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Markov decision processes

Today:
I Markov decision processes

Next week
I Brownian motion

Bo Friis Nielsen Markov decision processes

Renewal reward processes

Claims Yi , i ∈ N are generated according to a renewal process
{N(t); t ≥ 0}. The accumulated Z (t) claim up to time t is

Z (t) =

N(t)∑
i=1

Yi

N(t) Number of claims up to time t
Yi Size of claim i

Z (t) Accumulated claim up to time t
In general hard to analyse, but
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Explicit solution if N(t) is a phase type renewal process and Yi
are phase type distributed.
A renewal reward model of pairs (Xi ,Yi), Xi and Yi need not be
independent.
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Markov chain

If we think of a phase type renewal process in terms of the
underlying Markov jump process, then rewards are associated
with transitions in a Markov process.
If we further assume that the states have some physical
meaning, then we could have rewards associated with other
transitions (claims) or sojourns (premiums)
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Markov chain

A Markov chain {Xt ; t ∈ N ∪ {0} in discrete time is
characterised by its transition probability matrix/matrices P, Pt
and the initial probability vector p0.
We could have rewards associated with transitions in the
Markov chain.
Suppose we had acces to/control over the transitions
mechanism such that we had Pt (a) where the argument a is
some action we can take.
See Chapter one of Puterman for examples.
Tamping as an example.
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Markov Decision Process set up

I Decision epochs
T = {1,2, . . . ,N},T = {1,2, . . . ,∞},T = [0;∞[

I State space S, S = ∪tSt

I Action sets As,t , A = ∪s∈SAs,t
I Rewards Rt ,As,t

I Typically expected rewards rt (s,a) =
∑

j∈St

rt (s,a, j)pt (j |s,a)

I For finite horizon rN(s) - scrap value
I Transition probabilities of Pt ,As,t

I PAs could be a Markov transition kernel on a general space
I Even if time is discrete it could be randomised

(exponential)
{T ,S,As,pt (j |s,a), rt (s,a)} Markov decision process
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Process

Xt State occupied time t
Yt Action taken at time t

rt (s,a) Reward received at time t visiting state s taking
action a

Zt History process at time t
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Decision rules and policies

dt Decision rule. Action taken at time t . dt : St → As,t

Zt History, Zt = (s1,a1, s2,a2, . . . , sN)

Π Policy, complete collection of decision rules
Π = (d1,d2, . . . )
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Policy types/decision rules 2.1.4

K ∈ {SD,SR,MR,MD,HD,HR,MR,MD}
SD Stationary deterministic policy, (sometimes pure

policy)
SR Stationary random policy
MD Markovian deterministic
MR Markovian random
HD History dependent deterministic
HR Hisory random

Relations
ΠSD ⊂ ΠSR ⊂ ΠMR ⊂ ΠHR

ΠSD ⊂ ΠMD ⊂ ΠMR ⊂ ΠHR

ΠSD ⊂ ΠMD ⊂ ΠHD ⊂ ΠHR

Given a policy we have a stochastic process - typically a
Markov reward process
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One step MDP

r1(s,a′) + EΠ
s (v(X2)) = r1(s,a′) +

∑
j∈S

p1(j |s,a′)v(j)

max
a′∈As

{
r1(s,a′) +

∑
j∈S

p1(j |s,a′)v(j)

}
=

r1(s,a∗) +
∑
j∈S

p1(j |s,a∗)v(j)

argmax
x∈X

= {x ′ ∈ X |∀x ∈ X : g(x ′) ≥ g(x)}

a∗s = argmax
a′∈As,t

{
r1(s,a′) +

∑
j∈S

p1(j |s,a′)v(j)

}
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Expected total reward criterion 4.1.2

Definition

vπN(s) = Eπs

{
N−1∑
t=1

rt (Xt ,Yt ) + rN(Xn)

}
(1)

vπN,λ(s) = Eπs

{
N−1∑
t=1

λt−1rt (Xt ,Yt ) + λN−1rN(Xn)

}
(2)
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Optimal policies

vπ
?

N (s) ≥ vπN(s), s ∈ S

vπ
?
ε

N (s) + ε ≥ vπN(s), s ∈ S
v?N(s) = sup

π∈ΠHR
vπN(s)

(v?N(s) = max
π∈ΠHR

vπN(s)

)
vπ

?

N (s) = v?N(s), s ∈ S

vπ
?
ε

N (s) + ε > v?N(s), s ∈ S
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Optimal stopping

Decision epochs: T = {1,2, . . . ,N}, N ≤ ∞
States: S = S′ ∪ {∆}

Actions: As =

{
{C,Q} s ∈ S′

{C} s = ∆

Rewards: rt (s,a) =


−ft (s) s ∈ S′ a = C
gt (s) s ∈ S′ a = Q

0 s = ∆
rN(s) = h(s)

Transition probabilities

pt (j |s,a) =


pt (j |s) s ∈ S′ j ∈ S′ a = C

1 s ∈ S′ j = ∆ a = Q
1 s = j = ∆ a = C
0 otherwise
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Secretary problem setup

I N candidates apply for a position
I Objective is to hire the best person
I A decision needs to be taken immediately after the

interview

s =


0 Current candidate not best so far
1 Current candidate best so far
∆ Interview process stopped

ft (s) = 0, gt (0) = 0, gt (1) = t
N
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Backward induction algorithm

1. Set t = N and u∗N(sN) = rN(sN), ∀sN ∈ S
2. t−− For each st ∈ S

u∗t (st ) = max
a∈Ast

rt (st ,a) +
∑
j∈S

pt (j |st ,a)u∗t+1(j)


A∗s,t = argmax

a∈Ast

rt (st ,a) +
∑
j∈S

pt (j |st ,a)u∗t+1(j)


3. If t = 1 stop, otherwise return to step 2
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Secretary problem backward induction

u∗N(s) =


0 s = 0
1 s = 1
0 s = ∆

u∗t (s) =
max

(
0, 1

1+t u
∗
t+1(1) + t

t+1u∗t+1(0)
)

s = 0

max
(

g(t) + u∗t+1(∆), 1
1+t u

∗
t+1(1) + t

t+1u∗t+1(0)
)

s = 1
u∗t+1(∆) s = ∆
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Secretary problem backward induction - cont

u∗t (s) =


1

1+t u
∗
t+1(1) + t

t+1u∗t+1(0) s = 0

max
(

t
N ,

1
1+t u

∗
t+1(1) + t

t+1u∗t+1(0)
)

s = 1
0 s = ∆

u∗t (s) =


1

1+t u
∗
t+1(1) + t

t+1u∗t+1(0) s = 0
max

( t
N ,u

∗
t (0)

)
s = 1

0 s = ∆

A∗s,t (0) =


C s = 0

Q : t
N > u∗t (0) s = 1

C s = ∆

Bo Friis Nielsen Markov decision processes

Assume u∗t (1) ≥ τ
N then u∗t (1) = u∗t (0) ≥ τ

N
So: u∗t−1(1) = max

(
τ−1

N ,u∗t−1(0)
)

with u∗t−1(0) = 1
τ−1+1u∗t (1) + τ−1

τ−1+1u∗t (0) = u∗t (0) ≥ τ
N > τ−1

N
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Calculation of u∗t (0)

u∗t (0) = 1
1+t u

∗
t+1(1) + t

t+1u∗t+1(0) = 1
1+t

1+t
N + t

t+1u∗t+1(0) =
1
N + t

t+1u∗t+1(0)
u∗N(0) = 0
u∗N−1(0) = 1

N + N−1
N · 0 = 1

N

u∗N−2(0) = 1
N + N−2

N−1 ·
1
N = N−2

N

(
1

N−2 + 1
N−1

)
u∗N−3(0) = 1

N + N−3
N−2 ·

N−2
N

(
1

N−2 + 1
N−1

)
=

N−3
N

(
1

N−3 + 1
N−2 + 1

N−1

)
So u∗t (0) = t

N
∑N−1

k=t
1
k and

τ = max
t

(∑N−1
k=t

1
k > 1

)
∫ N

1
1
x = log(N) :

∑N−1
k=t

1
k
∼
= log

(N−1
t

)
,

log
(N
τ

) ∼
== 1⇒ τ = Ne−1
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