Stochastic Simulation Random number generation

Bo Friis Nielsen

Applied Mathematics and Computer Science
Technical University of Denmark
2800 Kgs. Lyngby - Denmark
Email: bfn@imm.dtu.dk

Random number generation
Uniform distribution

- Number theory
- Testing of random numbers
- Recommendations of random number generators

Sumarnary

We talk about generating pseudorandom numbers
There exists a large number of RNG's
... of varying quality

- Don't implement your own, except for fun or as a research project.
- Built-in RNG's should be checked before use
- ... at least in general-purpose development environments.
- Scientific computing environments typically have state-of-the-art RNG's that can be trusted.
- Any RNG will fail, if the circumstances are extreme enough.

History/background
The need for random numbers evident
Tables

- Physical generators. Lottery machines
- Need for computer generated numbers

Definition

- Uniform distribution $[0 ; 1]$.
- Randomness (independence).
- Random numbers: A sequence of independent random variable, U_{i}, uniformly distributed on $] 0,1[$

- Generate a sequence of independently and identically distributed $U(0,1)$ numbers.
$\stackrel{\text { One basic problem is computers do not work in } \mathbb{R}}{\text { DTU }}$

Pandorn generation

Mechanics devices:

- Coin (head or tail)
- Dice (1-6)
- Monte-Carlo (Roulette) wheel
- Wheel of fortune
- Deck of cards
- Lotteries (Dansk tipstjeneste)

Other devices:

- electronic noise in a diode or resistor
- tables of random numbers

Definition of a RNG

An RNG is a computer algorithm that outputs a sequence of reals or integers, which appear to be

- Uniformly distributed on $[0 ; 1]$ or $\{0, \ldots, N-1\}$
- Statistically independent.

Caveats:
"Appear to be" means: The sequence must have the same relevant statistical properties as I.I.D. uniformly distributed random variables

- With any finite precision format such as double, uniform on $[0 ; 1]$ can never be achieved.

1. Four digit integer (output divide by 10000)
2. square it.
3. Take the middle four digits

i	Z_{i}	U_{i}	Z_{i}^{2}
0	7182	0.7182	$51,581,124$
1	5811	0.5811	$33,767,721$
2	7677	0.7677	$58,936,329$
3	9363	0.9363	$87,665,769$
4	6657	0.6657	$44,315,649$
5	3156	0.3156	$09,960,336$
\vdots	\vdots	\vdots	\vdots

Might seem plausible - but rather dubious

Fibonacci

Leonardo of Pisa (pseudonym: Fibonacci) dealt in the book
"Liber Abaci" (1202) with the integer sequence defined by:

$$
x_{i}=x_{i-1}+x_{i-2} \quad i \geq 2 \quad x_{0}=1 \quad x_{1}=1
$$

Fibonacci generator. Also called an additive congruential method.

$$
x_{i}=\bmod \left(x_{i-1}+x_{i-2}, M\right) \quad U_{i}=\frac{x_{i}}{M}
$$

where $x=\bmod (y, M)$ is the modulus after division ie. $y-n M$ where $n=\lfloor y / M\rfloor$ Notice $x_{i} \in[0, M-1]$. Consequently, there is $M^{2}-1$ possible starting values.

Maximal length of period is $M^{2}-1$ which is only achieved for $M=2,3$.
DTU

Congruential Generator

The generator

$$
U_{i}=\bmod \left(a U_{i-1}, 1\right) \quad U_{i} \in[0,1]
$$

illustrates the principle provided a is large, the last digits are retained.
Can be implemented as (x_{i} is an integer)

$$
x_{i}=\bmod \left(a x_{i-1}, M\right) \quad U_{i}=\frac{x_{i}}{M}
$$

Examples are $a=23$ and $M=10^{8}+1$.

Mid conclusion

- Initial state determine the whole sequence
- Potentially many different cycles
- Length of each cycle

If x_{i} can take N values, then the maximum length of a cycle is N.

Properties for a Random number generator

- Cycle length
- Randomness
- Speed
- Reproducible
- Portable

Linear Congruential Generator

LCG are defined as

$$
x_{i}=\bmod \left(a x_{i-1}+c, M\right) \quad U_{i}=\frac{x_{i}}{M}
$$

for a multiplier a, shift c and modulus M.

We will take a, c and x_{0} such x_{i} lies in $(0,1, \ldots, M-1)$ and it looks random.

Example: $M=16, a=5, c=1$

With $x_{0}=3: \quad 0161512132118914745103$

Theorem 1
Maximum cycle length The LCG has full length if (and only if)

- M and c are relative prime.
- For each prime factor p of $M, \bmod (a, p)=1$.
- if 4 is a factor of M, then $\bmod (a, 4)=1$. Notice, If M is a prime, full period is attained only if $a=1$.

Shuffling

eg. XOR between several generators.

- To enlarge period
- Improve randomness
- But not well understood
- LCGs widespread use, generally to be recommended

Mersenne 「wwister
Matsumoto and Nishimura, 1998

- A large structured linear feedback shift register
- Uses 19,937 bits of memory
- Has maximum period, i.e. $2^{19937}-1$
- Has right distribution
... also joint distribution of 623 subsequent numbers
- Probably the best PRNG so far for stochastic simulation (not for cryptography).

RNGs in common environments

\mathbf{R} : The Mersenne Twister is the default, many others can be chosen.

Python: Mersenne Twister chosen.

S-plus: XOR-shuffling between a congruential generator and a (Tausworthe) feedback shift register generator. The period is about $2^{62} \approx 4 \cdot 10^{18}$, but seed dependent (!).

Matlab 7.4 and higher: By default, the Mersenne Twister. Also one other available.

DTU

Characteristics
Definition: A sequence of pseudo-random numbers U_{i} is a deterministic sequence of numbers in $] 0,1[$ having the same relevant statistical properties as a sequence of random numbers.

The question is what are relevant statistical properties.

- Distribution type
- Randomness (independence, whiteness)

