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Consider the setting of Sections 3.4.2 and 3.7 The Markov chain {X,;n > 0} with one step
transition probabilities

Where Q is 7 x r, I — @Q is non singular, such that all r states are transient.
Define Y = min,>o{X, > r} to be the time of absorption in one of the absorbing states.
Let oy =P{Xp =i}, i=0,1,...,ra= (o, a1,...,Q_1).
Then

P{Y >y} = P{X,<r}=aQ’%
P{Y =y} = aQ' 'Re

The first expression gives the probability of the Markov chain being in one of the transient states at
time y (not yet absorbed)

The second expression gives the probability of absorption in (exactly) time y
If our focus is primarily on the absorption time,
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with r = Re = e — Qe

(Discrete) phase type distribution

we reparameterise to get

with initial probability distribution (@, @), «, =1 — ae. We frequently assume «, =0 (ae = 1).
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We write Y ~ PH(ex, S): a representation

P{Y =y} =
P{Y >y} = aSYe, Survival function
P{Y <y} = 1-—aSY,

From Chapter 3:
EY) = a(I-8)"!

Higher order moments

Probability generating function
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For 6 =1 we get
EY) = al-8)%s=a(l-S)"

using

Se+s = ess=(I—-Se
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aSY"'s, Probability mass function (density)
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(Cumulative) distribution function
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Taking further derivatives we get

Li(;) = aS* NI -08)F s
k—1
E (H(X - i)) = aSl(1-9"
=0

Continuous time phase type distributions

Consider a Markov jump process {J(t);¢ > 0} with generator
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P{X >z} = ac%
Pl <X <z+h} = ae’sh= fx(z)h
fx(x) = aeS%s
P{X <z} = 1-—ae%
Lx() = E(efgx) :ozTJr/ e %aeS?sdr = a, + a [/ eezesxdx} s
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= +a/ e~ WI=92qss = o, + (01 — S) " 's
0
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- AN —1)?n! I — n
X (~1)"nla(6I - §)"'s
E(X") = nla(-S) "e, using
Se+s = 0&s=—-Se

Simplest (nearly trivial) example

|

(@ 8) = ((1),[[=Al)

X ~PH((1), ][ = All) or X ~exp(})

Probabilistic derivation of mean



W; time spent in j before absorption

X 00
E(W,|J(0)=i) = E </O 1{J(t) = 7}]7(0) _i)dt> —E </O J() = 4, X > }]7(0) _i)dt)

= / Pij(t)dt:/ [€51], dt
0 0 !

U = / eStdt = (-8)7!
0

E(X) = aUe=a(-S) e

Operations with phase type distributions

Phase type distributions are closed under a number of operations. The results can be proven proba-
bilistically (as well as analytically)

Sums of independent PH variables

Suppose X; ~ PH(a;, S;) independent (discrete or continuous)
The distribution of X = X; + X5

First assume both exponential (geometric)




Two life stages.

Generally X; ~ PH(e, S) with {J1(¢);t > 0} and, Xo ~ PH(B,T) with {J5(¢);t > 0}. Define

Jl(t) t<X1
J) = {Jg(tXl) X, <t

State changes between “X;” states: S;;(dt)
State changes between “X,” states: T;;(dt)
State changes from “X;” states to “X»” states: s;(dt)s3;

So X ~ PH(y, L) with
S Slﬁ
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Alternative analytic proof via generating function/Laplace transform. By induction the result holds
for finite sums.

a0 = (@anp)

Example Erlang distributions

A A 0 0 0

0O =X A 0 0

0 0 - 0 0
(@,5) = |(1,0,0,...,0), .

0 0 0 A A

0 0 0 0 -




Example generalized Erlang distributions

M A 0
0 =X A
0 0 —X3
0 0 0
0 0 0

Mixture of (independent) PH variables

As before X; ~ PH(a;, S;) X = IX; + (1 — I) X5 with I indicator IE(]) = p independent of Xj.

X ~ PH(8,T)

(8,T)
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By induction the result holds for finite mixtures

Example hyper exponential distributions

(@, S)

Order statistics of independent PH variables

Consider first X = min (X, Xs), with X; ~ exp (\;) (similar/same argument forX; ~ geo(p;))

Similarity with Markov jump process (continuous time Markov chain) - race between two expo-
nentials X ~ exp (A1 + A2)
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Minimum of two discrete PH distributions
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We need to simultaneously keep track of the state in both chains.

Denote the states of X; as {1,2} and that of X5 as {a,b}.

1 2 a b
1] p11 pi2 a |l 911 qi12
S = Sy =
' 2| pa1 p22 ? bl g1 g2
1,a 1,b 2,a 2,b
La || p11qi1 p11qi2 p12q11  P12¢12
T — 1,b || p11ge1  P11G22  P12ge1  Pi2ge2 _ P11S2
2,a || p21q11 P21q12  P22q11  P22q12 2152
2,0 || p21g21  P21G22  P22G21  P22G22
In general for matrices A (n x n) and B.
annB a;2B a1, B
ang a22B agnB
AR B = = . . .
a1 B a,2B ann B

P12S2
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’ =51 ® 85, (Kronecker product)

In summary X = min (X3, X2), X; ~ PH(ew;, S;), then X ~ PH(B,T) with

N ™

o) Qa
S1® Sy, (discrete)

S1985:=5®I+1I®S, (continuous)

X = max (X1, X3), X; ~ PH(ay, S;), then X ~ PH(B, T) with

(a1 ® ag, ag 001, 00 r, 00)

S1 08 Si®s; s§1®8;
0 S 0 ,  (discrete)
0 0 Sy

S519085 I®s; 11
0 S 0 ,  (continuous)
0 0 So

same principle but more involved for general order statistics - see Bladt and Nielsen



Random sums

X; ~PH(e, S), N ~ PH(y, K) N discrete. X = YN | X,.
Again we need a state space that is the product space of the generic space of the X;’s and V.

We see X ~ PH(B,T) with

B = 7®a
T = SeI+sa®K

Example X; ~ exp (A),N ~geo(p) toget T'=—X-1+ A (1 —p) =—Ap, so X is exponential.



