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Continuous but asynchronous time
Systems with discrete state-variables
¢ Inventory systems

¢ Communication systems

o Traffic systems - (simple models)

even-by-event principle
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Real time clock
State variables
Event list(s)

Statistics
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Advance clock to next event to occur

Invoke relevant event handling routine

& collect statistics

¢ Update system variables

Generate and schedule future events - insert in event list(s)

return to top
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Analysing steady-si

Burn-in/initialisation period
¢ Typically this has to be determined experimentally

Confidence intervals/variance estimated from sub-samples
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Arrival process

Service time distribution(s)
Service unit(s)

Priorities

Queueing discipline
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Buffer S(t)

A(t) - Arrival process
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S(t) - Service process (service time distribution)
Finite or infinite waiting room

One or many servers

Kendall notation: A(t)/S(t)/N/K

& N - number of servers

o K - room in system (sometime K only relates to waiting

room)
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Parforrnance rneasures

Waiting time distribution

¢ Mean

¢ Variance

¢ Quantiles

Blocking probabilities

Utilisation of equipment (servers)

Queue length distribution
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Independently exponentially distributed intervals
PX;<t)=1—¢eM

Poisson distributed number of events in an interval. Number of

events in non-overlapping intervals independent
(AD)" e

N(t) ~P(AXt) & P(N(t)=n) = e

If the intervals X are independently but generally distributed we

call the process a renewal process
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Sup-sarmples - precision o
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We need sub-samples in order to investigate the precision of the

estimate.
The sub-samples should be independent if possible

For independent subsamples the standard deviation of our

estimate will be proportional to \/ﬁ_l
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Connidence limits pased on sub-sarmples

We want to estimate some quantity 6
We obtain n different (independent) estimates 0;.

The central limit theorem motivates us to construct the

following confidence interval:
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t%(n — 1); 0 + &tl_%(n — 1)]
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Contidence limits pased on

asecd on normal distrioution
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More generally we can apply any statistical technique

In the planning phase - experimental design
In the analysis phase
¢ Analysis of variance

¢ Time-series analysis
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