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Simulation and estimation in a Markov model

of breast cancer

1 Introduction

Markov models are frequently used in biostatistics to model the long-term
development of various diseases. The purpose of this project, is to simulate
and analyze a Markov model of breast cancer, which describes possible com-
plications following a surgery for breast cancer.

1.1 Markov Chains

Observe the random variables Xt, t = 0, 1, . . ., indexed by time, which can
attain the values 1, 2, . . . , N . We assume Xt has the Markov property, which
means the future is conditionally independent of the past given the present.
We may phrase this mathematically as

P (Xt+1|X1, X2, . . . , Xt) = P (Xt+1|Xt).

For simulation purposes, this means we can determine the next value of
Xt, i.e. Xt+1, by only accounting for the value of Xt. We may describe
the relation between Xt and Xt+1 as the probabilities of going from state
i ∈ {1, 2, . . . , N} to state j ∈ {1, 2, . . . , N}. We denote these probabilities as
pij. These probabilities are collected in an N ×N probability matrix:

P =


p11 p12 . . . p1N
p21 p22 . . . p2N
...

...
. . .

...
pN1 pN2 . . . pNN

 .

As an example, assume that Xt begins in the first state, i.e. X0 = 1. The
probability that X1 = 1, is then p11, the probabiliy that X1 = 2 is p12, and
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so on. To ensure we get an actual probability distribution, the following
condition must be met:

N∑
j=1

pij = 1, for all i = 1, 2, . . . , N.

Part 1: A discrete-time model

In this project, we will work with the following Markov model1:

The model follows women after they had their breast tumor removed. The
cancer may reappear close to the removed tumor. This is called local recur-
rence, and the woman enters state 2. The cancer may also reappear distant
from where it was operated. This is called distant metastatis. Both things
may also occour. Death can occur from any state. In this model, once the
death state has been entered, it can never be left again. This means the
simulation should be terminated once this state has been reached.

Task 1

Use the following probability matrix:

P =


0.9915 0.005 0.0025 0 0.001

0 0.986 0.005 0.004 0.005
0 0 0.992 0.003 0.005
0 0 0 0.991 0.009
0 0 0 0 1

 .

Assume that one time step equals one month. Simulate 1000 women, all
starting in state 1, until death. Summarize the lifetime distribution of the
women, after surgery, for example using a histogram. In what proportion of
women does the cancer eventually reappear, locally?

Simulations can be validated by ensuring they are consistent with analytical
results. One way to do this, is to ensure the distribution over the states at a
certain time is consistent with what we expect.

1Putter, Hein, et al. ”Estimation and prediction in a multi-state model for breast
cancer.” Biometrical journal 48.3 (2006): 366-380.
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Let pt denote the probability distribution over the states at time t. This
distribution can be found from the following formula:

pt = p0(P
t).

Task 2

In your simulations, what is the distribution over the states at t = 120?
Does this correspond to what we expect? Answer the question using an
appropriate statistical test.

The above approach only validates the simulation at a certain time point. A
better approach is to ensure the emperical lifetime distribution matches the
theoretical.
It can be shown that the lifetime, T , follows a so-called discrete phase-type
distribution. This distribution has probability mass function

P (T = t) = π(Ps)
tps

and mean

E(T ) = π(I−Ps)
−11.

Where π is the distribution over states 1, 2, 3, 4 at t = 0. Ps is a 4 × 4
sub-matrix of P formed by removing the last row and column. ps is column
vector indicating the probability of dying from states 1, 2, 3, 4. 1 is a vector
of ones of appropriate dimension.

1.2 Task 3

Does your simulated lifetimes follow this distribution?

Task 4

Estimate the expected lifetime, after surgery, of a woman who survives the
first 12 months following surgery, but whose breast cancer has also reap-
peared within the first 12 months, either locally or distant.

Hint: Use rejection sampling. Simulate a number of women, and discard
all simulations that do not meet the requirements. Do this until you have
reached 1000 acceptable simulations.
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Task 5

What fraction of women die within the first 350 months? Answer this by
simulating 200 women, and record the fraction. Do this 100 times. Use con-
trol variates to reduce the variance.
How large a reduction in variance do you see, using control variates, as op-
posed to the crude Monte Carlo estimator?

Hint: Use the mean lifetime after surgery of the 200 simulations as the
control variate.

Task 6

For the report, consider the following questions: What assumptions underlie
the discrete time Markov chain model? Are those assumptions realistic? How
may we relax some of these assumptions, possibly at the cost of increased
model complexity?

Part 2: A continuous-time model

In the previous part, we assumed transitions from one state to another only
happened once a month. In a more realistic model, transitions may occur
at any time. Markov chains where transitions occur in continuous time are
called Continuous-Time Markov Chains (CTMC). A CTMC is specified by
a transition-rate matrix:

Q =


q11 q12 . . . q1N
q21 q22 . . . q2N
...

...
. . .

...
qN1 qN2 . . . qNN

 .

The non-diagonal elements of this matrix must be greater than 0. The diag-
onal elements, qii, are chosen as follows:

qii = −(qi1 + . . . + qi(i−1) + qi(i+1) + . . . qiN), for i = 1, . . . , N. (1)

This is done to ensure the row sums are 0 (If you’re interested in why this is
done, you should refer to other literature on Markov processes).
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The qij’s are not probabilties. Instead, qij is the rate with which the CTMC,
X(t), moves from state i to state j, given that X(t) is in state i.

An important property of CTMCs is that the sojourn time (that is, the
time X(t) remains in a state) in state i is exponentially distributed with rate
−qii.

As an example, assume X(0) = 1. The CTMC will then remain in state
1, for an exponentially distributed amount of time with rate −q11. It will
then jump to state 2 with probability − q12

q11
, to state 3 with probability − q13

q11
,

and so forth.

Task 7

As before, we choose one time-unit equal to one month. Use the following
transition-rate matrix:

Q =


−0.0085 0.005 0.0025 0 0.001

0 −0.014 0.005 0.004 0.005
0 0 −0.008 0.003 0.005
0 0 0 −0.009 0.009
0 0 0 0 0

 .

Simulate 1000 women, all starting in state 1, until death. Summarize the
lifetime distribution after surgery, for example in a histogram. Report the
mean, along with a confidence interval, and the standard deviation, also
with a confidence interval. In what proportion of women has the cancer
reappeared distantly after 30.5 months?

The lifetime distribution now follows a continuous time phase-type distribu-
tion. This has distribution function given by

FT (t) = 1− p0 exp(Qst)1.
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Where Qs is a sub-matrix of Q, where last row and column are removed. In
this case,

Qs =


−0.0085 0.005 0.0025 0

0 −0.014 0.005 0.004
0 0 −0.008 0.003
0 0 0 −0.009

 .

1 is a column vector of ones, of appropriate dimension. exp(Qst) is called
the matrix exponential of the matrix Qst. It is defined as the infinite sum

exp(Qst) =
∞∑
i=1

(Qst)
i

i!
.

In R, it can be calculated with the function expm() from the library expm,
in MATLAB, it can be computed with the function expm(), and in Python
with scipy.linalg.expm for Python.

Task 8

Compare the emperical lifetime distribution function, from your simulations,
to the theoretical, using an appropriate statistical test.

When working with these types of models, one is often interested in the effect
of a certain treatment. To compare two treatments visually, it is common to
plot their survival functions, S(t), in the same plot. The survival function is
defined as the proportion of women alive at time t, i.e.

S(t) = P (T > t).

An unbiased estimator of the survival function, Ŝ(t), is the Kaplan-Meier
estimator,

Ŝ(t) =
N − d(t)

N
.

Where N is the total number of women, and d(t) is the number of women
who have died at time t.
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Task 9

A certain preventitive treatment results in the following transition-rate ma-
trix instead:

Q =


∗ 0.0025 0.00125 0 0.001
0 ∗ 0 0.002 0.005
0 0 ∗ 0.003 0.005
0 0 0 ∗ 0.009
0 0 0 0 0

 .

Simulate 1000 women who have received this treatment. Plot the Kaplan-
Meier estimate of the survival function. In the same figure, plot the Kaplan-
Meier estimate of the survival function for women, who have not received
this treatment. Does the treatment appear to have an effect?

The log-rank test is a statistical test to compare the survival functions
of two samples. Read about it here: https://en.wikipedia.org/wiki/

Log-rank_test

Task 10 (Optional)

Does the preventitive treatment have a significant effect on the survival func-
tion? Answer the question using a log-rank test.

Task 11

For the report, consider the following questions: What assumptions have
been eliminated, by going from the discrete to the continuous time model?
What have been added? How could the model be extended, such that the
sojourn times are Erlang distributed?

Part 3: Estimation

In practice, Q is unknown. The aim of this part is to estimate it from the
kind of observations we may encounter in practice.

In practice, the state of the women after surgery is monitored at screenings
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in the doctor’s office every few years. The observations, for each women, is a
short time series of states. For this project we assume the state is observed
every 4’th year (48 months).

Task 12

Simulate 1000 women, starting in state 1, until death, using the same Q
as in the previous part. For each of the women, create a vector (or time
series) of her observed states Y(i). A time series will consist of the values
Y(i) = (X(0), X(48), X(96), . . . , ). The time series should continue until
death, thus the last value in each of the time series should be 5.

For the remainder of this part, we will assume those 1000 time series is all
we have observed.
It can be shown that an unbiased estimator of the transition rates, qij, is

qij =
Nij

Si

, for i 6= j. (2)

Where Nij is the total number of jumps (for all of the women) from state i
to j, and Si is the total sojourn time in state i (for all of the women). The
diagonal elements are found from equation (1). The problem is that Nij and
Si are unknown, all we know are the timeseries of observations every 4’th
year.
One approach to estimation is to recreate Nij and Si from the partial infor-
mation that we have observed.

Task 13

Implement the following algorithm to estimate the qij’s:

Select Q(0) as some initial guess. In the k’th iteration, do the following

1. For all of the time series, simulate a possible complete trajectory, taking
the observations into account, using Q = Q(k).

2. Summarize the trajectories in the variables N
(k)
ij and S

(k)
i .

3. Find Q(k+1) using equation (2).
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The above should be repeated until some convergence criterion is reached, for
example until ||Q(k)−Q(k+1)||∞ < 10−3. Using this method, it is possible to
approximately recreate the parameters used in the original simulation. The
above is an example of a Monte Carlo Expectation Maximization algorithm.

Hint: The toughest part of the above algorithm is the first step. It can
be done as follows. Simulate the Markov process between each observation.
For example, initialize the process at the first observation y

(i)
1 . Then simulate

the Markov process until 48 months have passed. The value X(48) should

equal the observed value, y
(i)
2 . If it does not, reject the simulation and try

again, until it does. Then, initialize the Markov process at the second ob-
served value, y

(i)
2 . Simulate until X(96) = y

(i)
3 . This should be done for the

interval between all the observations, and for all women.
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