreting a matrix via SVD we first
have to distinguish if the matrix models a function from <n ← <m, i.e. w = Av, or a collection of data points,
i.e. each row of A is a measurement.

If we view a matrix, A = UΣVT, as a function, w = Av = UΣVTv. Then, firstly, v′ = VTv is a basis
shift of v, one can think of it as a rotation. Then w′ = Σv′ is a scaling of the coordinates of v′, i.e. w′

i = σiv′i
for i ∈ [1, . . . , k]. Lastly, w = Uw′ is again a basis shift of w′. Any matrix function can, thus, in the right
basis, be seen solely as a diagonal scaling, and ||w||2 ≤ σ1||v||2. Further more, expressing v in terms of the
basis V, the part in the direction of the ith row of V is scaled by a factor of σi. So if we want to maximize or
minimize Av wrt. v, we just have to set v equal to the first or last rows of V respectively. Lastly, the rows of
U corresponding to zero eigenvalues or have an index larger then k are the null-space of the function, i.e. the
basis of the parts of <m that Av cannot ’reach’.

If we view a matrix as a set of measurements, i.e.

A =
[

a1 a2 . . . an

]
,

where the rows aj are measurements. Then apart from revealing the variance structure of the measurements, in
that

n∑
j=1

ajaT
j = AAT = UΣVTVΣTUT = UΣΣTUT ,

it also gives the ’best’ low rank approximation. Charged with finding the q dimensional approximation that
expresses most of A (q < k), the solution is given by

B =
q∑

i=1

uiσivT
i

where ui and vi are the rows of U and V respectively. That is, that B = C is the rank q matrix that minimizes

min
m

bC||A−C||Fro ,

where || · ||Fro is the Frobenius norm. This can e.g. be used to fit a plane to a data set. Lastly, it should be
mentioned that it is also possible to analytically compute the derivative of the SVD wrt. A, c.f. [22].

The Frobenius norm of matrices is given by

m∑
i=1

n∑
j=1

a2
ij = Trace(ATA) = Trace(AAT) .

As seen above this norm is closely tied with the SVD and minimizes the sum of squared errors. It is noted that
many other matrix norms exist

6All eigenvalues are positive or zero

A.7. KRONECKER PRODUCT* 93

A.7 Kronecker Product*

The Kronecker product[9, 28], between two matrices A and B is defined as the mp× nq matrix

A⊗B =

 a11B . . . a1nB
...

. . .
...

am1B . . . amnB

 , (A.9)

where A is an m×n matrix and B is a p× q matrix. In other words, the Kronecker product produces a matrix,
consisting of blocks of the matrix B, one block for each element of A, and each block multiplied with the
respective element of A. As an example consider

[
0.01 0.1
1 10

]
⊗

[
1 2 3
4 5 6

]
=

0.01 0.02 0.03 0.1 0.2 0.3
0.04 0.05 0.06 0.4 0.5 0.6
1 2 3 10 20 30
4 5 6 40 50 60

 .

Arithmetic with the Kronecker product often uses the vectorization function, vec. This function produces a
vector from a matrix by stacking all the columns. Denote the columns of A by cj , then

vec(A) = vec
([

c1 c2 . . . cn

])
=

c1

c2
...

cn

 . (A.10)

As an example consider

vec

([
1 2 3
4 5 6

])
=

1
4
2
5
3
6

 .

It is seen that vec(v) = v for a vector v, and thus vec(Av) = Av since Av is a vector.
Common rules for Kronecker arithmetic include, where A,B,C and D are matrices of appropriate dimen-

sions and s is a scalar.

1. A⊗ (B + C) = A⊗B + A⊗C

2. (A + B)⊗C = A⊗C + B⊗C

3. s(A⊗B) = (sA)⊗B = A⊗ (sB)

4. (A⊗B)⊗C = A⊗ (B⊗C)

5. (A⊗B)(C⊗D) = AC⊗BD

6. Generally the Kronecker product is not commutative, i.e. generally A⊗B 6= B⊗A

7. The transpose does not reverse the order, i.e. (A⊗B)T = AT ⊗BT

8. If the inverse of A and B exist, then (A⊗B)−1 = A−1 ⊗B−1

9. Given the square m×m matrix E and square n× n matrix F, then det(E⊗ F) = det(E)n det(F)m

10. Given ABC = D then
vec(ABC) = (CT ⊗A)vec(B) = vec(D) .

94 APPENDIX A. A FEW ELEMENTS OF LINEAR ALGEBRA

Here especially rule 10 is used in this text, in the following context; if A,B and C are known as well as
the relation

AXB = C ,

which we want to write as a linear equation in the elements of the unknown X, then rule 10 gives us

(BT ⊗A)vec(X) = vec(C) .

Here C might be a scalar, i.e. a 1× 1 matrix.

A.8 Domain*

In all of this appendix it has been assumed that we were dealing with real < numbers. The presented material
applies almost unchanged for a variety of other domains. In particular every thing holds for complex num-
bers, C, with the exception that transposed, AT , should be exchanged with the conjugate transpose (Hermitian
adjoint), AH . The conjugate transpose is an operation where the matrix is first transposed, and then all the
elements of the matrix are conjugated, i.e. the sign of the complex part changed. As an example consider 1 + i 1 + 2i

−1 + i −1− i
i 2

H

=
[

1− i −1− i −i
1− 2i −1 + i 2

]
.

Bibliography

[1] T. Akenine-Möller and E. Haines. Real-Time Render-
ing (2nd Edition). AK Peters, Ltd., 2002.

[2] S. Arya, D.M. Mount, N.S. Netanyahu, R. Silverman,
and A.Y. Wu. An optimal algorithm for approximate
nearest neighbor searching fixed dimensions. Journal
of the ACM (JACM), 45(6):891–923, 1998.

[3] S.I. Bishop, R.L. andGoldberg. Tensor Analysis on
Manifolds. Dover Publications, 1980.

[4] J. Canny. A computational approach to edge detec-
tion. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 8(6):679–698, 1986.

[5] J.M. Carstensen(Editor). Image Analysis, Vision and
Computer Graphics. Tehnical University of Denmark,
2002.

[6] J. Eising. Lineær Algebra. Technical University of
Denmark, Department of Mathematics, 1997.

[7] P. Favaro and S. Soatto. A geometric approach to
shape from defocus. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 27(3):406–417,
2005.

[8] G.H. Golub and C.F. van Loan. Matrix Computations.
Johns Hopkins University Press, 3rd edition, 1996.

[9] A. Graham. Kronecker Products and Matrix Calcula-
tions with Applications. John Wiley, New York, 1981.

[10] W. Hamilton. Lectures on Quaternions. Hodges and
Smith & Co., Dublin, 1853.

[11] P.C. Hansen. Rank-Deficient and Discrete Ill-Posed
Problems. Numerical Aspects of Linear Inversion.
SIAM, Philadelphia, 1998.

[12] R.M. Haralick, Chung-Nan Lee, K. Ottenberg, and
M. Nolle. Review and analysis of solutions of the
three point perspective pose estimation problem. In-
ternational Journal of Computer Vision, 13(3):331–
356, 1994.

[13] C. Harris and M. Stephens. A combined corner and
edge detector. In Proc. Alvey Conf., pages 189–192,
1988.

[14] R. I. Hartley and A. Zisserman. Multiple View Geom-
etry – 2nd edition. Cambridge University Press, The
Edinburgh Building, Cambridge CB2 2RU, UK, 2003.

[15] J. Heikkila. Geometric camera calibration using cir-
cular control points. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 22(10):1066–
1077, 2000.

[16] R. Jonker and A. Volgenant. A shortest augmenting
path algorithm for dense and sparse linear assignment
problems. Computing, 38:325–340, 1987.

[17] F. Kahl, S. Agarwal, M.K. Chandraker, D. Kriegman,
and S. Belongie. Practical global optimization for
multiview geometry. International Journal of Com-
puter Vision, 79(3):271–284, 2008.

[18] M. Levoy, S. Rusinkiewcz, M. Ginzton, J. Ginsberg,
K. Pulli, D. Koller, S. Anderson, J. Shade, B. Cur-
less, L. Pereira, J. Davis, and D. Fulk. The digital
michelangelo project: 3d scanning of large statues.
Computer Graphics Proceedings. Annual Conference
Series 2000. SIGGRAPH 2000. Conference Proceed-
ings, pages 131–44, 2000.

[19] T. Lindeberg. On the axiomatic foundations of lin-
ear scale-space: Combining semi-group structure with
causality vs. scale invariance, 1997.

[20] David G. Lowe. Distinctive image features from
scale-invariant keypoints. International Journal of
Computer Vision, 60(2):91–110, 2004.

[21] D. Nister. An efficient solution to the five-point rel-
ative pose problem. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 26(6):756–770,
2004.

[22] T. Papadopoulo and M.I.A. Lourakis. Estimating the
jacobian of the singular value decomposition: The-
ory and applications. In Research report, INRIA
Sophia-Antipolis, 2000. In preparation, pages 554–
570. Springer, 2000.

[23] Deriche R. Fast algorithms for low-level vision. IEEE
Trans. Pattern Anal. Mach. Intell., 12(1):78–87, 1990.

[24] S. Ray. Applied Photographic Optics, Third Edition.
Focal Press, 2002.

[25] J. Sporring. Gaussian Scale-Space Theory. Kluwer
Academic Publishers, 1997.

[26] H. Stewenius, D. Nister, F. Kahl, and F. Schaffilitzky.
A minimal solution for relative pose with unknown fo-
cal length. Image and Vision Computing, 26(7):871–
877, 2008.

[27] T. Tuytelaars and K. Mikolajczyk. Local invariant
feature detectors: a survey. Found. Trends. Comput.
Graph. Vis., 3(3):177–280, 2008.

[28] C.F. van Loan. The ubiquitous kronecker product.
Journal of Computational and Applied Mathematics,
123(1-2):85–100, 2000.

95

Index

2-norm, 81
5-Point Algorithm, 53
7-Point Algorithm, 53
8-Point Algorithm, 52

algebraic error, 50
Algebraic error measure, 48

Back projection, 35
Point, 35

Back-projection
Line, 36

Barrel distortion, 27
Baseline, 44
Blob detector, 66

Camera
Calibration, 30, 50
Pose estimation, 50
Position, 50
Resection, 50

Camera center, 20
Camera geometry

A plane, 42
General two view, 37
No baseline, 44

Camera model, 13
Notation, 32
Orthographic, 16
Pinhole, 17

Canny edge detector, 68
Canny-Deriche edge detector, 68
Cartesian coordinate frame, 14, 90
Characteristic polynomial, 85
Coordinate system, 14
Corner detector, 62
Correlation based matching, 72
Cross product, 90

Determinant, 84
Difference of Gaussians (DoG), 67

Edge detector, 68
Eigendecomposition, 85
Eigenvalues, 85
Eigenvectors, 85
Epipolar constraint, 37
Epipolar geometry, 37
Epipolar line, 37
Epipolar plane, 37
Epipole, 40
Essential matrix, 37, 38

Estimation, 53

Euclidian distance, 81
Euclidian norm, 81
Euler angles, 89

Feature
Blob, 66
Corner, 62
Determinant of Hessian, 66
Edge, 68
Laplacian, 66
Trace of Hessian, 66

Feature descriptors, 72
Feature matching strategies, 74
Field of view, 22
Filter size, 59
Focal length , 20
Frobenius norm, 92
Fundamental matrix, 37, 38

Estimate, 52

Gaussian Kernel, 60

Harris Corner Detector, 62
Homogeneous coordinates, 9

Distance to line, 12
Line, 10
Line intersection, 11
Point at infinity, 10

Homography, 41

Image filtering, 59
Image panoramas, 44
Image pyramid, 60
Image scale, 59

Kronecker product, 93

Laser plane, 49
Laser scanner, 49
Least squares, 87
Line

Back-projection, 36
Distance to, 12
Intersection, 11

Linear algebra, 81
Linear least squares, 87

Matrix, 81
Invertible, 84
Norm, 92
Transpose, 82

Modelling, 13

Noise model, 48

96

INDEX 97

Non-maximum suppression, 64
Normal equations, 87
Null space, 85

Orthographic projection model, 16
Orthonormal matrix, 87
Orthophotos, 17

Pincushion distortion, 27
Pinhole camera model, 17

Extended, 26
Notation, 32
Summary, 31
Internal parameters, 20
Straight lines, 23

Plane at infinity, 10
Point

Back projection, 35
Triangulation, 45

Point at infinity, 10

Radial distortion, 26
Rank, 85
Relative orientation, 37
Right handed cartesian coordinate frame, 90
Roation matrix, 87
Rotation

Parameterization, 89

Scale space, 59
SIFT descriptors, 73
Singular value decomposition (SVD), 91
Singular values, 91
Sub-pixel accuracy, 65

Tangential distortion, 27
Trace, 84
Two norm, 81

Vector, 81
Vectorization function, 93

	I View Geometry
	Single Camera Geometry - Modelling a Camera
	Homogeneous Coordinates
	Modelling a Camera
	The Orthographic Projection Model
	The Pinhole Camera Model
	Radial Distortion - Refined Pinhole Model
	Camera Calibration
	End Notes

	Geometric Inference from Cameras - Multiple View Geometry
	What does an Image Point Tell Us About 3D?
	Epipolar Geometry
	Homographies for Two View Geometry
	Point Triangulation
	A Light Projector as a 'Camera'
	Camera Resection
	Estimating the Epipolar Geometry*
	Estimating a Homography*
	End Notes*

	II Image Features and Matching
	Extracting Features
	Importance of Scale
	The Aperture Problem
	Harris Corner Detector
	Blob Detection
	Canny Edge Detector

	Image Correspondences
	Correspondence via Feature Matching
	Feature Descriptor Examples
	Matching via Descriptors
	Constrains in Search Space

	III Appendices
	A few Elements of Linear Algebra
	Basics of Linear Algebra
	Linear Least Squares
	Rotation
	Change of Right Handed Cartesian Coordinate Frame
	Cross Product as an Operator
	SVD -- Generalized Eigen Values*
	Kronecker Product*
	Domain*

