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The queueing exampleThe queueing example

We simulated the system until “stochastic steady state”.

We were then able to describe this steady state:

• What is the distribution of occupied servers

• What is the rejection probability

To obtain steady-state statistics, we used stochastic simulation

For Poisson arrival process and exponential service times the model

was a “state machine”, i.e. a Markov Chain.

http://www.dtu.dk
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Discrete time Markov chains on discrete state

space

Discrete time Markov chains on discrete state

space

• We observe a sequence of Xns taking values in some sample

space S = {1, 2, . . . , N}, where N = ∞ is possible

• The next value in the sequence Xn+1 is determined from some

decision rule depending on the value of Xn only.

• For a discrete sample space we can express the decision rule as a

matrix of transition probabilities P = {Pij},

Pij = P(Xn+1 = j|Xn = i)

• We define the n-step transition probabilities P (n) = {Pij},

P
(n)
ij = P(Xn = j|X0 = i)

http://www.dtu.dk
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Examples of Markov chain modelsExamples of Markov chain models

• (Discretised) cloud cover successive days in January

• Number of cars in stock at a car dealer at beginning at day

• Number of communication packets in buffer at beginning at

transmission slot

http://www.dtu.dk
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The probability of XnThe probability of Xn

• The behaviour of the process itself - Xn

• The behaviour conditional on X0 = i is (Pij(n))

• Define P(Xn = j) = pj(n) with P(X0 = j) = pj(0)

• with p(n) = (p1(n), p2(n), . . . , pk(n)) we find

p(n) = p(n− 1)P = p(0)P n = p(0)P n

• Under some technical assumptions we can find a stationary and

limiting distribution π. limn→∞ Pij(n) = πj = P(X∞ = j).

• This distribution can be analytically found by solving

π = πP (equilibrium distribution)

http://www.dtu.dk


02443 – lecture 8 6
DTU

An example from TuesdayAn example from Tuesday

• Consider the first Blocking system.

• At any given event we might have one or more customers being

served and an arrival to come

• Now assume arrivals are Poisson and service times are

exponential

• The exponential distribution is memoryless.

X ∼ exp (λ) P(X > t+ x|X > t) = P(X>t+x,X>t)

P(X>t)
= P(X>t+x)

P(X>t)

= e−λ(t+x)

e−λt = e−λx = P(X > t)

Now with Y ∼ exp (µ) we have P(Y > X) =
∫

∞

0
P(Y > X|X = x)fX(x)dx =

∫

∞

0
e−µxλe−λxdx = λ

λ+µ

http://www.dtu.dk
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An example from TuesdayAn example from Tuesday

Z = min (X,Y ) P(Z > z) = P(X > z, Y > z)

= P(X > z)P(Y > z) = e−λze−µz = e−(λ+µ)z i.e.

Z ∼ exp (λ+ µ)

Finally, we can show

P(Z = X|z = z) = P(Z = X) = P(X < Y ) = λ
λ+µ

• So which state is next is independent of the time it takes to get

there

• we can simulate the sequence of the states without the time if

we like. we can simulate the time afterwards if we want it, as

long as we know the sequence of states.

http://www.dtu.dk
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Estimating blocking probabilities - exponential

case

Estimating blocking probabilities - exponential

case
Narr = 0

Nblock = 0
STATE = 0
i = 0
while Narr < nsim do

if Ui <
lambda

lambda+STATE∗mu
then do

Narr = Narr + 1
if STATE < nservers then STATE = STATE + 1
else Nblock = Nblock + 1

end
else state = state− 1

end
B = Nblock

nsim

http://www.dtu.dk
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Global balance equationsGlobal balance equations

The equilibrium (limiting) distribution

π = πP

can be written elementwise as

πj =
N
∑

i=1

πiPij

πj · 1 =

N
∑

i=1

πiPij

http://www.dtu.dk
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Global balance equations (continued)Global balance equations (continued)

πj · 1 =
N
∑

i=1

πiPij

πj

N
∑

i=1

Pji =

N
∑

i=1

πiPij

N
∑

i=1

πjPji =
N
∑

i=1

πiPij

true if

πjPji = πiPij , ∀(i, j)

local balance, reversible Markov chain

http://www.dtu.dk
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Small numerical exampleSmall numerical example

P =















1− p p 0 0

q 0 p 0

0 q 0 p

0 0 q 1− q















with p(0) =
(

1
3
, 0, 0, 2

3

)

we get

p(1) =

(

1

3
, 0, 0,

2

3

)















1− p p 0 0

q 0 p 0

0 q 0 p

0 0 q 1− q















=

(

1− p

3
,
p

3
,
2q

3
,
2(1− q)

3

)
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andand

p(0) =

(

1

3
, 0, 0,

2

3

)

,

P 2 =















(1− p)2 + pq (1− p)p p2 0

q(1− p) 2qp 0 p2

q2 0 2qp p(1− q)

0 q2 (1− q)q (1− q)2 + qp















http://www.dtu.dk
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p(2) =

(

1

3
, 0, 0,

2

3

)

·















(1− p)2 + pq (1− p)p p2 0

q(1− p) 2qp 0 p2

q2 0 2qp p(1− q)

0 q2 (1− q)q (1− q)2 + qp















=

(

(1− p)2 + pq

3
,
(1− p)p

3
,
4qp

3
,
2p(1− q)

3

)
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Local balance for exampleLocal balance for example

P =















1− p p 0 0

q 0 p 0

0 q 0 p

0 0 q 1− q















πip = πi+1q ⇔ πi+1 =
p

q
πi

to give πi =
(

p

q

)i−1

π1, 1 ≤ i < 3, with

π1 =

(

∑4
i=1

(

p

q

)i
)

−1

http://www.dtu.dk
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Markov chains - generalisationsMarkov chains - generalisations

• The theory can be extended to:

⋄ Continuous sample space (very relevant for MCMC) or

⋄ Continuous time: exercise 4 is an example of a Continuous

time Markov chain - a Markov jump process

http://www.dtu.dk

