Renewal processes

Phase type renewal process

For a Poisson process we have $Y_{i} \sim \exp (\lambda)$ or $Y_{i} \sim \operatorname{PH}((1),\|-\lambda\|)$, where Y_{i} are (independent) interarrival times - distances between points.

Alternatively we can think of a process generated by a sequence $Y_{i} \sim \operatorname{PH}(\boldsymbol{\alpha}, \boldsymbol{S})$. In principle each Y_{i} has its own underlying Markov Jump process, however, they all have the "same" state space. So we can construct a concatenated Markov Jump process, by "gluing" together the individual processes over absorption points. We define a new Markov jump process $X(t)$

$$
\begin{aligned}
W_{0} & =0 \\
W_{n} & =\sum_{i=1}^{n} Y_{i} \\
X(t) & =\left\{\begin{array}{ccc}
X_{1}(t) & \text { for } & t<Y_{1} \\
X_{2}(t) & \text { for } & W_{1} \leq t<W_{2} \\
\vdots & \vdots & \vdots \\
X_{n}(t) & W_{n-1} \leq t<W_{n} & \\
\mathbb{P}\{X(t+h)=j \mid X(t)=i\} & =S_{i j} h+s_{i} h \alpha_{j}+o(h)
\end{array}\right.
\end{aligned}
$$

We recognise the term $s_{i} h \alpha_{j}$ from the expression for the generator for a randum sum, and as a special case from the expression for a sum of two independent PH random variables.

We have a new Markov jump process with infinitessimal generator \boldsymbol{A}

$$
\boldsymbol{A}=\boldsymbol{S}+\boldsymbol{s} \boldsymbol{\alpha}
$$

As we do not allow for more than one point of a time we must have $\boldsymbol{\alpha} \boldsymbol{e}=1$ ($\alpha_{r}=0$ - impossibility of starting in an absorbing state) If $Y_{i} \sim \exp (\lambda)$ we have

$$
\begin{aligned}
N(t) & =\max _{n \in \mathbb{N} \geq 0}\left\{W_{n} \leq t\right\} \\
\mathbb{P}\{N(t)=n\} & =\frac{(\lambda t)^{n}}{n!} e^{-\lambda t}
\end{aligned}
$$

What if $Y_{i} \sim \operatorname{PH}(\boldsymbol{\alpha}, \boldsymbol{S})$?

$$
\boldsymbol{S}_{n}=\left\|\begin{array}{cccccc}
\boldsymbol{S} & \boldsymbol{s} \alpha & \mathbf{0} & \ldots & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \boldsymbol{S} & \boldsymbol{s \alpha} & \cdots & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \boldsymbol{S} & \cdots & \mathbf{0} & 0 \\
\vdots & \vdots & \vdots & \ddots & \ddots & \ddots \\
\vdots & \vdots \\
\mathbf{0} & \mathbf{0} & 0 & \cdots & \boldsymbol{S} & \boldsymbol{s} \alpha \\
\mathbf{0} & 0 & 0 & \cdots & 0 & S
\end{array}\right\|
$$

what we could call a quasi birth process. We have $W_{n} \sim \operatorname{PH}\left((\boldsymbol{\alpha}, \mathbf{0}, \ldots, \mathbf{0}), \boldsymbol{S}_{n}\right)$, so $\mathbb{P}\{N(t) \geq t\}=$ $\mathbb{P}\left\{W_{n} \leq t\right\}$, which we can calculate numerically.

For the Poisson process we have

$$
\mathbb{E}(N(t))=\lambda t=\lambda \int_{0}^{t} \mathrm{~d} u=\int_{0}^{t} \lambda \mathrm{~d} u
$$

the integral over the intensity of having a point at all specific time points. We similarly first calculate the intensity (probability) of having a point at some specific time point $\mathrm{t} \mathbb{P}\left\{\exists n: W_{n} \in[t ; t+\mathrm{d} t[\}\right.$ The probability of having a point in $[t ; t+\mathrm{d} t[$ is the probability that $X(t)$ has a transition via the absorbing state (that $X(t)$ shifts from some $X_{n}(t)$ to some $X_{n+1}(t)$.

$$
\begin{aligned}
& \mathbb{P}\{N(t+\mathrm{d} t)-N(t)=1 \mid X(t)=i\} \\
& \mathbb{P}\{X(t)=i\}=s_{i} \mathrm{~d} t+o(\mathrm{~d} t) \\
& \boldsymbol{\alpha} e^{\boldsymbol{A t}} \boldsymbol{e}_{i}=\boldsymbol{\alpha} e^{(\boldsymbol{S}+\boldsymbol{s} \boldsymbol{\alpha}) t} \boldsymbol{e}_{i}
\end{aligned}
$$

where \boldsymbol{e}_{i} is a column vector with 1 in the i th position and 0s elsewhere.

$$
\mathbb{P}\{N(t+\mathrm{d} t)-N(t)=1\}=\boldsymbol{\alpha} e^{(\boldsymbol{S}+\boldsymbol{s} \boldsymbol{\alpha}) t} \boldsymbol{s} \mathrm{~d} t+o(\mathrm{~d} t)
$$

So

$$
\mathbb{E}(N(t))=\int_{0}^{t} \boldsymbol{\alpha} e^{\boldsymbol{A} u} \boldsymbol{s} \mathrm{~d} u=\boldsymbol{\alpha} \int_{0}^{t} e^{\boldsymbol{A} u} \mathrm{~d} u \boldsymbol{s}
$$

Now $\boldsymbol{A} \boldsymbol{e}=\mathbf{0}$, as \boldsymbol{A} has 0 as an eigenvalue, it is singular. First we note that \boldsymbol{A} can be assumed to be irreducible without loss of generality, as otherwise there would be phases/states that are never visited, so the eigenvalue 0 has multiplicity 1 with left and right eigenvectors $\boldsymbol{\alpha}$ and \boldsymbol{e}. The matrix $\boldsymbol{e} \boldsymbol{\pi}-\boldsymbol{A}$ has eigenvalue 1 associated with the pair ($\boldsymbol{\alpha}, \boldsymbol{e}$) all other eigenvectors and eigenvalues of of \boldsymbol{A} is kept
due to orthogonality of the eigenvectors, so this matrix is invertible. We can write

$$
\begin{aligned}
& \mathbb{E}(N(t))=\boldsymbol{\alpha} \int_{0}^{t} e^{\boldsymbol{A} u} \mathrm{~d} u \boldsymbol{s}=\boldsymbol{\alpha} \int_{0}^{t}(\boldsymbol{e} \boldsymbol{\pi}-\boldsymbol{A})^{-1}(\boldsymbol{e} \boldsymbol{\pi}-\boldsymbol{A}) e^{\boldsymbol{A} u} \mathrm{~d} u \boldsymbol{s}=\boldsymbol{\alpha}(\boldsymbol{e} \boldsymbol{\pi}-\boldsymbol{A})^{-1} \int_{0}^{t}(\boldsymbol{e} \boldsymbol{\pi}-\boldsymbol{A}) e^{\boldsymbol{A} u} \mathrm{~d} u \boldsymbol{s} \\
& e^{\boldsymbol{A} u}=\sum_{k=0}^{\infty} \frac{(\boldsymbol{A} u)^{k}}{k!} \\
& \boldsymbol{\pi} e^{\boldsymbol{A} u}==\sum_{k=0}^{\infty} \boldsymbol{\pi} \boldsymbol{A}^{k} \frac{u^{k}}{k!}=\boldsymbol{\pi} \boldsymbol{I}+\sum_{k=1}^{\infty} \boldsymbol{\pi} \boldsymbol{A}^{k} \frac{u^{k}}{k!}=\boldsymbol{\pi}+\sum_{k=1}^{\infty} \boldsymbol{\pi} \boldsymbol{A}^{k} \frac{u^{k}}{k!}=\boldsymbol{\pi} \\
& \mathbb{E}(N(t))=\boldsymbol{\alpha}(\boldsymbol{e} \boldsymbol{\pi}-\boldsymbol{A})^{-1} \int_{0}^{t}(\boldsymbol{e} \boldsymbol{\pi}-\boldsymbol{A}) e^{\boldsymbol{A} u} \mathrm{~d} u \boldsymbol{s} \\
&=\boldsymbol{\alpha}(\boldsymbol{e} \boldsymbol{\pi}-\boldsymbol{A})^{-1} \boldsymbol{e} \boldsymbol{\pi} \boldsymbol{s} t-\boldsymbol{\alpha}(\boldsymbol{e} \boldsymbol{\pi}-\boldsymbol{A})^{-1} \int_{0}^{t} \boldsymbol{A} e^{\boldsymbol{A} u} \mathrm{~d} u \boldsymbol{s} \\
&(\boldsymbol{e} \boldsymbol{\pi}-\boldsymbol{A})^{-1} \boldsymbol{e}=\boldsymbol{e}, \boldsymbol{\alpha} \boldsymbol{e}=1 \\
& \mathbb{E}(N(t))=\boldsymbol{\pi} \boldsymbol{s} t-\boldsymbol{\alpha}(\boldsymbol{e} \boldsymbol{\pi}-\boldsymbol{A})^{-1}\left(e^{\boldsymbol{A} t}-\boldsymbol{I}\right) \boldsymbol{s} \\
& \boldsymbol{\pi} \boldsymbol{s} \mathbb{E}\left(Y_{i}\right)=1, \quad(\boldsymbol{\pi} \boldsymbol{s})^{-1}=\mathbb{E}\left(Y_{i}\right)=\mu \\
& \mathbb{E}(N(t))=\frac{t}{\mu}+\boldsymbol{\alpha}(\boldsymbol{e} \boldsymbol{\pi}-\boldsymbol{A})^{-1} \boldsymbol{s}-\boldsymbol{\alpha}(\boldsymbol{e} \boldsymbol{\pi}-\boldsymbol{A})^{-1} e^{\boldsymbol{A} t} \boldsymbol{s} \\
& \boldsymbol{\alpha}(\boldsymbol{e} \boldsymbol{\pi}-\boldsymbol{A})^{-1} e^{\boldsymbol{A} t} \boldsymbol{s} \stackrel{t \rightarrow \infty}{\rightarrow} \boldsymbol{\alpha}(\boldsymbol{e} \boldsymbol{\pi}-\boldsymbol{A})^{-1} \boldsymbol{e} \boldsymbol{\pi} \boldsymbol{s}=\boldsymbol{\pi} \boldsymbol{s}=\mu^{-1} \\
& \mathbb{E}(N(t))-\frac{t}{\mu} \stackrel{t \rightarrow \infty}{\rightarrow} \boldsymbol{\alpha}(\boldsymbol{e} \boldsymbol{\pi}-\boldsymbol{A})^{-1} \boldsymbol{s}-\mu^{-1}
\end{aligned}
$$

What can be said in the general case where $\mathbb{P}\left\{Y_{i} \leq\right\} y=F(y), Y_{i}$ independent?

Not so much in fact!

$$
\begin{aligned}
\mathbb{P}\{N(t) \geq n\} & =\mathbb{P}\left\{W_{n} \leq t\right\} \\
\mathbb{E}(N(t)) & =\sum_{n=0}^{\infty} n \mathbb{P}\{N(t)=n\}=\sum_{n=1}^{\infty} n \mathbb{P}\{N(t)=n\}=\sum_{n=1}^{\infty}\left(\sum_{i=1}^{n} 1\right) \mathbb{P}\{N(t)=n\}=\sum_{n=1}^{\infty} \sum_{i=1}^{n} \mathbb{P}\{N(t)=n\} \\
& =\sum_{i=1}^{\infty} \sum_{n=i}^{\infty} \mathbb{P}\{N(t)=n\}=\sum_{i=1}^{\infty} \mathbb{P}\{N(t) \geq i\}=\sum_{i=1}^{\infty} \mathbb{P}\left\{W_{i} \leq t\right\}=\sum_{i=1}^{\infty} F_{n}(t)=M(t)
\end{aligned}
$$

with $M(t)$ being the renewal function and $F_{n}(t)$ being the distribution function of the sum of n indepdent F distributed random variables. At time t the last (previous) point occured at time $W_{N(t)}$, the next point will occur at time $W_{N(t)}+1$

$$
W_{N(t)+1}=\sum_{i=1}^{N(t)+1} Y_{i}=Y_{1}+\sum_{i=2}^{N(t)+1} Y_{i}
$$

the sum might be empty (if the next point is the first point, i.e. no points have yet occurred)

$$
\begin{aligned}
W_{N(t)+1} & ==Y_{1}+\sum_{i=2}^{N(t)+1} Y_{i}=Y_{i}+\sum_{i=2}^{\infty} Y_{i} 1\{N(t)+1 \geq i\}=Y_{i}+\sum_{i=2}^{\infty} Y_{i} 1\{N(t) \geq i-1\} \\
& =Y_{i}+\sum_{i=2}^{\infty} Y_{i} 1\left\{\sum_{j=1}^{i-1} Y_{j} \leq t\right\} \\
\mathbb{E}\left(W_{N(t)+1}\right) & =\mathbb{E}\left[Y_{i}+\sum_{i=2}^{\infty} Y_{i} 1\left\{\sum_{j=1}^{i-1} Y_{j} \leq t\right\}\right]=\mathbb{E}\left(Y_{i}\right)+\mathbb{E}\left[\sum_{i=2}^{\infty} Y_{i} 1\left\{\sum_{j=1}^{i-1} Y_{j} \leq t\right\}\right] \\
& =\mathbb{E}\left(Y_{i}\right)+\sum_{i=2}^{\infty} \mathbb{E}\left[Y_{i} 1\left\{\sum_{j=1}^{i-1} Y_{j} \leq t\right\}\right]=\mathbb{E}\left(Y_{i}\right)+\sum_{i=2}^{\infty} \mathbb{E}\left(Y_{i}\right) \mathbb{E}\left[1\left\{\sum_{j=1}^{i-1} Y_{j} \leq t\right\}\right] \\
& =\mathbb{E}\left(Y_{i}\right)+\mathbb{E}\left(Y_{i}\right) \sum_{i=2} \mathbb{P}\left\{\sum_{j=1}^{i-1} Y_{j} \leq t\right\}=\mathbb{E}\left(Y_{i}\right)+\mathbb{E}\left(Y_{i}\right) \sum_{k=1} \mathbb{P}\left\{\sum_{j=1}^{k} Y_{j} \leq t\right\} \\
W_{N(t)+1} & =\mathbb{E}\left(Y_{i}\right)(1+M(t))=\mu(1+M(t))
\end{aligned}
$$

For PH we have immediately

$$
\begin{aligned}
M(t)-\frac{t}{\mu}-a & \stackrel{t \rightarrow \infty}{\rightarrow} 0 \\
\frac{M(t)}{t} & \stackrel{t \rightarrow \infty}{\rightarrow} \mu^{-1}
\end{aligned}
$$

It is surprisingly hard (like two pages) to prove this in the general case, see e.g. Bladt\& Nielsen if you need to see a proof. Actually it is easier to prove

$$
\begin{aligned}
& \frac{N(t)}{t} \xrightarrow{t \rightarrow \infty} \mu^{-1} \quad \text { in probability } \\
& \frac{N(t)}{t}=\frac{N(t)}{W_{N(t)}+\left(t-W_{N(t)}\right)} \frac{N(t)}{W_{N(t)}} \frac{W_{N(t)}}{W_{N(t)}+\left(t-W_{N(t)}\right)}=\frac{N(t)}{W_{N(t)}} \frac{1}{1+\frac{t-W_{N(t)}}{W_{N(t)}}} \\
& =\left(\frac{W_{N(t)}}{N(t)}\right)^{-1} \frac{1}{1+\frac{t-W_{N(t)}}{W_{N(t)}}} \stackrel{t \rightarrow \infty}{\rightarrow} \mu^{-1} \\
& M(t)=\frac{t}{\mu}+\frac{\sigma^{2}-\mu^{2}}{2 \mu^{2}}+o\left(\frac{1}{t}\right) \\
& \mathbb{P}\left(\frac{M(t)-\frac{t}{\mu}}{\sqrt{\frac{t \sigma^{2}}{\mu^{3}}}} \leq x\right) \xrightarrow{t \rightarrow \infty} \Phi(x) \\
& \gamma_{t}=W_{N(t)+1}-t, \quad \text { (residual/excess life time) } \\
& \delta_{t}=t-W_{N(t)}, \quad \text { (age), }=t \text { if } N(t)=0 \\
& \beta_{t}=W_{N(t)+1}-W_{N(t)}, \quad \text { (total life time/spread }
\end{aligned}
$$

Residual life time for $\mathrm{PH} \gamma_{t} \sim \mathrm{PH}\left(\boldsymbol{\alpha} e^{\boldsymbol{A} t}, \boldsymbol{S}\right)$ asymptotic distribution of γ_{t} - distribution of γ_{∞} $\gamma_{\infty} \sim \mathrm{PH}(\boldsymbol{\pi}, \boldsymbol{S})($ with $\boldsymbol{\pi} \boldsymbol{A}=\mathbf{0})$ What can be said in the general case: Bus example $\mathbb{P}\left(\beta_{\infty} \in[x, x+\right.$ $\mathrm{d} x[) \cong x f(x) \mathrm{d} x$

$$
\begin{aligned}
f_{1}(x) & =\frac{x f(x)}{\mathbb{E}\left(X_{i}\right)}=\frac{x f(x)}{\mu}, \quad \text { first order moment distribution } \\
\mathbb{P}\left\{\beta_{\infty} \leq x\right\} & =\frac{\int_{0}^{x} u f(u) \mathrm{d} u}{\mu} \\
f_{j}(x) & =\frac{x^{j} f(x)}{\mathbb{E}\left(X_{i}^{j}\right)}, \quad j \text { th order moment distribution } \\
\mathbb{P}\left(\gamma_{\infty} \leq x\right) & =\frac{\int_{0}^{x}(1-F(t)) \mathrm{d} t}{\mathbb{E}\left(X_{i}\right)}=\frac{\int_{0}^{x}(1-F(t)) \mathrm{d} t}{\mu}
\end{aligned}
$$

Some examples

$$
\begin{aligned}
F(x) & =1-e^{-\lambda x} \\
\mathbb{P}\left(\gamma_{\infty} \leq x\right) & =\int_{0}^{x} \frac{e^{-\lambda t}}{\frac{1}{\lambda}} \mathrm{~d} t=1-e^{-\lambda x} \\
\gamma_{\infty} & \sim \exp (\lambda) \\
\mathbb{E}\left(\gamma_{\infty}\right) & =\frac{1}{\lambda}=\mathbb{E}\left(X_{i}\right) \\
f(x) & =\lambda(\lambda x) e^{-\lambda x} \\
F(x) & =1-e^{-\lambda x}-(\lambda x) e^{-\lambda x} \\
\mathbb{P}\left(\gamma_{\infty} \leq x\right) & =\frac{\lambda}{2} \int_{0}^{x}\left(e^{-\lambda t}-(\lambda t) e^{-\lambda t}\right) \mathrm{d} t=\frac{1}{2} \int_{0}^{x} \lambda e^{-\lambda t} \mathrm{~d} t+\frac{1}{2} \int_{0}^{x} \lambda(\lambda t) e^{-\lambda t} \mathrm{~d} t \\
& =1-e^{-\lambda x}-\frac{1}{2}(\lambda x) e^{-\lambda x} \\
\mathbb{E}\left(\gamma_{\infty}\right) & =\frac{1}{2} \frac{1}{\lambda}+\frac{1}{2} \frac{1}{\lambda}=\frac{3}{2 \lambda}<\frac{2}{\lambda}=\mathbb{E}\left(X_{i}\right)
\end{aligned}
$$

Additionally we have $X_{i} \sim \operatorname{PH}\left((1,0),\left\|\begin{array}{cc}-\lambda & \lambda \\ 0 & -\lambda\end{array}\right\|\right)$ so $\boldsymbol{A}=\left\|\begin{array}{cc}-\lambda & \lambda \\ \lambda & -\lambda\end{array}\right\|$ and $\boldsymbol{\pi}=\left(\frac{1}{2}, \frac{1}{2}\right)$ so

$$
\begin{aligned}
& \gamma_{\infty} \sim \operatorname{PH}\left(\left(\frac{1}{2}, \frac{1}{2}\right),\left\|\begin{array}{cc}
-\lambda & \lambda \\
0 & -\lambda
\end{array}\right\|\right) \\
& f(x)=\alpha_{1} \lambda_{1} e^{-\lambda_{1} x}+\alpha_{2} \lambda_{2} e^{-\lambda_{2} x} \\
& X_{i} \sim \operatorname{PH}\left(\left(\alpha_{1}, \alpha_{2}\right),\left\|\begin{array}{cc}
-\lambda_{1} & 0 \\
0 & -\lambda_{2}
\end{array}\right\|\right) \\
& \boldsymbol{A}=\left\|\begin{array}{cc}
-\lambda_{1} \alpha_{2} & \lambda_{1} \alpha_{2} \\
\lambda_{2} \alpha_{1} & -\lambda_{2} \alpha_{1}
\end{array}\right\| \\
& \boldsymbol{\pi}=\left(\frac{\frac{\alpha_{1}}{\lambda_{1}}}{\left.\frac{\alpha_{1}}{\lambda_{1}}+\frac{\alpha_{2}}{\lambda_{2}}, \frac{\frac{\alpha_{2}}{\lambda_{2}}}{\frac{\alpha_{1}}{\lambda_{1}}+\frac{\alpha_{2}}{\lambda_{2}}}\right), ~\left(\lambda_{1}\right.}\right) \\
& \gamma_{\infty} \sim \operatorname{PH}\left(\left(\frac{\frac{\alpha_{1}}{\lambda_{1}}}{\frac{\alpha_{1}}{\lambda_{1}}+\frac{\alpha_{2}}{\lambda_{2}}}, \frac{\frac{\alpha_{2}}{\lambda_{2}}}{\frac{\alpha_{1}}{\lambda_{1}}+\frac{\alpha_{2}}{\lambda_{2}}}\right),\left\|\begin{array}{cc}
-\lambda_{1} & 0 \\
0 & -\lambda_{2}
\end{array}\right\|\right) \\
& \mathbb{E}\left(\gamma_{\infty}\right)=\frac{\frac{\alpha_{1}}{\lambda_{1}}}{\frac{\alpha_{1}}{\lambda_{1}}+\frac{\alpha_{2}}{\lambda_{2}}} \frac{1}{\lambda_{1}}+\frac{\frac{\alpha_{2}}{\lambda_{2}}}{\frac{\alpha_{1}}{\lambda_{1}}+\frac{\alpha_{2}}{\lambda_{2}}} \frac{1}{\lambda_{2}}=\frac{\alpha_{1}}{\alpha_{1}+\alpha_{2} \frac{\lambda_{1}}{\lambda_{2}}} \frac{1}{\lambda_{1}}+\frac{\alpha_{2}}{\alpha_{1} \frac{\lambda_{2}}{\lambda_{1}}+\alpha_{2}} \frac{1}{\lambda_{2}}>\frac{\alpha_{1}}{\lambda_{1}}+\frac{\alpha_{2}}{\lambda_{2}}=\mathbb{E}\left(X_{i}\right)
\end{aligned}
$$

Modified renewal process. For the phase type renewal process the initial distribution among the states could be given by some other probability distributin e.g. β, more generally the first interval Y_{i} could have another distribution than the rest. Such a process is called a modified or delayed renewal process.

In the special case where Y_{1} has the same distribution as γ_{∞} the process is called a stationary (equilibrium) renewal process. For the PH renewal process this corresponds to initiating the Markov jump process $X(t)$ with $\boldsymbol{\pi}, \mathbb{P}\{X(0)=i\}=\pi_{i}$.

For a stationary renewal process we have $M(t)=\frac{t}{\mu}$ and $\mathbb{P}\left\{\gamma_{t} \leq x\right\}=\frac{\int_{0}^{x}(1-F(u)) \mathrm{d} u}{\mu}$ independent of t.

Joint distribution of δ_{∞} and γ_{∞}

$\left\{\gamma_{t} \geq x \wedge \delta_{t} \geq y\right\}=\left\{\gamma_{t-y} \geq x+y\right\}$ so

$$
\begin{aligned}
\lim _{t \rightarrow \infty} \mathbb{P}\left\{\gamma_{t} \geq x, \delta_{t} \geq y\right\} & =\lim _{t \rightarrow \infty} \mathbb{P}\left\{\gamma_{t-y} \geq x+y\right\}=\frac{\int_{x+y}^{\infty}(1-F(u)) \mathrm{d} u}{\mu} \\
f_{\gamma_{\infty}, \delta_{\infty}} & =\frac{f(x+y)}{\mu}, \quad \text { if } F \text { has a density } f
\end{aligned}
$$

