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The queusing esample

i

We simulated the system until “stochastic steady state”.
We were then able to describe this steady state:
What is the distribution of occupied servers
What is the rejection probability
To obtain steady-state statistics, we used stochastic simulation

For Poisson arrival process and exponential service times the model

was a ‘state machine”, i.e. a Markov Chain.
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Discrete tirne Markov chains on discrete state

We observe a sequence of X,,s taking values in some sample
space S = {1,2,..., N}, where N = oo is possible

The next value in the sequence X, 1 is determined from some
decision rule depending on the value of X, only.

For a discrete sample space we can express the decision rule as a
matrix of transition probabilities P = {F,; },
Py = P(Xui1 = j|X, = i)

We define the n-step transition probabilities P™) = {P,,},
Py = P(X, = j|Xo = i)
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csarnoles of Markov cnain rmodels
0

(Discretised) cloud cover successive days in January iy
Number of cars in stock at a car dealer at beginning at day
Number of communication packets in buffer at beginning at

transmission slot
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The behaviour of the process itself - X,

The behaviour conditional on Xy =i is (FP;;(n))
Define P(X,, = j) = p;(n) with P(X, = 7) = p;(0)
with p(n) = (p1(n),p2(n), ..., pr(n)) we find

p(n) =p(n—1)P = p(0)P, = p(0) P"

Under some technical assumptions we can find a stationary and
limiting distribution 7. lim,,, P;;(n) = m; = P(X = 7).

This distribution can be analytically found by solving

w=nP (equilibrium distribution)
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An ezample Trorm Tuesday

i

Consider the first Blocking system.

At any given event we might have one or more customers being

served and an arrival to come

Now assume arrivals are Poisson and service times are

exponential

The exponential distribution is memoryless.

N _ Pxstva,x>t) — P(xX>t+a)
X ~exp(A) P(X>t+alX >1) =" 7= =5
— S = e = P(X > 1)

Now with Y ~ exp () we have P(Y > X)) =

[P > X|X =2)fx(x)de = [~ e_“””)\e_’\xdgT——Uﬁ
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An ezarmple Trom Tuesday

i

Z =min(X,Y) P(Z>2)=P(X >2z2Y > 2)
=P(X > 2)P(Y > 2) = e M h* = e~ Atz j g
Z ~exp (A + p)

Finally, we can show

P(Z=X|z=2)=P(Z=X)=P(X <Y) =,

So which state is next is independent of the time it takes to get

there

we can simulate the sequence of the states without the time if
we like. we can simulate the time afterwards if we want it, as
long as we know the sequence of states.
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Estimating blocking probavilities - e/ponential

o

case o
Narr = () -
Npiocks = 0
STATE =0
1 =20
while N, rr < ng;,, do
it UZ < lambdal—lc—bgnﬁilaTE*mu then do
Narr — Narr + 1
if STATE < Ngeppers then STATE = STATE + 1
else Nyock = Npjock, + 1
end
else state = state — 1
end
B = Nylock

Nsim
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Glopal balance equations

The equilibrium (limiting) distribution
T =mP

can be written elementwise as

N
=Y mb;
1=1

N
7Tj'1: E ’7sz7ﬂ7
1=1
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nce equations (continued )

N
’7Tj = E ’7sz7ﬂ7
1=1
N N
iy Pi=) mP;
1=1 1=1
N N
> mPi=) mP;

true iIf
ijjz' :7T¢Pz'j7 V(i,j)

local balance, reversible Markov chain
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Small nurmerical exarmple

_1—pp() 0
q 0 p 0
0 g 0 p
0 0 ¢ 1—q |

with p(0) = (%,0,0, 2) we get

_1—pp0 0

1 2 0 0
p(l): <_70707 _> ! P — (
3 3 0 g 0 p

0 0 ¢ 1—q

)
e

i
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1 2
p(0) = (5.0.0.3)
p)+pg (1-pp  p°
1—p) 2qp 0
q° 0 2qp
0 ¢  (1-q)q
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(I1-p)?+pg (1—=pp  p° 0
q(1 —p) 2qp 0 P’
q° 0 2qp p(1 —q)
] 0 ¢  (1-qq (1-q)°+qp |

_ ((1—p)2+pq (1 —p)p 4gp 219(1—61)>
3 7 3 737 3
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Local palance for example

_1—pp()
0
p_ q p
0 g 0O
0 0 qg 1—q |

TP = Ti41q <= 41 = —

i—1
to give m; = (g) m, 1 <17 < 3, with

0
0

p
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Markov chains - generalisations
DIU

The theory can be extended to:
o Continuous sample space (very relevant for MCMC) or

¢ Continuous time: exercise 4 is an example of a Continuous

time Markov chain - a Markov jump process
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