Markov decision processes

Bo Friis Nielsen ${ }^{1}$
${ }^{1}$ DTU Informatics

02407 Stochastic Processes 9, November 12022

Today:

- Markov decision processes

Next week

- Brownian motion

Bo Friis Nielsen

Renewal reward processes

Claims $Y_{i}, i \in \mathbb{N}$ are generated according to a renewal process $\{N(t) ; t \geq 0\}$. The accumulated $Z(t)$ claim up to time t is

$$
Z(t)=\sum_{i=1}^{N(t)} Y_{i}
$$

$N(t)$ Number of claims up to time t
Y_{i} Size of claim i
$Z(t)$ Accumulated claim up to time t
In general hard to analyse, but

$$
\begin{aligned}
\mathbb{E}\left(e^{-\theta Z(t)}\right)= & \mathbb{E}\left(\mathbb{E}\left[e^{-\theta Z(t)} \mid N(t)\right]\right)=\mathbb{E}\left(\mathbb{E}\left[e^{-\theta \sum_{i=1}^{N(t)} Y_{i}} \mid N(t)\right]\right) \\
= & \mathbb{E}\left(\mathbb{E}\left[\prod_{i=1}^{N(t)} e^{-\theta Y_{i}} \mid N(t)\right]\right)=\mathbb{E}\left(\prod_{i=1}^{N(t)} \mathbb{E}\left[e^{-\theta Y_{i}} \mid N(t)\right]\right) \\
& \text { Bo Friis Nielsen Markov decision processes }
\end{aligned}
$$

$$
\begin{aligned}
\mathbb{E}\left(e^{-\theta Z(t)}\right) & =\mathbb{E}\left(\mathbb{E}\left[e^{-\theta Z(t)} \mid N(t)\right]\right)=\mathbb{E}\left(\mathbb { E } \left[e^{\left.\left.-\theta \sum_{i=1}^{N(t)} Y_{i} \mid N(t)\right]\right)}\right.\right. \\
& =\mathbb{E}\left(\mathbb{E}\left[\prod_{i=1}^{N(t)} e^{-\theta Y_{i}} \mid N(t)\right]\right)=\mathbb{E}\left(\prod_{i=1}^{N(t)} \mathbb{E}\left[e^{-\theta Y_{i}} \mid N(t)\right]\right) \\
& =\mathbb{E}\left(\prod_{i=1}^{N(t)} \mathbb{E}\left[e^{-\theta Y_{i}}\right]\right)=\mathbb{E}\left(\mathbb{E}\left[e^{-\theta Y_{i}}\right]^{N(t)}\right)=\phi_{N(t)}\left(\phi Y_{i}(\theta)\right)
\end{aligned}
$$

Explicit solution if $N(t)$ is a phase type renewal process and Y_{i} are phase type distributed.
A renewal reward model of pairs $\left(X_{i}, Y_{i}\right), X_{i}$ and Y_{i} need not be independent.

If we think of a phase type renewal process in terms of the underlying Markov jump process, then rewards are associated with transitions in a Markov process.
If we further assume that the states have some physical meaning, then we could have rewards associated with other transitions (claims) or sojourns (premiums)

A Markov chain $\left\{X_{t} ; t \in \mathbb{N} \cup\{0\}\right.$ in discrete time is characterised by its transition probability matrix/matrices $\boldsymbol{P}, \boldsymbol{P}_{t}$ and the initial probability vector \boldsymbol{p}_{0}.
We could have rewards associated with transitions in the Markov chain.
Suppose we had acces to/control over the transitions mechanism such that we had $P_{t}(a)$ where the argument a is some action we can take.
See Chapter one of Puterman for examples.
Tamping as an example.

Markov Decision Process set up

- Decision epochs
$T=\{1,2, \ldots, N\}, T=\{1,2, \ldots, \infty\}, T=[0 ; \infty[$
- State space $S, S=\cup_{t} S_{t}$
- Action sets $A_{s, t}, A=\cup_{s \in S} A_{s, t}$
- Rewards $\boldsymbol{R}_{t, A_{s, t}}$
- Typically expected rewards $r_{t}(s, a)=\sum_{j \in S_{t}} r_{t}(s, a, j) p_{t}(j \mid s, a)$
- For finite horizon $r_{N}(s)$ - scrap value
- Transition probabilities of $\boldsymbol{P}_{t, \boldsymbol{A}_{s, t}}$
- $\boldsymbol{P}_{A_{s}}$ could be a Markov transition kernel on a general space
- Even if time is discrete it could be randomised (exponential)
$\left\{T, S, A_{s}, p_{t}(j \mid s, a), r_{t}(s, a)\right\}$ Markov decision process
d_{t} Decision rule. Action taken at time $t . d_{t}: S_{t} \rightarrow A_{s, t}$
Z_{t} History, $Z_{t}=\left(s_{1}, a_{1}, s_{2}, a_{2}, \ldots, s_{N}\right)$
Π Policy, complete collection of decision rules $\Pi=\left(d_{1}, d_{2}, \ldots\right)$
$K \in\{S D, S R, M R, M D, H D, H R, M R, M D\}$
SD Stationary deterministic policy, (sometimes pure policy)
SR Stationary random policy
MD Markovian deterministic
MR Markovian random
HD History dependent deterministic
HR Hisory random
Relations

$$
\begin{aligned}
& \Pi^{\mathrm{SD}} \subset \Pi^{\mathrm{SR}} \subset \Pi^{\mathrm{MR}} \subset \Pi^{\mathrm{HR}} \\
& \Pi^{\mathrm{SD}} \subset \Pi^{\mathrm{MD}} \subset \Pi^{\mathrm{MR}} \subset \square^{\mathrm{HR}} \\
& \Pi^{\mathrm{SD}} \subset \Pi^{\mathrm{MD}} \subset \Pi^{\mathrm{HD}} \subset \Pi^{\mathrm{HR}}
\end{aligned}
$$

Given a policy we have a stochastic process - typically a

One step MDP

$$
\begin{align*}
& r_{1}\left(s, a^{\prime}\right)+\mathbb{E}_{s}^{\Pi}\left(v\left(X_{2}\right)\right)=r_{1}\left(s, a^{\prime}\right)+\sum_{j \in S} p_{1}\left(j \mid s, a^{\prime}\right) v(j) \\
& \max _{a^{\prime} \in A_{s}}\left\{r_{1}\left(s, a^{\prime}\right)+\sum_{j \in S} p_{1}\left(j \mid s, a^{\prime}\right) v(j)\right\}= \tag{1}\\
& r_{1}\left(s, a^{*}\right)+\sum_{j \in S} p_{1}\left(j \mid s, a^{*}\right) v(j) \\
& \underset{x \in X}{\operatorname{argmax}}=\left\{x^{\prime} \in X \mid \forall x \in X: g\left(x^{\prime}\right) \geq g(x)\right\} \\
& a_{s}^{*}=\underset{a^{\prime} \in A_{s, t}}{\operatorname{argmax}}\left\{r_{1}\left(s, a^{\prime}\right)+\sum_{j \in S} p_{1}\left(j \mid s, a^{\prime}\right) v(j)\right\} \tag{2}
\end{align*}
$$

Markov reward process

Definition

$$
\begin{gathered}
v_{N}^{\pi}(s)=\mathbb{E}_{s}^{\pi}\left\{\sum_{t=1}^{N-1} r_{t}\left(X_{t}, Y_{t}\right)+r_{N}\left(X_{n}\right)\right\} \\
v_{N, \lambda}^{\pi}(s)=\mathbb{E}_{s}^{\pi}\left\{\sum_{t=1}^{N-1} \lambda^{t-1} r_{t}\left(X_{t}, Y_{t}\right)+\lambda^{N-1} r_{N}\left(X_{n}\right)\right\}
\end{gathered}
$$

$$
\begin{array}{rlrl}
v_{N}^{\pi_{N}^{*}}(s) & \geq v_{N}^{\pi}(s), & s \in S \\
v_{N}^{\pi_{\epsilon}^{\star}}(s)+\epsilon & \geq v_{N}^{\pi}(s), & s \in S \\
v_{N}^{\star}(s) & =\sup _{\pi \in \Pi} v_{N}^{v_{N}^{\pi}(s)} \\
\left(v_{N}^{\star}(s)\right. & \left.=\max _{\pi \in \Pi} v_{N}^{\pi}(s)\right) \\
v_{N}^{\pi_{N}^{\star}}(s) & =v_{N}^{\star}(s), \quad s \in S \\
v_{N}^{v_{N}^{*}}(s)+\epsilon & >v_{N}^{\star}(s), & s \in S
\end{array}
$$

Secretary problem setup

Decision epochs: $T=\{1,2, \ldots, N\}, \quad N \leq \infty$
States: $S=S^{\prime} \cup\{\Delta\}$
Actions: $A_{s}=\left\{\begin{array}{cc}\{C, Q\} & s \in S^{\prime} \\ \{C\} & s=\Delta\end{array}\right.$
Rewards: $r_{t}(s, a)=\left\{\begin{array}{cll}-f_{t}(s) & s \in S^{\prime} & a=C \\ g_{t}(s) & s \in S^{\prime} & a=Q \\ 0 & s=\Delta & \end{array}\right.$

$$
r_{N}(s)=h(s)
$$

Transition probabilities

$$
p_{t}(j \mid s, a)=\left\{\begin{array}{cccc}
p_{t}(j \mid s) & s \in S^{\prime} & j \in S^{\prime} & a=C \\
1 & s \in S^{\prime} & j=\Delta & a=Q \\
1 & s=j=\Delta & a=C & \\
0 & \text { otherwise } & &
\end{array}\right.
$$

Bo Friis Nielsen Markov decision processes

- N candidates apply for a position
- Objective is to hire the best person
- A decision needs to be taken immediately after the interview
$s= \begin{cases}0 & \text { Current candidate not best so far } \\ 1 & \text { Current candidate best so far } \\ \Delta & \text { Interview process stopped }\end{cases}$
$f_{t}(s)=0, \quad g_{t}(0)=0, \quad g_{t}(1)=\frac{t}{N}$

1. Set $t=N$ and $u_{N}^{*}\left(s_{N}\right)=r_{N}\left(s_{N}\right), \quad \forall s_{N} \in S$
2. t^{--}For each $s_{t} \in S$

$$
\begin{aligned}
u_{t}^{*}\left(s_{t}\right) & =\max _{a \in A_{s_{t}}}\left\{r_{t}\left(s_{t}, a\right)+\sum_{j \in S} p_{t}\left(j \mid s_{t}, a\right) u_{t+1}^{*}(j)\right\} \\
A_{s, t}^{*} & =\underset{a \in A_{s_{t}}}{\operatorname{argmax}}\left\{r_{t}\left(s_{t}, a\right)+\sum_{j \in S} p_{t}\left(j \mid s_{t}, a\right) u_{t+1}^{*}(j)\right\}
\end{aligned}
$$

3. If $t=1$ stop, otherwise return to step 2

$$
\begin{aligned}
& u_{t}^{*}(0)=\frac{1}{1+t} u_{t+1}^{*}(1)+\frac{t}{t+1} u_{t+1}^{*}(0)=\frac{1}{1+t} \frac{1+t}{N}+\frac{t}{t+1} u_{t+1}^{*}(0)= \\
& \frac{1}{N+\frac{t}{t+1} u_{t+1}^{*}(0)} \\
& u_{N}^{*}(0)=0 \\
& u_{N-1}^{*}(0)=\frac{1}{N}+\frac{N-1}{N} \cdot 0=\frac{1}{N} \\
& u_{N-2}^{*}(0)=\frac{1}{N}+\frac{N-2}{N-1} \cdot \frac{1}{N}=\frac{N-2}{N}\left(\frac{1}{N-2}+\frac{1}{N-1}\right) \\
& u_{N-3}^{*}(0)=\frac{1}{N}+\frac{N-3}{N-2} \cdot \frac{N-2}{N}\left(\frac{1}{N-2}+\frac{1}{N-1}\right)= \\
& \frac{N-3}{N}\left(\frac{1}{N-3}+\frac{1}{N-2}+\frac{1}{N-1}\right) \\
& \text { So } u_{t}^{*}(0)=\frac{t}{N} \sum_{k=t}^{N-1} \frac{1}{k} \text { and } \\
& \tau=\max \left(\sum_{k=t}^{N-1} \frac{1}{k}>1\right) \\
& \int_{1}^{N} \frac{1}{\bar{x}}=\log (N): \sum_{k=t}^{N-1} \frac{1}{k} \cong \log \left(\frac{N-1}{t}\right), \\
& \log \left(\frac{N}{\tau}\right) \cong=1 \Rightarrow \tau=N e^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& u_{N}^{*}(s)= \begin{cases}0 & s=0 \\
1 & s=1 \\
0 & s=\Delta\end{cases} \\
& \left\{\begin{array}{cc}
u_{t}^{*}(s)= \\
\max \left(0, \frac{1}{1+t} u_{t+1}^{*}(1)+\frac{t}{t+1} u_{t+1}^{*}(0)\right) & s=0 \\
\max \left(g(t)+u_{t+1}^{*}(\Delta), \frac{1}{1+t} u_{t+1}^{*}(1)+\frac{t}{t+1} u_{t+1}^{*}(0)\right) & s=1 \\
u_{t+1}^{*}(\Delta) & s=\Delta
\end{array}\right.
\end{aligned}
$$

Calculation of $u_{t}^{*}(0)$

$$
\begin{aligned}
& u_{t}^{*}(s)=\left\{\begin{array}{cc}
\frac{1}{1+t} u_{t+1}^{*}(1)+\frac{t}{t+1} u_{t+1}^{*}(0) & s=0 \\
\max \left(\frac{t}{N}, \frac{1}{1+t} u_{t+1}^{*}(1)+\frac{t}{t+1} u_{t+1}^{*}(0)\right) & s=1 \\
0 & s=\Delta
\end{array}\right. \\
& u_{t}^{*}(s)=\left\{\begin{array}{cl}
\frac{1}{1+t} u_{t+1}^{*}(1)+\frac{t}{t+1} u_{t+1}^{*}(0) & s=0 \\
\max \left(\frac{t}{N}, u_{t}^{*}(0)\right) & s=1 \\
0 & s=\Delta
\end{array}\right. \\
& A_{s, t}^{*}(0)=\left\{\begin{array}{cl}
C & s=0 \\
Q: \frac{t}{N}>u_{t}^{*}(0) & s=1 \\
C & s=\Delta
\end{array}\right.
\end{aligned}
$$

Assume $u_{t}^{*}(1) \geq \frac{\tau}{N}$ then $u_{t}^{*}(1)=u_{t}^{*}(0) \geq \frac{\tau}{N}$
So: $u_{t-1}^{*}(1)=\max \left(\frac{\tau-1}{N}, u_{t-1}^{*}(0)\right)$
with $u_{t-1}^{*}(0)=\frac{1}{\tau-1+1} u_{t}^{*}(1)+\frac{\tau-1}{\tau-1+1} u_{t}^{*}(0)=u_{t}^{*}(0) \geq \frac{\tau}{N}>\frac{\tau-1}{N}$

