Poisson Processes

Bo Friis Nielsen¹

¹DTU Informatics

02407 Stochastic Processes 4, 25 September 2018

Bo Friis Nielsen Poisson Processes

The Poisson process

- The next fundamental process
- As important as discrete time Markov chain
- Continuous time model
- Parallel to Bernoulli process
- Model for complete randomness
- Three different characterisations

Poisson Process

Today:

- Definition (in terms of Poisson distribution)
- The law of rare events
- Definition in terms of intervals
- Uniformity
- Spatial, compound, and marked Poisson processes

Next week

- Birth processes
- Death processes
- Birth and death processes

Two weeks from now

- Limiting behaviour of birth and death processes
- Birth and death processes with absorption
- Finite continuous time Markov chains

Bo Friis Nielsen Poisson Processes

The Bernoulli Process

Definition

DTU

Ξ

DTU

A Bernoulli process of parameter, or rate, p, is an integer-indexed integer-valued stochastic process $\{X(t); t \ge 0\}$ for which

1. For any time points $t_0 = 0 < t_1 < t_2 < \cdots < t_n$, the process increments

$$X(t_1) - X(t_0), X(t_2) - X(t_1), \dots X(t_n) - X(t_{n-1})$$

are independent random variables;

2. For $s \ge 0$ and $t \ge 0$, the random variable X(t + s) - X(s) has the binomial distribution

$$\mathbb{P}\{X(t+s)-X(s)=k\}=\binom{t}{k}p^k(1-p)^{t-k}$$

3. X(0) = 0.

DTU

Ξ

Bernoulli Process Waiting times and intensities

Define W_n waiting time to the *n*th event

- 1. The waiting time (W_1) to the first event (and the waiting time $W_{n+1} W_n$ between the *n* and the (n + 1)st event) is geometric, $\mathbb{P}\{W_1 = k\} = p(1-p)^{k-1}, \mathbb{P}\{W_1 > k\} = (1-p)^k, k = 1, 2, 3, \dots$
- 2. The waiting time to the *n*th event follows a negative binomial distribution

$$\mathbb{P}\{W_n = k\} = \binom{k-1}{n-1} p^n (1-p)^{k-n}, \text{ for } k = n, n+1, \dots$$

The Probability (intensity) of having an event in a single interval is

1. $\mathbb{P}{X(t+1) - X(t) = 0} = 1 - p$ 2. $\mathbb{P}{X(t+1) - X(t) = 1} = p$ 3. $\mathbb{P}{X(t+1) - X(t) > 1} = 0$

Bo Friis Nielsen Poisson Processes

DTU

Ξ

DTU

The Poisson Process

Definition (Page 225)

A Poisson process of intensity, or rate, $\lambda > 0$, is an integer-valued stochastic process $\{X(t); t \ge 0\}$ for which

1. For any time points $t_0 = 0 < t_1 < t_2 < \cdots < t_n$, the process increments

$$X(t_1) - X(t_0), X(t_2) - X(t_1), \dots X(t_n) - X(t_{n-1})$$

are independent random variables;

2. For $s \ge 0$ and $t \ge 0$, the random variable X(t + s) - X(s) has the Poisson distribution

$$\mathbb{P}\{X(t+s) - X(s) = k\} = \frac{(\lambda t)^k}{k!}e^{-\lambda t}, \text{ for } k = 0, 1, \dots$$

3. X(0) = 0.

- Independence assumptions in all cases
 - Number of events in an interval is Poisson distributed with independent increments
 - Constant intensity for event
 - Intervals between event are exponentially distributed

DTU

Intensity characterisation - infinitessimal probabilities

• \mathbb{P} {one event in an interval of length Δt } \mathbb{P} { $X(t + \Delta t) - X(t) = 1$ } = $\Delta t\lambda$ + some small quantity = $\lambda \Delta t + o(\Delta t)$ Where

$$rac{o(\Delta t)}{\Delta t}
ightarrow$$
 0 as $\Delta t
ightarrow$ 0

o(t) is a function that tends to zero faster than t

- ► \mathbb{P} {no event in an interval of length Δt } \mathbb{P} { $X(t + \Delta t) - X(t) = 0$ } = 1 - $\Delta t \lambda + o(\Delta t)$
- \mathbb{P} {more than one event during Δt } = $o(\Delta t)$

$$\mathbb{P}\{X(t+h) - X(t) = 1\} = \frac{(\lambda h)}{1!}e^{-\lambda h}$$
$$= (\lambda h)\left(1 - \lambda h + \frac{1}{2}\lambda^2 h^2 - \cdots\right)$$
$$= \lambda h + o(h)$$

where $\lim_{h\to 0} \frac{o(h)}{h} = 0$ If we assume

$$\mathbb{P}\{X(t+h) - X(t) = 1\} = \lambda_t(h) + o(h)$$

$$\mathbb{P}\{X(t+h) - X(t) = 0\} = 1 - \lambda_t(h) + o(h)$$

$$X(t) - X(s) \sim \operatorname{Pois}\left(\int_s^t \lambda(u) du\right)$$
Homogeneity transformation $Y(s) = X(t)$ with $s = \int_0^t \lambda(u) du$

From Poisson distribution to exponential distribution

- $X(t) \in P(\lambda t)$ $\mathbb{P}\{X(t) = n\} = \frac{(\lambda t)^n}{n!} e^{-\lambda t}$
- $\mathbb{P}{S_0 > t} = \mathbb{P}{X(t) = 0} = e^{-\lambda t}$
- Such that $P\{S_0 \le t\} = F(t) = 1 \mathbb{P}\{S_0 > t\} = 1 e^{-\lambda t}$ the exponential distribution

The Law of Rare Events

Theorem (5.3 Page 233)

Let $\epsilon_1, \epsilon_2, \ldots$ be independent Bernoulli variables, where

$$\mathbb{P}{\epsilon_i = 1} = p_i$$
 and $\mathbb{P}{\epsilon_i = 1} = 1 - p_i$

and let $S_n = \epsilon_1 + \cdots + \epsilon_n$. The exact probabilities for S_n are given by

$$\mathbb{P}\{S_n = k\} = \sum_{i=1}^{(k)} \prod_{i=1}^n p_i^{x_i} (1-p_i)^{1-x_i},$$

where $\sum^{(k)}$ denotes the sum over all 0,1 valued x_i 's such that $x_1 + \cdots + x_n = k$, and Poisson probabilities with $\mu = p_1 + \cdots + p_n$ differ at most by

$$\left|\mathbb{P}\left\{S_n=k\right\}-\frac{\mu^k}{k!}e^{-\mu}\right|\leq \sum_{i=1}^n p_i^2$$

Bo Friis Nielsen Poisson Processes

DTU

Exponentially distributed intervals

- W_n time of the *n*th event
- S_n time between the *n*th and n + 1st event (sojourn time).
- The time between two consecutive events is exponentially distributed

 $S_n \in \exp(\lambda)$ $\mathbb{P}\{S_n \leq t\} = F(t) = 1 - e^{-\lambda t}$

- ► The intervals are iid.
- Important relation between S_n and X(t)

$$\mathbb{P}\{W_n \le t\} = \mathbb{P}\{X(t) \ge n\}$$

Time to the *n*th event - the Erlang distribution

• The relation between W_n and X(t)

$$\mathbb{P}\{W_n \le t\} = \mathbb{P}\{X(t) \ge n\}$$

$$\mathbb{P}\{W_n \le t\} = \mathbb{P}\{X(t) \ge n\} = \sum_{i=n}^{\infty} \frac{(\lambda t)^i}{i!} e^{-\lambda t} = 1 - \sum_{i=0}^{n-1} \frac{(\lambda t)^i}{i!} e^{-\lambda t}$$

 $\blacktriangleright \mathbb{E}(S_n) = \frac{1}{\lambda} \qquad \mathbb{E}(W_n) = \frac{n}{\lambda}$

•
$$\operatorname{Var}(S_n) = \frac{1}{\lambda^2}$$
 $\operatorname{Var}(W_n) = \frac{n}{\lambda^2}$

- We say that $W_n \in Erl_n(\lambda)$
- The Erlang distribution can be interpreted as the distribution for the sum of independent exponential random variables.

$$M = \mathbb{E}\left[\sum_{k=1}^{X(t)} e^{-\beta W_k}\right]$$
$$M = \sum_{n=1}^{\infty} \mathbb{E}\left[\sum_{k=1}^{n} e^{-\beta W_k} | X(t) = n\right] \Pr\{X(t) = n\}$$
$$\mathbb{E}\left[\sum_{k=1}^{X(t)} e^{-\beta W_k} | X(t) = n\right] = \mathbb{E}\left[\sum_{k=1}^{n} e^{-\beta U_k}\right]$$

Theorem (5.7 Page 248)

Let $W_1, W_2, ...$ be the occurrence times in a Poisson process X(t) of rate $\lambda > 0$. Conditioned on X(t) = n the random variables $W_1, W_2, ...$ have the joint probability density function

$$f_{W_1,...,W_n|X(t)=n}(w_1,...,w_n) = n!t^n$$
 for $0 < w_1 < \cdots < w_n < t$

Bo Friis Nielsen Poisson Processes

Shot Noise

DTU

DTU

$$I(t) = \sum_{k=1}^{X(t)} h(t - W_k)$$
$$\mathbb{E}(I(t)) = \lambda \int_0^t h(u) du, \operatorname{Var}(I(t)) = \lambda \int_0^t h(u)^2 du$$

DTU

Spatial Poisson Processes

- **1.** For each A in A, the random variable N(A) has a Poisson distribution with parameter $\lambda |\mathbf{A}|$
- **2.** For every finite collection $\{A_1, \ldots, A_n\}$ of disjoint subsets of S, the random variables $N(A_1), \ldots, N(A_n)$ are independent
- **1.** The possible values for N(A) are the nonnegative integers $\{0, 1, 2, ...\}$ and $0 < Pr\{N(A) = 0\} < 1$ if $0 < |A| < \infty$
- 2. The probability distribution of N(A) depends on the set A only through its size (length, area, volume) |A|, with the further property that $Pr\{N(A) \ge 1\} = \lambda |A| + o(|A|)$ as $|A| \rightarrow 0.$
- **3.** For $m = 2, 3, \ldots$, if A_1, A_2, \ldots, A_m are disjoint regions, then $\mathbb{N}(A_1), N(A_2), \ldots, N(A_m)$ are independent random variables and $N(A_1 \cup \mathbb{A}_2 \cup \cdots \cup A_m) = N(A_1) + N(A_2) + \cdots + N(A_m).$ 4. $\lim_{|A|\to 0} \frac{Pr\{N(A)\geq 1\}}{Pr\{N(A)=1\}} = 1.$
 - Bo Friis Nielsen **Poisson Processes**

$$Pr\{N(B) = 1 | N(A) = 1\} = \frac{|B|}{|A|}$$
 for any set $B \subset A$
For $A_1 \cup A_2 \cup \cdots A_m = A$

$$Pr\{N(A_1) = k_1, \dots, N(A_m) = k_m | N(A) = n\} = \frac{n!}{k_1! \cdots k_m!} \left(\frac{|A_1|}{|A|}\right)^{k_1} \cdots \left(\frac{|A_m|}{|A|}\right)^{k_m}$$

Bo Friis

<u>~</u>

Compound (Reward) Poisson Processes

We have random variables Y_1, Y_2, \ldots with cumulative distribution function

$$G(y) = \mathbb{P}\{Y_k \le y\}, \qquad \mathbb{E}(Y_i) = \mu, \qquad \mathbb{V}ar(Y_i) = \nu^2$$

A Compound Poisson Process (reward process) is defined by

$$Z(t) = \sum_{k=1}^{X(t)} Y_k$$
$$\mathbb{E}[Z(t)] = \mu \lambda t, \mathbb{V}ar[Z(t)] = \lambda t(\mu^2 + \nu^2)$$

$$\mathbb{P}\{Y_1+\cdots+Y_n\leq y\}=\int_{-\infty}^{\infty}G^{(n-1)}(y-z)\mathrm{d}G(z)$$

$$\mathbb{P}\{Z(t) \le z\} = \mathbb{P}\left\{\sum_{k=1}^{X(t)} Y_k \le z\right\}$$
$$= \sum_{n=0}^{\infty} \mathbb{P}\left\{\sum_{k=1}^{X(t)} Y_k \le z \middle| X(t) = n\right\} \frac{(\lambda t)^n}{n!} e^{-\lambda t}$$
$$= \sum_{n=0}^{\infty} \frac{(\lambda t)^n e^{-\lambda t}}{n!} G^{(n)}(z)$$

DTU

DTU

Let T be the time to get beyond critical level a

 $\{T > t\}$ if and only if $\{Z(t) \le a\}$

$$\mathbb{E}[T] = \int_0^\infty \mathbb{P}\{T > t\} dt$$

= $\sum_{n=0}^\infty \left(\int_0^\infty \frac{(\lambda t)^n e^{-\lambda t}}{n!} dt \right) G^{(n)}(a)$
= $\lambda^{-1} \sum_{n=0}^\infty G^{(n)}(a)$

DTU

Bo Friis Nielsen Poisson Processes

Additional Reading

Erhan Çinlar: "Introduction to Stochastic Processes"

Bo Friis Nielsen Poisson Processes

Bo Friis Nielsen Poisson Processes