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Renewal processes

Phase type renewal process

For a Poisson process we have Y; ~ exp(\) or ¥; ~ PH((1),||—A||), where Y; are (independent)
interarrival times - distances between points.

Alternatively we can think of a process generated by a sequence Y; ~ PH(e, S). In principle each
Y; has its own underlying Markov Jump process, however, they all have the “same” state space. So
we can construct a concatenated Markov Jump process, by “gluing” together the individual processes
over absorption points. We define a new Markov jump process X (t)

Wo = 0
W, = Y Y
i=1
X1<t) for t< Y
Xo(t) for Wi <t< Wy
X)) = . : .
Xn(t) Whor <t < W,
P{X(t+h)=j|X(t) =i} = Sijh+siha;+o(h)

We recognise the term s;ho; from the expression for the generator for a randum sum, and as a special
case from the expression for a sum of two independent PH random variables.

We have a new Markov jump process with infinitessimal generator A

A = S+sa

As we do not allow for more than one point of a time we must have ae = 1 (o, = 0 - impossibility of
starting in an absorbing state) If Y; ~ exp (\) we have

PIN@ =0} = D x

n!



What if V; ~ PH(a, S)?
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what we could call a quasi birth process. We have W,, ~ PH((e,0,...,0),S,), so P{N(t) > t} =
P{W,, < ¢}, which we can calculate numerically.

For the Poisson process we have

E(N(t) = )\t_)\/otdu_/ot)\du

the integral over the intensity of having a point at all specific time points. We similarly first calculate
the intensity (probability) of having a point at some specific time point t P{3n : W,, € [t;t + dt[}
The probability of having a point in [t;¢ + dt[ is the probability that X (¢) has a transition via the
absorbing state (that X (¢) shifts from some X, (¢) to some X, ().

P{N(t+d) — N(t) = 1|X(£) =i} = sidt + o(dt)
P{X(t) =i} = ae?le; =ael5+3¥¢,

where e; is a column vector with 1 in the ¢th position and 0Os elsewhere.
P{N(t+dt) — N(t) =1} = ae5)isdt + o(dt)

So

t t
E(N(t) = /anA“sdu:a/O eAtdus

Now Ae =0, as A has 0 as an eigenvalue, it is singular. First we note that A can be assumed to be
irreducible without loss of generality, as otherwise there would be phases/states that are never visited,
so the eigenvalue 0 has multiplicity 1 with left and right eigenvectors @ and e. The matrix er — A
has eigenvalue 1 associated with the pair (a,e) all other eigenvectors and eigenvalues of of A is kept



due to orthogonality of the eigenvectors, so this matrix is invertible. We can write

t ¢ ¢
E(N(t) = a/ eAtdus = a/ (em — A) em — A)eAdus = aler — A)~! / (em — A)eA"dus
0 0 0
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E(N(t)) = aler—A)"! / (em — A)e"dus
0

t
= afer— A) lerst —aler — A)7! / Aedus
0

(em—A)'e = e oae=1
E(N() = 7st—aler—A) (e —1)s
msE(Y) = 1, (ms) T =E(Y;) =pu
E(N(@) = i +aler — A)7's —aler — A)tefls

afer — A)leAts "2° afer — A) lems =ms = p !

What can be said in the general case where P{Y; <}y = F(y), ¥; independent?

Not so much in fact!

PIN(t)>n} = P{W, <t}

E(N(t) = Y nP{N(t)=n}=> nP{N(t)=n}=>_ <21> P{N(t) = ZZZ {N(t) =n}

n=1 \i:=1

= Y Y P{N@t)=n}=> P{N(t)>i} = Z]P{WZ- <t} = ZFn(t) = M(t)
=1 i=1 i=1

i=1 n=1

with M(t) being the renewal function and F,(t) being the distribution function of the sum of n
indepdent F distributed random variables. At time ¢ the last (previous) point occured at time Wy (),
the next point will occur at time Wy + 1

N(t)+1

WN(t)+1 = Z Y=Y+ Z Y;



the sum might be empty (if the next point is the first point, i.e. no points have yet occurred)

N(t)+1

Wy = =Yi+ Y, Yi=Yi+ Y Yil{N@t)+1>i}=Y;+> Yil{N(t) >i—1}
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Y,

Wi+ = EX)(1+M@) = p(l+ M(t))

For PH we have immediately

It is surprisingly hard (like two pages) to prove this in the general case, see e.g. Bladt& Nielsen if you
need to see a proof. Actually it is easier to prove
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Residual life time for PH 7 ~ PH (e, S) asymptotic distribution of ~; - distribution of vu -
Yoo ~ PH(m, S) (with 1A = 0) What can be said in the general case: Bus example P(f8 € [z, +
dz]) = 2f (r)dx

af(x) _ xf(x)

filz) = B(X,) = P first order moment distribution
P{Bs <z} = Jo uf (u)du
w
J
fi(z) = TE(J;g))7 jth order moment distribution
Py <z) = Jo L —F@)dt _ [ (1—F(t))dt
= E(X;) Iz
Some examples
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Modified renewal process. For the phase type renewal process the initial distribution among the
states could be given by some other probability distributin e.g. B, more generally the first interval Y;
could have another distribution than the rest. Such a process is called a modified or delayed renewal
process.

In the special case where Y; has the same distribution as 7., the process is called a stationary
(equilibrium) renewal process. For the PH renewal process this corresponds to initiating the Markov
jump process X (t) with 7, P{X(0) =i} = ;.

For a stationary renewal process we have M (t) = ﬁ and P{y; <z} =

n
of t.

independent

Joint distribution of ¢,, and v,
{frnzand zyh={nyzx+y}so

[ (1= F(u))du

. . x4
tli)ngo ]P{,yt 2 xz, 5t Z y} = tli{rolo IP{’thy Z T+ y} = Y [
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freosbe = ——=, if I has a density f
T



