# Stochastic Simulation Random number generation

#### Bo Friis Nielsen

Applied Mathematics and Computer Science

Technical University of Denmark

2800 Kgs. Lyngby – Denmark

Email: bfn@imm.dtu.dk

### Random number generation



- Uniform distribution
- Number theory
- Testing of random numbers
- Recommendations of random number generators

# Summary



- We talk about generating **pseudo**random numbers
- There exists a large number of RNG's
- ... of varying quality
- Don't implement your own, except for fun or as a research project.
- Built-in RNG's should be checked before use
- ... at least in general-purpose development environments.
- Scientific computing environments typically have state-of-the-art RNG's that can be trusted.

• Any RNG will fail, if the circumstances are extreme enough.  $\frac{1}{22443 - \text{lecture } 2}$  DTU  $\frac{-1}{3}$ 

# History/background

- The need for random numbers evident
- Tables
- Physical generators. Lottery machines
- Need for computer generated numbers

# Definition

- Uniform distribution [0; 1].
- Randomness (independence).
- Random numbers: A sequence of independent random variable,  $U_i$ , uniformly distributed on ]0, 1[



- Generate a sequence of independently and identically distributed U(0,1) numbers.

• One basic problem is computers do not work in  $\mathbb{R}$ 

# Random generation

Mechanics devices:

- Coin (head or tail)
- Dice (1-6)
- Monte-Carlo (Roulette) wheel
- Wheel of fortune
- Deck of cards
- Lotteries (Dansk tipstjeneste)

Other devices:



 electronic noise in a diode or resistor

 $\mathsf{D}\mathsf{L}$ 

6

• tables of random numbers

### Definition of a RNG



An RNG is a computer algorithm that outputs a sequence of reals or integers, which appear to be

- Uniformly distributed on [0;1] or  $\{0,\ldots,N-1\}$
- Statistically independent.

#### Caveats:

- "Appear to be" means: The sequence must have the same relevant statistical properties as I.I.D. uniformly distributed random variables
- With any finite precision format such as double, uniform on [0;1] can never be achieved.

DIU

- Four digit integer (output divide by 10000)
- 2. square it.
- 3. Take the middle four digits
- 4. repeat

| i | $Z_i$ | $U_i$  | $Z_i^2$    |
|---|-------|--------|------------|
| 0 | 7182  | 0.7182 | 51,581,124 |
| 1 | 5811  | 0.5811 | 33,767,721 |
| 2 | 7677  | 0.7677 | 58,936,329 |
| 3 | 9363  | 0.9363 | 87,665,769 |
| 4 | 6657  | 0.6657 | 44,315,649 |
| 5 | 3156  | 0.3156 | 09,960,336 |
| : | ÷     | ÷      | ÷          |

DTU

#### Might seem plausible - but rather dubious



#### Fibonacci

Leonardo of Pisa (pseudonym: Fibonacci) dealt in the book "Liber Abaci" (1202) with the integer sequence defined by:

 $x_i = x_{i-1} + x_{i-2}$   $i \ge 2$   $x_0 = 1$   $x_1 = 1$ 

Fibonacci generator. Also called an additive congruential method.

$$x_i = mod(x_{i-1} + x_{i-2}, M)$$
  $U_i = \frac{x_i}{M}$ 

where x = mod(y, M) is the modulus after division ie. y - nM where  $n = \lfloor y/M \rfloor$  Notice  $x_i \in [0, M-1]$ . Consequently, there is  $M^2 - 1$  possible starting values.

Maximal length of period is  $M^2 - 1$  which is only achieved for M = 2, 3.

02443 – lecture 2



#### **Congruential Generator**

The generator

$$U_i = mod(aU_{i-1}, 1) \quad U_i \in [0, 1]$$

illustrates the principle provided a is large, the last digits are retained. Can be implemented as  $(x_i \text{ is an integer})$ 

$$x_i = mod(ax_{i-1}, M)$$
  $U_i = \frac{x_i}{M}$ 

 $D \square$ 

10

Examples are a = 23 and  $M = 10^8 + 1$ .



### Mid conclusion



DTU

- Initial state determine the whole sequence
- Potentially many different cycles
- Length of each cycle
- If  $x_i$  can take N values, then the maximum length of a cycle is N.

# Properties for a Random number generator $\Xi$

DTU

- Cycle length
- Randomness
- Speed
- Reproducible
- Portable

# Linear Congruential Generator

LCG are defined as



D I U

13

$$x_i = mod(ax_{i-1} + c, M) \quad U_i = \frac{x_i}{M}$$

for a multiplier a, shift c and modulus M.

We will take a, c and  $x_0$  such  $x_i$  lies in (0, 1, ..., M-1) and it looks random.

Example: M = 16, a = 5, c = 1

With  $x_0 = 3$ : 0 1 6 15 12 13 2 11 8 9 14 7 4 5 10 3

Theorem 1 Maximum cycle length The LCG has full length if (and only if)

- M and c are relative prime.
- For each prime factor p of M, mod(a, p) = 1.
- if 4 is a factor of M, then mod(a, 4) = 1. Notice, If M is a prime, full period is attained only if a = 1.

 $D \square$ 

# Shuffling

- eg. XOR between several generators.
- To enlarge period
- Improve randomness
- But not well understood
- LCGs widespread use, generally to be recommended



#### Mersenne Twister

Matsumoto and Nishimura, 1998

- A large structured linear feedback shift register
- Uses 19,937 bits of memory
- Has maximum period, i.e.  $2^{19937} 1$
- Has right distribution
- ... also joint distribution of 623 subsequent numbers
- Probably the best PRNG so far for stochastic simulation (not for cryptography).

DIU

16

#### **RNGs in common environments**



**R**: The Mersenne Twister is the default, many others can be chosen.

Python: Mersenne Twister chosen.

**S-plus**: XOR-shuffling between a congruential generator and a (Tausworthe) feedback shift register generator. The period is about  $2^{62} \approx 4 \cdot 10^{18}$ , but seed dependent (!).

**Matlab 7.4 and higher**: By default, the Mersenne Twister. Also one other available.

 $D \square$ 

02443 - lecture 2

#### **Characteristics**

**Definition:** A sequence of *pseudo-random* numbers  $U_i$  is a deterministic sequence of numbers in ]0, 1[ having the same relevant statistical properties as a sequence of random numbers.

The question is what are relevant statistical properties.

- Distribution type
- Randomness (independence, whiteness)