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Poisson Process

Today:

I Definition (in terms of Poisson distribution)
I The law of rare events
I Definition in terms of intervals
I Uniformity
I Spatial, compound, and marked Poisson processes

Next week

I Birth processes
I Death processes
I Birth and death processes

Two weeks from now

I Limiting behaviour of birth and death processes
I Birth and death processes with absorption
I Finite continuous time Markov chains
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The Poisson process

I The next fundamental process
I As important as discrete time Markov chain
I Continuous time model
I Parallel to Bernoulli process
I Model for complete randomness
I Three different characterisations
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The Bernoulli Process

Definition
A Bernoulli process of parameter, or rate, p, is an
integer-indexed integer-valued stochastic process {X (t); t ≥ 0}
for which

1. For any time points t0 = 0 < t1 < t2 < · · · < tn, the process
increments

X (t1)− X (t0),X (t2)− X (t1), . . .X (tn)− X (tn−1)

are independent random variables;
2. For s ≥ 0 and t ≥ 0, the random variable X (t + s)− X (s)

has the binomial distribution

P{X (t + s)− X (s) = k} =

(
t
k

)
pk (1− p)t−k

3. X (0) = 0.
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Bernoulli Process Waiting times and intensities

Define Wn waiting time to the nth event
1. The waiting time (W1) to the first event (and the waiting

time Wn+1 −Wn between the n and the (n + 1)st event) is
geometric ,P{W1 = k} = p(1− p)k−1,P{W1 > k} =
(1− p)k , k = 1,2,3, . . . .

2. The waiting time to the nth event follows a negative
binomial distribution

P{Wn = k} =

(
k − 1
n − 1

)
pn(1− p)k−n, for k = n,n + 1, . . .

The Probability (intensity) of having an event in a single interval
is

1. P{X (t + 1)− X (t) = 0} = 1− p
2. P{X (t + 1)− X (t) = 1} = p
3. P{X (t + 1)− X (t) > 1} = 0
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Poisson process - three different characterisations

I Independence assumptions in all cases
I Number of events in an interval is Poisson distributed with

independent increments
I Constant intensity for event
I Intervals between event are exponentially distributed
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The Poisson Process

Definition (Page 225)
A Poisson process of intensity, or rate, λ > 0, is an
integer-valued stochastic process {X (t); t ≥ 0} for which

1. For any time points t0 = 0 < t1 < t2 < · · · < tn, the process
increments

X (t1)− X (t0),X (t2)− X (t1), . . .X (tn)− X (tn−1)

are independent random variables;
2. For s ≥ 0 and t ≥ 0, the random variable X (t + s)− X (s)

has the Poisson distribution

P{X (t + s)− X (s) = k} =
(λt)k

k !
e−λt , for k = 0,1, . . .

3. X (0) = 0.
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Intensity characterisation - infinitessimal
probabilities

I P{one event in an interval of length ∆t}
P{X (t + ∆t)− X (t) = 1} = ∆tλ+ some small quantity
= λ∆t + o(∆t) Where

o(∆t)
∆t

→ 0 as ∆t → 0

o(t) is a function that tends to zero faster than t
I P{no event in an interval of length ∆t}
P{X (t + ∆t)− X (t) = 0} = 1−∆tλ+ o(∆t)

I P{more than one event during ∆t} = o(∆t)
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Nonhomogeneous Poisson Process

P{X (t + h)− X (t) = 1} =
(λh)

1!
e−λh

= (λh)

(
1− λh +

1
2
λ2h2 − · · ·

)
= λh + o(h)

where limh→0
o(h)

h = 0 If we assume

P{X (t + h)− X (t) = 1} = λt (h) + o(h)

P{X (t + h)− X (t) = 0} = 1− λt (h) + o(h)

X (t)− X (s) ∼ Pois
(∫ t

s
λ(u)du

)
Homogeneity transformation Y (s) = X (t) with s =

∫ t
0 λ(u)du
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The Law of Rare Events

Theorem ( 5.3 Page 233)
Let ε1, ε2, . . . be independent Bernoulli variables, where

P{εi = 1} = pi and P{εi = 1} = 1− pi

and let Sn = ε1 + · · ·+ εn. The exact probabilities for Sn are
given by

P{Sn = k} =

(k)∑ n∏
i=1

pxi
i (1− pi)

1−xi ,

where
∑(k) denotes the sum over all 0,1 valued xi ’s such that

x1 + · · ·+ xn = k, and Poisson probabilities with
µ = p1 + · · ·+ pn differ at most by∣∣∣∣P{Sn = k} − µk

k !
e−µ

∣∣∣∣ ≤ n∑
i=1

p2
i
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From Poisson distribution to exponential
distribution

I X (t) ∈ P(λt) P{X (t) = n} = (λt)n

n! e−λt

I P{S0 > t} = P{X (t) = 0} = e−λt

I Such that P{S0 ≤ t} = F (t) = 1− P{S0 > t} = 1− e−λt

the exponential distribution
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Exponentially distributed intervals

I Wn time of the nth event
I Sn time between the nth and n + 1st event (sojourn time).
I The time between two consecutive events is exponentially

distributed

Sn ∈ exp (λ) P{Sn ≤ t} = F (t) = 1− e−λt

I The intervals are iid.
I Important relation between Sn and X (t)

I

P{Wn ≤ t} = P{X (t) ≥ n}
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Time to the nth event - the Erlang distribution

I The relation between Wn and X (t)

P{Wn ≤ t} = P{X (t) ≥ n}

P{Wn ≤ t} = P{X (t) ≥ n} =
∞∑

i=n

(λt)i

i!
e−λt = 1−

n−1∑
i=0

(λt)i

i!
e−λt

I E(Sn) = 1
λ E(Wn) = n

λ

I Var(Sn) = 1
λ2 Var(Wn) = n

λ2

I We say that Wn ∈ Erln(λ)

I The Erlang distribution can be interpreted as the
distribution for the sum of independent exponential random
variables.
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Uniform Distribution and the Poisson Process

Theorem ( 5.7 Page 248)
Let W1,W2, . . . be the occurrence times in a Poisson process
X (t) of rate λ > 0. Conditioned on X (t) = n the random
variables W1,W2, . . . have the joint probability density function

fW1,...,Wn|X(t)=n(w1, . . . ,wn) = n!tn for 0 < w1 < · · · < wn < t

�
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M = E

X(t)∑
k=1

e−βWk


M =

∞∑
n=1

E

[
n∑

k=1

e−βWk |X (t) = n

]
Pr{X (t) = n}

E

X(t)∑
k=1

e−βWk |X (t) = n

 = E

[
n∑

k=1

e−βUk

]
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Shot Noise

I(t) =

X(t)∑
k=1

h(t −Wk )

E(I(t)) = λ
∫ t

0 h(u)du, Var(I(t)) = λ
∫ t

0 h(u)2du
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Spatial Poisson Processes

1. For each A in A, the random variable N(A) has a Poisson
distribution with parameter λ|A|

2. For every finite collection {A1, . . . ,An} of disjoint subsets of
S, the random variables N(A1), . . . ,N(An) are independent

1. The possible values for N(A) are the nonnegative integers
{0,1,2, . . . } and 0 < Pr{N(A) = 0} < 1 if 0 < |A| <∞

2. The probability distribution of N(A) depends on the set A
only through its size (length, area, volume) |A|, with the
further property that Pr{N(A) ≥ 1} = λ|A|+ o(|A|) as
|A| → 0.

3. For m = 2,3, . . . , if A1,A2, . . . ,Am are disjoint regions, then
N(A1),N(A2), . . . ,N(Am) are independent random
variables and
N(A1 ∪ A2 ∪ · · · ∪ Am) = N(A1) + N(A2) + · · ·+ N(Am).

4. lim|A|→0
Pr{N(A)≥1}
Pr{N(A)=1} = 1.
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Conditional uniform distribution

Pr{N(B) = 1|N(A) = 1} =
|B|
|A|

for any set B ⊂ A

For A1 ∪ A2 ∪ · · ·Am = A

Pr{N(A1) = k1, . . . ,N(Am) = km|N(A) = n} =
n!

k1! · · · km!

(
|A1|
|A|

)k1

· · ·
(
|Am|
|A|

)km
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Compound (Reward) Poisson Processes

We have random variables Y1,Y2, . . . with cumulative
distribution function

G(y) = P{Yk ≤ y}, E(Yi) = µ, Var(Yi) = ν2

A Compound Poisson Process (reward process) is defined by

Z (t) =

X(t)∑
k=1

Yk

E[Z (t)] = µλt ,Var[Z (t)] = λt(µ2 + ν2)
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P{Y1 + · · ·+ Yn ≤ y} =

∫ ∞
−∞

G(n−1)(y − z)dG(z)

P{Z (t) ≤ z} = P


X(t)∑
k=1

Yk ≤ z


=

∞∑
n=0

P


X(t)∑
k=1

Yk ≤ z

∣∣∣∣∣∣X (t) = n

 (λt)n

n!
e−λt

=
∞∑

n=0

(λt)ne−λt

n!
G(n)(z)
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Shock Model

Let T be the time to get beyond critical level a

{T > t} if and only if {Z (t) ≤ a}

E[T ] =

∫ ∞
0
P{T > t}dt

=
∞∑

n=0

(∫ ∞
0

(λt)ne−λt

n!
dt
)

G(n)(a)

= λ−1
∞∑

n=0

G(n)(a)
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Marked Poisson Processes
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Additional Reading

Erhan Çinlar: “Introduction to Stochastic Processes”
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