/* maxflow.cpp */ #include #include "graph.h" #include "instances.inc" /* special constants for node->parent */ #define TERMINAL ( (arc *) 1 ) /* to terminal */ #define ORPHAN ( (arc *) 2 ) /* orphan */ #define INFINITE_D ((int)(((unsigned)-1)/2)) /* infinite distance to the terminal */ /***********************************************************************/ /* Functions for processing active list. i->next points to the next node in the list (or to i, if i is the last node in the list). If i->next is NULL iff i is not in the list. There are two queues. Active nodes are added to the end of the second queue and read from the front of the first queue. If the first queue is empty, it is replaced by the second queue (and the second queue becomes empty). */ template inline void Graph::set_active(node *i) { if (!i->next) { /* it's not in the list yet */ if (queue_last[1]) queue_last[1] -> next = i; else queue_first[1] = i; queue_last[1] = i; i -> next = i; } } /* Returns the next active node. If it is connected to the sink, it stays in the list, otherwise it is removed from the list */ template inline typename Graph::node* Graph::next_active() { node *i; while ( 1 ) { if (!(i=queue_first[0])) { queue_first[0] = i = queue_first[1]; queue_last[0] = queue_last[1]; queue_first[1] = NULL; queue_last[1] = NULL; if (!i) return NULL; } /* remove it from the active list */ if (i->next == i) queue_first[0] = queue_last[0] = NULL; else queue_first[0] = i -> next; i -> next = NULL; /* a node in the list is active iff it has a parent */ if (i->parent) return i; } } /***********************************************************************/ template inline void Graph::set_orphan_front(node *i) { nodeptr *np; i -> parent = ORPHAN; np = nodeptr_block -> New(); np -> ptr = i; np -> next = orphan_first; orphan_first = np; } template inline void Graph::set_orphan_rear(node *i) { nodeptr *np; i -> parent = ORPHAN; np = nodeptr_block -> New(); np -> ptr = i; if (orphan_last) orphan_last -> next = np; else orphan_first = np; orphan_last = np; np -> next = NULL; } /***********************************************************************/ template inline void Graph::add_to_changed_list(node *i) { if (changed_list && !i->is_in_changed_list) { node_id* ptr = changed_list->New(); *ptr = (node_id)(i - nodes); i->is_in_changed_list = true; } } /***********************************************************************/ template void Graph::maxflow_init() { node *i; queue_first[0] = queue_last[0] = NULL; queue_first[1] = queue_last[1] = NULL; orphan_first = NULL; TIME = 0; for (i=nodes; i next = NULL; i -> is_marked = 0; i -> is_in_changed_list = 0; i -> TS = TIME; if (i->tr_cap > 0) { /* i is connected to the source */ i -> is_sink = 0; i -> parent = TERMINAL; set_active(i); i -> DIST = 1; } else if (i->tr_cap < 0) { /* i is connected to the sink */ i -> is_sink = 1; i -> parent = TERMINAL; set_active(i); i -> DIST = 1; } else { i -> parent = NULL; } } } template void Graph::maxflow_reuse_trees_init() { node* i; node* j; node* queue = queue_first[1]; arc* a; nodeptr* np; queue_first[0] = queue_last[0] = NULL; queue_first[1] = queue_last[1] = NULL; orphan_first = orphan_last = NULL; TIME ++; while ((i=queue)) { queue = i->next; if (queue == i) queue = NULL; i->next = NULL; i->is_marked = 0; set_active(i); if (i->tr_cap == 0) { if (i->parent) set_orphan_rear(i); continue; } if (i->tr_cap > 0) { if (!i->parent || i->is_sink) { i->is_sink = 0; for (a=i->first; a; a=a->next) { j = a->head; if (!j->is_marked) { if (j->parent == a->sister) set_orphan_rear(j); if (j->parent && j->is_sink && a->r_cap > 0) set_active(j); } } add_to_changed_list(i); } } else { if (!i->parent || !i->is_sink) { i->is_sink = 1; for (a=i->first; a; a=a->next) { j = a->head; if (!j->is_marked) { if (j->parent == a->sister) set_orphan_rear(j); if (j->parent && !j->is_sink && a->sister->r_cap > 0) set_active(j); } } add_to_changed_list(i); } } i->parent = TERMINAL; i -> TS = TIME; i -> DIST = 1; } //test_consistency(); /* adoption */ while ((np=orphan_first)) { orphan_first = np -> next; i = np -> ptr; nodeptr_block -> Delete(np); if (!orphan_first) orphan_last = NULL; if (i->is_sink) process_sink_orphan(i); else process_source_orphan(i); } /* adoption end */ //test_consistency(); } template void Graph::augment(arc *middle_arc) { node *i; arc *a; tcaptype bottleneck; /* 1. Finding bottleneck capacity */ /* 1a - the source tree */ bottleneck = middle_arc -> r_cap; for (i=middle_arc->sister->head; ; i=a->head) { a = i -> parent; if (a == TERMINAL) break; if (bottleneck > a->sister->r_cap) bottleneck = a -> sister -> r_cap; } if (bottleneck > i->tr_cap) bottleneck = i -> tr_cap; /* 1b - the sink tree */ for (i=middle_arc->head; ; i=a->head) { a = i -> parent; if (a == TERMINAL) break; if (bottleneck > a->r_cap) bottleneck = a -> r_cap; } if (bottleneck > - i->tr_cap) bottleneck = - i -> tr_cap; /* 2. Augmenting */ /* 2a - the source tree */ middle_arc -> sister -> r_cap += bottleneck; middle_arc -> r_cap -= bottleneck; for (i=middle_arc->sister->head; ; i=a->head) { a = i -> parent; if (a == TERMINAL) break; a -> r_cap += bottleneck; a -> sister -> r_cap -= bottleneck; if (!a->sister->r_cap) { set_orphan_front(i); // add i to the beginning of the adoption list } } i -> tr_cap -= bottleneck; if (!i->tr_cap) { set_orphan_front(i); // add i to the beginning of the adoption list } /* 2b - the sink tree */ for (i=middle_arc->head; ; i=a->head) { a = i -> parent; if (a == TERMINAL) break; a -> sister -> r_cap += bottleneck; a -> r_cap -= bottleneck; if (!a->r_cap) { set_orphan_front(i); // add i to the beginning of the adoption list } } i -> tr_cap += bottleneck; if (!i->tr_cap) { set_orphan_front(i); // add i to the beginning of the adoption list } flow += bottleneck; } /***********************************************************************/ template void Graph::process_source_orphan(node *i) { node *j; arc *a0, *a0_min = NULL, *a; int d, d_min = INFINITE_D; /* trying to find a new parent */ for (a0=i->first; a0; a0=a0->next) if (a0->sister->r_cap) { j = a0 -> head; if (!j->is_sink && (a=j->parent)) { /* checking the origin of j */ d = 0; while ( 1 ) { if (j->TS == TIME) { d += j -> DIST; break; } a = j -> parent; d ++; if (a==TERMINAL) { j -> TS = TIME; j -> DIST = 1; break; } if (a==ORPHAN) { d = INFINITE_D; break; } j = a -> head; } if (dhead; j->TS!=TIME; j=j->parent->head) { j -> TS = TIME; j -> DIST = d --; } } } } if (i->parent = a0_min) { i -> TS = TIME; i -> DIST = d_min + 1; } else { /* no parent is found */ add_to_changed_list(i); /* process neighbors */ for (a0=i->first; a0; a0=a0->next) { j = a0 -> head; if (!j->is_sink && (a=j->parent)) { if (a0->sister->r_cap) set_active(j); if (a!=TERMINAL && a!=ORPHAN && a->head==i) { set_orphan_rear(j); // add j to the end of the adoption list } } } } } template void Graph::process_sink_orphan(node *i) { node *j; arc *a0, *a0_min = NULL, *a; int d, d_min = INFINITE_D; /* trying to find a new parent */ for (a0=i->first; a0; a0=a0->next) if (a0->r_cap) { j = a0 -> head; if (j->is_sink && (a=j->parent)) { /* checking the origin of j */ d = 0; while ( 1 ) { if (j->TS == TIME) { d += j -> DIST; break; } a = j -> parent; d ++; if (a==TERMINAL) { j -> TS = TIME; j -> DIST = 1; break; } if (a==ORPHAN) { d = INFINITE_D; break; } j = a -> head; } if (dhead; j->TS!=TIME; j=j->parent->head) { j -> TS = TIME; j -> DIST = d --; } } } } if (i->parent = a0_min) { i -> TS = TIME; i -> DIST = d_min + 1; } else { /* no parent is found */ add_to_changed_list(i); /* process neighbors */ for (a0=i->first; a0; a0=a0->next) { j = a0 -> head; if (j->is_sink && (a=j->parent)) { if (a0->r_cap) set_active(j); if (a!=TERMINAL && a!=ORPHAN && a->head==i) { set_orphan_rear(j); // add j to the end of the adoption list } } } } } /***********************************************************************/ template flowtype Graph::maxflow(bool reuse_trees, Block* _changed_list) { node *i, *j, *current_node = NULL; arc *a; nodeptr *np, *np_next; if (!nodeptr_block) { nodeptr_block = new DBlock(NODEPTR_BLOCK_SIZE, error_function); } changed_list = _changed_list; if (maxflow_iteration == 0 && reuse_trees) { if (error_function) (*error_function)("reuse_trees cannot be used in the first call to maxflow()!"); exit(1); } if (changed_list && !reuse_trees) { if (error_function) (*error_function)("changed_list cannot be used without reuse_trees!"); exit(1); } if (reuse_trees) maxflow_reuse_trees_init(); else maxflow_init(); // main loop while ( 1 ) { // test_consistency(current_node); if ((i=current_node)) { i -> next = NULL; /* remove active flag */ if (!i->parent) i = NULL; } if (!i) { if (!(i = next_active())) break; } /* growth */ if (!i->is_sink) { /* grow source tree */ for (a=i->first; a; a=a->next) if (a->r_cap) { j = a -> head; if (!j->parent) { j -> is_sink = 0; j -> parent = a -> sister; j -> TS = i -> TS; j -> DIST = i -> DIST + 1; set_active(j); add_to_changed_list(j); } else if (j->is_sink) break; else if (j->TS <= i->TS && j->DIST > i->DIST) { /* heuristic - trying to make the distance from j to the source shorter */ j -> parent = a -> sister; j -> TS = i -> TS; j -> DIST = i -> DIST + 1; } } } else { /* grow sink tree */ for (a=i->first; a; a=a->next) if (a->sister->r_cap) { j = a -> head; if (!j->parent) { j -> is_sink = 1; j -> parent = a -> sister; j -> TS = i -> TS; j -> DIST = i -> DIST + 1; set_active(j); add_to_changed_list(j); } else if (!j->is_sink) { a = a -> sister; break; } else if (j->TS <= i->TS && j->DIST > i->DIST) { /* heuristic - trying to make the distance from j to the sink shorter */ j -> parent = a -> sister; j -> TS = i -> TS; j -> DIST = i -> DIST + 1; } } } TIME ++; if (a) { i -> next = i; /* set active flag */ current_node = i; /* augmentation */ augment(a); /* augmentation end */ /* adoption */ while ((np=orphan_first)) { np_next = np -> next; np -> next = NULL; while ((np=orphan_first)) { orphan_first = np -> next; i = np -> ptr; nodeptr_block -> Delete(np); if (!orphan_first) orphan_last = NULL; if (i->is_sink) process_sink_orphan(i); else process_source_orphan(i); } orphan_first = np_next; } /* adoption end */ } else current_node = NULL; } // test_consistency(); if (!reuse_trees || (maxflow_iteration % 64) == 0) { delete nodeptr_block; nodeptr_block = NULL; } maxflow_iteration ++; return flow; } /***********************************************************************/ template void Graph::test_consistency(node* current_node) { node *i; arc *a; int r; int num1 = 0, num2 = 0; // test whether all nodes i with i->next!=NULL are indeed in the queue for (i=nodes; inext || i==current_node) num1 ++; } for (r=0; r<3; r++) { i = (r == 2) ? current_node : queue_first[r]; if (i) for ( ; ; i=i->next) { num2 ++; if (i->next == i) { if (r<2) assert(i == queue_last[r]); else assert(i == current_node); break; } } } assert(num1 == num2); for (i=nodes; iparent == NULL) {} else if (i->parent == ORPHAN) {} else if (i->parent == TERMINAL) { if (!i->is_sink) assert(i->tr_cap > 0); else assert(i->tr_cap < 0); } else { if (!i->is_sink) assert (i->parent->sister->r_cap > 0); else assert (i->parent->r_cap > 0); } // test whether passive nodes in search trees have neighbors in // a different tree through non-saturated edges if (i->parent && !i->next) { if (!i->is_sink) { assert(i->tr_cap >= 0); for (a=i->first; a; a=a->next) { if (a->r_cap > 0) assert(a->head->parent && !a->head->is_sink); } } else { assert(i->tr_cap <= 0); for (a=i->first; a; a=a->next) { if (a->sister->r_cap > 0) assert(a->head->parent && a->head->is_sink); } } } // test marking invariants if (i->parent && i->parent!=ORPHAN && i->parent!=TERMINAL) { assert(i->TS <= i->parent->head->TS); if (i->TS == i->parent->head->TS) assert(i->DIST > i->parent->head->DIST); } } } void Inst() { Graph G(1,1); G.maxflow(); }