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MCMC: What we aim to achieveMCMC: What we aim to achieve

We have a variable X with a “complicated” distribution.

We cannot sample X directly.

We aim to generate a sequence of Xi’s

• which each has the same distribution as X

• but we (have to) allow them to be dependent.

This is an inverse problem relative to what we just discussed and

to the queueing exercise:

We start with the distribution of X, and aim to design a state

machine which has this steady-state distribution.

http://www.dtu.dk
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MCMC example from Bayesian statisticsMCMC example from Bayesian statistics

Prior distribution of parameter

P ∼ U(0, 1) : fP (p) = 1 (0 ≤ p ≤ 1)

Distribution of data, conditional on parameter

X for given P = p is Binomial(n, p)

i.e. the data has the conditional probabilities

P(X = i|P ) =





n

i



P i(1− P )n−i

http://www.dtu.dk
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The posterior distribution of PThe posterior distribution of P

Conditional density of parameter, given observed data X = i (the

posterior distribution):

fP |X=i(p) = fP (p)
P(X = i|P = p)

P(X = i)
cfP (p)P(X = i|P = p)

We need the unconditional probability of the observation:

P(X = i) =

∫

1

0

fP (p)





n

i



 pi(1− p)n−i dp

We can evaluate this; but in more complex models we might not.

AIM: To sample from fP |X=i, without evaluating c = 1/P(X = i).

http://www.dtu.dk
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The posterior distributionThe posterior distribution
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When to apply MCMC?When to apply MCMC?

The distribution is given by

f(x) = c · g(x)

where the unnormalized density g can be evaluated, but the

normalising constant c cannot be evaluated (easily).

c =
1

∫

X
g(x) dx

This is frequently the case in Bayesian statistics - the posterior

density is proportional to the likelihood function

Note (again) the similarity between simulation and evaluation of

integrals

http://www.dtu.dk
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When to apply MCMC? - continuedWhen to apply MCMC? - continued

We want to sample from a distribution is given by

f(x) = c · g(x)

where the unnormalized density g can be evaluated, but the

normalising constant c cannot be evaluated (easily).

c =
1

∫

X
g(x) dx

We generate samples from a Markov chain, where we can prove,

that the limiting (invariant) distribution is our target distribution

(f(x))

http://www.dtu.dk
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Metropolis-Hastings algorithmMetropolis-Hastings algorithm

• Proposal distribution h(x,y)

• Acceptance of solution? The solution will be accepted with

probability

min

(

1,
f(y)h(y,x)

f(x)h(x,y)

)

= min

(

1,
g(y)h(y,x)

g(x)h(x,y)

)

• Avoiding the troublesome constant c!

• Frequently we apply a symmetric proposal distribution

h(y,x) = h(x,y) Metropolis algorithm to get
(

= min

(

1,
g(y)

g(x)

)

for h(y,x) = h(x,y)

)

http://www.dtu.dk
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Metropolis Hastigs algorithm and local balanceMetropolis Hastigs algorithm and local balance
The transition rate q(x,y) from x to y and vice versa is

q(x,y) = h(x,y)min

(

1,
g(y)h(y,x)

g(x)h(x,y)

)

and

q(y,x) = h(y,x)min

(

1,
g(x)h(x,y)

g(y)h(y,x)

)

Suppose g(y)h(y,x) < g(x)h(x,y) then

f(x)q(x,y) = cg(x)h(x,y)
g(y)h(y,x)

g(x)h(x,y)
= cg(y)h(y,x) = f(y)q(y,x)

http://www.dtu.dk
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Random Walk Metropolis-HastingsRandom Walk Metropolis-Hastings
A simple symmetric proposal distribution is the random walk

1. At iteration i, the state is Xi

2. Propose to jump from Xi to Yi = Xi +∆Xi where ∆Xi is

sampled indepedently from a symmetric distribution

• If g(Y ) ≥ g(Xi), accept

• If g(Y ) ≤ g(Xi), accept w.p. g(Y )/g(Xi)

3. On accept: Set Xi+1 = Yi and goto 1.

4. On reject: Set Xi+1 = Xi and goto 1.

http://www.dtu.dk
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Proposal distribution (Gelman 1998)Proposal distribution (Gelman 1998)

• A good proposal distribution has the following properties

⋄ For any x, it is easy to sample from h(x,y)

⋄ It is easy to compute the accpetance probability

⋄ Each jump goes a reasonable distance in the parameter space

⋄ The proposals are not rejected too frequently

http://www.dtu.dk


Illustration of ordinary MCMC samplingIllustration of ordinary MCMC sampling

A new proposal can be anywhere in the full region

http://www.dtu.dk


Illustration of ordinary MCMC samplingIllustration of ordinary MCMC sampling

A new proposal can be anywhere in the full region. However,

typically it will be in the vicinity of the current

http://www.dtu.dk


Coordinatewise MCMC samplingCoordinatewise MCMC sampling

We generate proposal and do acceptance/rejection for one

dimension at a time. It can be done systematically or random.

Possibilities in x-direction

http://www.dtu.dk


Coordinatewise MCMC samplingCoordinatewise MCMC sampling

Accepted candidate in x-direction

http://www.dtu.dk


Coordinatewise MCMC samplingCoordinatewise MCMC sampling

Possibilities in y-direction

http://www.dtu.dk


Coordinatewise MCMC samplingCoordinatewise MCMC sampling

Accepted candidate in y-direction

http://www.dtu.dk


Coordinatewise MCMC samplingCoordinatewise MCMC sampling

Final update

http://www.dtu.dk
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Gibss samplingGibss sampling

• Applies in multivariate cases where the conditional distribution

among the coordinates are known.

• For a multidimensional distribution x the Gibss sampler will

modify only one coordinate at a time.

• Typically d-steps in each iteration, where d is the dimension of

the parameter space , that is of x

http://www.dtu.dk
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Gibbs sampling - first dimensionGibbs sampling - first dimension

• Each dimension is updated at a time. According to the

conditional distribution. Here the first dimension.

http://www.dtu.dk


02443 – lecture 8 21
DTU

Gibbs sampling - first dimensionGibbs sampling - first dimension

Draw from conditional distribution (no acceptance test).

http://www.dtu.dk


02443 – lecture 8 22
DTU

Gibbs sampling - second dimensionGibbs sampling - second dimension

Possibilities in y-direction

http://www.dtu.dk
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Gibbs sampling - second dimensionGibbs sampling - second dimension

Pick in y-direction (no acceptance test)

http://www.dtu.dk
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Gibbs sampling - second dimensionGibbs sampling - second dimension

Final state after updates in both directions.

http://www.dtu.dk
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Different perspective modelling with Markov

chains as oppposed to MCMC sampling

Different perspective modelling with Markov

chains as oppposed to MCMC sampling
• For an ordinary Markov chain we know P and find π -

analytically or by simulation

• When we apply MCMC

⋄ For a discrete distribution we have π = cα construct P which

has no physical interpretation in general and obtain samples

from π by simulation

⋄ For a continuous distribution we have the density

f(x) = cg(x), construct a transition kernel P (x,y) and get

samples from f(x) by simulation.

http://www.dtu.dk
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RemarksRemarks
• The method is computer intensitive

• It is hard to verify the assumptions (Read: impossible)

• Warmup period strongly recommended (necessary indeed!)

• The samples are dependent (typically correlated)

• Should be run several times with different starting conditions

⋄ Comparing within run variance with between run variance

• Check the BUGS site:

http://www.mrc-bsu.cam.ac.uk/bugs/and/or links given at the

BUGS site

http://www.dtu.dk
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Further readingFurther reading

• A. Gelman, J.B. Carlin, H.S. Stern, D.B. Rubin: Bayesian Data

Analysis, Chapmann & Hall 1998, ISBN 0 412 03991 5

• W.R. Gilks, S. Richarson, D.J. Spiegelhalter: Markov chain Mone

Carlo in practice, Chapmann & Hall 1996, ISBN 0 412 05551 1

http://www.dtu.dk


Beyond Random Walk Metropolis-HastingsBeyond Random Walk Metropolis-Hastings

• Proposed points Yi can be generated with other schemes - this

would change the acceptance probabilities.

• In mulitvariate situations, we can process one co-ordinate at a

time

• If we know conditional distributions in the mulitvariate setting,

then we can apply Gibbs sampling

• This is well suited for graphical models with many variables,

which each interact only with a few others

• (Decision support systems is a big area of application)

• Many hybrids and specialized versions exist

• Very active research area, both theory and applications

http://www.dtu.dk


Exercise 6: Markov Chain Monte CarloExercise 6: Markov Chain Monte Carlo

1. The number of busy lines in a trunk group (Erlang system) is

given by a truncated Poisson distribution

P (i) = c ·
Ai

i!
, i = 0, . . . m

Generate values from this distribution by applying the

Metropolis-Hastings algorithm, verify with a χ2-test. You can

use the parameter values from exercise 4.

2. For two different call types the joint number of occupied lines

is given by

P (i, j) = c ·
Ai

1

i!

Aj
2

j!
0 ≤ i+ j ≤ m

You can use A1, A2 = 4 and m = 10.
(a) Use Metropolis-Hastings, directly to generate variates from

http://www.dtu.dk


this distribution.

(b) Use Metropolis-Hastings, coordinate wise to generate

variates from this distribution.

(c) Use Gibbs sampling to sample from the distribution. This is

(also) coordinate-wise but here we use the exact conditional

distributions. You will need to find the conditional

distributions analytically.

In all three cases test the distribution fit with a χ2 test

The system can be extended to an arbitrary dimension, and we

can add restrictions on the different call types.

3. We consider a Bayesian statistical problem. The observations

are Xi ∼ N (Θ,Ψ), where the prior distribution of the pair

(Ξ,Γ) = (log (Θ), log (Ψ)) is standard normal with correlation



ρ = 1

2
. The joint density f(x, y) of (Θ,Ψ) is

f(x, y) =
1

2πxy
√

1− ρ2
e
−

log (x)2−2ρ log (x) log (y)+log (y)2

2(1−ρ2)

which can be derived using a standard change of variable

technique. The task of this exercise is now to sample from the

posterior distribution of (Θ,Ψ) using Markov Chain Monte

Carlo.

(a) Generate a pair (θ, ψ) from the prior distribution, i.e. the

distribution for the pair (Θ,Ψ), by first generating a sample

(ξ, γ) of (Ξ,Γ).

(b) Generate Xi = 1, . . . , n with the values of (θ, ψ) you

obtained in item 3a. Use n = 10.

(c) Derive the posterior distribution of (Θ,Ψ) given the sample.

Hint 1 Apply Bayes theorem in the density version.



Hint 2 The sample mean and sample variance are

independent. The sample mean follows a normal

distribution, while a scaled version of the sample variance

follows a χ2 distribution. This can be used to simplify the

expression.

(d) Generate MCMC samples from the posterior distribution of

(Θ,Ψ) using the Metropolis Hastings method.

(e) Repeat item 3d with n = 100 and n = 1000, still using the

values of (θ, ψ) from item 3a. Discuss the results.


