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MCMC: What we airn to acnieve

i

We have a variable X with a “complicated” distribution.
We cannot sample X directly.
We aim to generate a sequence of X;'s

which each has the same distribution as X

but we (have to) allow them to be dependent.

This is an inverse problem relative to what we just discussed and
to the queueing exercise:

We start with the distribution of X, and aim to design a state
machine which has this steady-state distribution.
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Prior distribution of parameter
P~U(0,1) : frip)=1 (0<p<1)
Distribution of data, conditional on parameter
X for given P = p is Binomial(n, p)

I.e. the data has the conditional probabilities

P(X =ilP)=| | Pi(1— Py
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T ne posterior distripution of

i

the

~—~~

Conditional density of parameter, given observed data X =1

posterior distribution):

fP|X=i(p) = fP(p) P()I(D;(Z’fz): p) CfP(p)P(X = i\P = p)

We need the unconditional probability of the observation:

:/ fr(p) n p'(1—p)" " dp
0 1

We can evaluate this; but in more complex models we might not.

AIM: To sample from fp|x—;, without evaluating ¢ = 1/P(X = 1).
DTU
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When to apply MCIVICY

The distribution is given by

f(z) =c-g(x)

where the unnormalized density g can be evaluated, but the

=
—
=

i

normalising constant ¢ cannot be evaluated (easily).
B 1
Jx 9(z) dx

This is frequently the case in Bayesian statistics - the posterior

C

density is proportional to the likelihood function

Note (again) the similarity between simulation and evaluation of

integrals

DTU
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When to apply MICVIC? - continuad
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We want to sample from a distribution is given by

f(z) =c-g(x)

where the unnormalized density g can be evaluated, but the

i

normalising constant ¢ cannot be evaluated (easily).
B 1
Jx 9(z) dx

We generate samples from a Markov chain, where we can prove,

C

that the limiting (invariant) distribution is our target distribution

(f(2))
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Metropolis-rlastings algorithrm

Proposal distribution h(x,y)
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i

Acceptance of solution? The solution will be accepted with

probability

.. (17 ; (y)h(y,:c)) - (17 g(y)h(y, :1:))

Avoiding the troublesome constant c!

Frequently we apply a symmetric proposal distribution
h(y,x) = h(x,y) Metropolis algorithm to get

(: min ( | M) for h(y,x) = h(w,y))

g()

DTU —
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Metropolis Flastigs algorithm and local J_JI_JrL
The transition rate q(x,y) from @ to y and vice versa is

¢(z,y) = h(z,y) min (1, J
g

and

q(y,x) = h(y,x) min (1, J

Suppose g(y)h(y,x) < g(x)h(x,y) then

F(@)q(a,y) = cg(w)h(w,y>g<y§h<y"”) — cg)h(y,x) = [(y)a(y. )
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randorn Walk Metropolis-rlastings
A simple symmetric proposal distribution is the random walk pyy

o

1. At iteration ¢, the state is X; -

2. Propose to jump from X, to Y; = X, + AX, where AKX, is
sampled indepedently from a symmetric distribution

o If g(Y) > g(X;), accept
o If g(Y) < g(Xi), accept w.p. g(Y)/g(X;)

3. On accept: Set X, 1 =Y, and goto 1.

4. On reject: Set X; 1 = X, and goto 1.

02443 — lecture 8 DTU
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Proposal distribution (Gelman 1998)

i

A good proposal distribution has the following properties

o For any «, it is easy to sample from h(x, y)

¢ It Is easy to compute the accpetance probability

¢ Each jump goes a reasonable distance in the parameter space

¢ The proposals are not rejected too frequently

DTU
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ustration of ordinary MICMC sampling
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A new proposal can be anywhere in the full region
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lustration of ordinary MICMC sampling
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A new proposal can be anywhere in the full region. However,

typically it will be in the vicinity of the current
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oordinatewise MICMC sampling

DTU
We generate proposal and do acceptance/rejection for one =

dimension at a time. It can be done systematically or random.

i

8088 ISISe

Possibilities in 2-direction
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Coordinatewise MICMIC sampling
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Accepted candidate in x-direction
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Coordinatewise MICMIC sampling
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Possibilities in y-direction
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Coordinatewise MICMIC sampling
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Coordinatewise MICMIC sampling
N
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Final update
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Gioss sampling Al

Applies in multivariate cases where the conditional distribution

among the coordinates are known.

For a multidimensional distribution & the Gibss sampler will

modify only one coordinate at a time.

Typically d-steps in each iteration, where d is the dimension of
the parameter space , that is of x

DTU
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Gibbs sampling - Tirst dirmnension

™ TN
980D ISISISS
Each dimension is updated at a time. According to the
conditional distribution. Here the first dimensicﬁﬁu
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Gibbs sampling - Tirst dirmnension

LI U U

Draw from conditional distribution (no acceptance test).
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Giops sarpling - second dimension

I80SI8IS B¢

Possibilities in y-direction
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Giops sarpling - second dimension

180090808 86

Pick in y-direction (no acceptance test)
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Gioos sampling - second dirnension

I80S8IS B¢

Final state after updates in both directions.
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ifferent perspective modelling with MarkovIlY

oo

(P

D

cnains as oppposad to MICIMC sampling
For an ordinary Markov chain we know P and find 7 -

analytically or by simulation

When we apply MCMC

¢ For a discrete distribution we have m = cax construct P which
has no physical interpretation in general and obtain samples

from 7t by simulation

¢ For a continuous distribution we have the density
f(x) = cg(x), construct a transition kernel P(x,y) and get

samples from f(x) by simulation.

DTU
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Fernares
The method is computer intensitive

i

It is hard to verify the assumptions (Read: impossible)
Warmup period strongly recommended (necessary indeed!)
The samples are dependent (typically correlated)

Should be run several times with different starting conditions

¢ Comparing within run variance with between run variance

Check the BUGS site:
http://www.mrc-bsu.cam.ac.uk/bugs/and/or links given at the
BUGS site
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rurtner reading Al
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A. Gelman, J.B. Carlin, H.S. Stern, D.B. Rubin: Bayesian Data
Analysis, Chapmann & Hall 1998, ISBN 0 412 03991 5

W.R. Gilks, S. Richarson, D.J. Spiegelhalter: Markov chain Mone
Carlo in practice, Chapmann & Hall 1996, ISBN 0 412 05551 1
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ond Handorn Walk Metropolis-Flastings WU

o
oo

Proposed points Y; can be generated with other schemes - this
would change the acceptance probabilities.

In mulitvariate situations, we can process one co-ordinate at a

time

If we know conditional distributions in the mulitvariate setting,
then we can apply Gibbs sampling

This is well suited for graphical models with many variables,
which each interact only with a few others

(Decision support systems is a big area of application)
Many hybrids and specialized versions exist

Very active research area, both theory and applications
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crercise 6 Markov Cnain Monte Carlo DTU

1. The number of busy lines in a trunk group (Erlang system) is
given by a truncated Poisson distribution
Ai

P(i) =c- R

1=20,...m

Generate values from this distribution by applying the
Metropolis-Hastings algorithm, verify with a y*-test. You can
use the parameter values from exercise 4.

2. For two different call types the joint number of occupied lines
IS given by

You can use A;, A =4 and m = 10.
(a) Use Metropolis-Hastings, directly to generate variates from
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this distribution.

(b) Use Metropolis-Hastings, coordinate wise to generate

variates from this distribution.

(c) Use Gibbs sampling to sample from the distribution. This is
(also) coordinate-wise but here we use the exact conditional
distributions. You will need to find the conditional

distributions analytically.
In all three cases test the distribution fit with a y? test

The system can be extended to an arbitrary dimension, and we
can add restrictions on the different call types.

. We consider a Bayesian statistical problem. The observations
are X; ~ N (O, V), where the prior distribution of the pair
(Z2,T") = (log (©),log (¥)) is standard normal with correlation



p = 5. The joint density f(x,y) of (0, V) is

_ log (z)? —2plog () log (y)+log ()2
2(1—p?)

f(z.y) 1
T, y) = €
2rxys/1 — p?

which can be derived using a standard change of variable
technique. The task of this exercise is now to sample from the

posterior distribution of (©, V) using Markov Chain Monte
Carlo.

(a) Generate a pair (#,1) from the prior distribution, i.e. the
distribution for the pair (O, V), by first generating a sample
(€,7) of (E,T).

(b) Generate X; = 1,...,n with the values of (6, ) you

obtained in item 3a. Use n = 10.

(c) Derive the posterior distribution of (O, ¥) given the sample.
Hint 1 Apply Bayes theorem in the density version.



Hint 2 The sample mean and sample variance are
independent. The sample mean follows a normal
distribution, while a scaled version of the sample variance
follows a x? distribution. This can be used to simplify the

expression.
(d) Generate MCMC samples from the posterior distribution of
(©, ) using the Metropolis Hastings method.

(e) Repeat item 3d with n = 100 and n = 1000, still using the
values of (6,1)) from item 3a. Discuss the results.



