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Steel and other materials can exist in several crystalline structures.

One - the ground state - has lowest energy.

The material may be “caught” in other states which are only locally

stable.

This is likely to happen when welding, machining, etc.

By heating the material and slowly cooling, we ensure that the

material ends in the ground state.

This process is called annealing.
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So states with low U are more probable;
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P.d.f. of the state at fixed temperatureP.d.f. of the state at fixed temperature

Use X ∈ S to denote the state of the system (e.g., positions of

atoms).

Let U(x) denote the energy of state x ∈ S.
According to statistical physics, if the temperature is T , the p.d.f.

of X is the Canonical Distribution

f(x, T ) = cT · exp
(

−U(x)

T

)

So states with low U are more probable; in particular at low T .

Note the normalization constant cT is unknown; can be found by

integration, but our algorithms will not require it.
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An algorithm for Simulated AnnealingAn algorithm for Simulated Annealing

Let the temperature be a decreasing function of time or iteration

number - k.

At each time step, update the state according to the random walk

Metropolis-Hastings algorithm for MCMC, where the target p.d.f. is

f(x, Ti).

I.e., permute the state Xi randomly to generate a candidate Yi. If

the candidate has lower energy than the old state, accept.

Otherwise, accept only with probability

exp(−(U(Yi)− U(Xi))/Ti)

for a symmetric proposal distribution (to keep the probabilistic

interpreation)
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Different issuesDifferent issues

• Try with different schemes for lowering the temperature

• Alternative initial solutions

• Different candidate generation algorithms

• Refine with local search
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Travelling salesman problem (TSP)Travelling salesman problem (TSP)

A basic problem in combinatorial optimisation

Given n stations, and an n-by-n matrix A giving the cost of going

from station i to j.

Find a route S (a permutation of 1, . . . , n) which

• starts and ends at station 1, S1 = 1

• has minimal total cost

n−1
∑

i=1

A(Si, Si+1)
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Cost matrix - an exampleCost matrix - an example

Town Town to

from 1 2 3 4 5 6

1 - 5 3 1 4 12

2 2 - 22 11 13 30

3 6 8 - 13 12 5

4 33 9 5 - 60 17

5 1 15 6 10 - 14

6 24 6 8 9 40 -
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Cost matrix - an exampleCost matrix - an example

Town Town to

from 1 2 3 4 5 6

1 - 5 3 1 4 12

2 2 - 22 11 13 30

3 6 8 - 13 12 5

4 33 9 5 - 60 17

5 1 15 6 10 - 14

6 24 6 8 9 40 -

• Initial solution: {1, 2, 3, 4, 5, 6, 1} initial cost:

5+22+13+60+14+24 = 138
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Exercise 7Exercise 7

1. Implement simulated annealing for the travelling salesman. As

proposal, permute two random stations on the route. As

cooling scheme, you can use e.g. Tk = 1/
√
1 + k. or

Tk = − log(k + 1), feel free to experiment with different

choices. The route must end where it started. Initialise with a

random permutation of stations.

(a) Have input be positions in the plane of the n stations.

Let the cost of going i 7→ j be the Euclidian distance

between station i and j.

Plot the resulting route in the plane.

Debug with stations on a circle.

(b) Then modify your progamme to work with costs directly

and apply it to the cost matrix from the course homepage.


