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Discrete time Markov chains

Today:
I Discrete time Markov chains - invariant probability

distribution
I Classification of states
I Classification of chains

Next week
I Poisson process

Two weeks from now
I Birth- and Death Processes
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Regular Transition Probability Matrices

P =
∣∣∣∣Pij

∣∣∣∣ , 0 ≤ i , j ≤ N

Regular: If Pk > 0 for some k
In that case limn→∞ P(n)

ij = πj

Theorem 4.1 (Page 168) let P be a regular transition
probability matrix on the states 0,1, . . . ,N. Then the limiting
distribution π = (π0, π1, πN) is the unique nonnegative solution
of the equations

πj =
N∑

k=0

πkPij , π = πP

N∑
k=0

πk = 1, π1 = 1

Bo Friis Nielsen Limiting Distribution and Classification

Interpretation of πj ’s

I Limiting probabilities limn→∞ P(n)
ij = πj

I Long term averages limn→∞
1
1
∑m

n=1 P(n)
ij = πj

I Stationary distribution π = πP
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A Social Mobility Example

Son’s Class
Lower Middle Upper

Lower 0.40 0.50 0.10
Father’s Middle 0.05 0.70 0.25
Class Upper 0.05 0.50 0.45

P8 =

∣∣∣∣∣∣
∣∣∣∣∣∣

0.0772 0.6250 0.2978
0.0769 0.6250 0.2981
0.0769 0.6250 0.2981

∣∣∣∣∣∣
∣∣∣∣∣∣

π0 = 0.40π0 + 0.05π1 + 0.05π2

π1 = 0.50π0 + 0.70π1 + 0.50π2

π2 = 0.10π0 + 0.25π1 + 0.45π2

1 = π0 + π1 + π2
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Classification of Markov chain states

I States which cannot be left, once entered - absorbing
states

I States where the return some time in the future is certain -
recurrent or persistent states
I The mean time to return can be

I finite - postive recurrence/non-null recurrent
I infinite - null recurrent

I States where the return some time in the future is
uncertain - transient states

I States which can only be visited at certain time epochs -
periodic states
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Classification of States

I j is accessible from i if P(n)
ij > 0 for some n

I If j is accessible from i and i is accessible from j we say
that the two states communicate

I Communicating states constitute equivalence classes (an
equivalence relation)
I i communicates with j and j communicates with k then i

and k communicates
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First passage and first return times
We can formalise the discussion of state classification by use of
a certain class of probability distributions - first passage time
distributions. Define the first passage probability

f (n)ij = P{X1 6= j ,X2 6= j , . . . ,Xn−1 6= j ,Xn = j |X0 = i}

This is the probability of reaching j for the first time at time n
having started in i .
What is the probability of ever reaching j?

fij =
∞∑

n=1

f (n)ij ≤ 1

The probabilities f (n)ij constitiute a probability distribution. On
the contrary we cannot say anything in general on

∑∞
n=1 p(n)

ij
(the n-step transition probabilities)
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State classification by f (n)ii

I A state is recurrent (persistent) if fii
(
=
∑∞

n=1 f (n)ii

)
= 1

I A state is positive or non-null recurrent if E(Ti) <∞.
E(Ti) =

∑∞
n=1 nf (n)ii = µi

I A state is null recurrent if E(Ti) = µi =∞
I A state is transient if fii < 1.

In this case we define µi =∞ for later convenience.
I A peridoic state has nonzero pii(nk) for some k .
I A state is ergodic if it is positive recurrent and aperiodic.
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Classification of Markov chains

I We can identify subclasses of states with the same
properties

I All states which can mutually reach each other will be of
the same type

I Once again the formal analysis is a little bit heavy, but try to
stick to the fundamentals, definitions (concepts) and results
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Properties of sets of intercommunicating states

I (a) i and j has the same period
I (b) i is transient if and only if j is transient
I (c) i is null persistent (null recurrent) if and only if j is null

persistent
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A set C of states is called
I (a) Closed if pij = 0 for all i ∈ C, j /∈ C
I (b) Irreducible if i ↔ j for all i , j ∈ C.

Theorem
Decomposition Theorem The state space S can be partitioned
uniquely as

S = T ∪ C1 ∪ C2 ∪ . . .

where T is the set of transient states, and the Ci are irreducible
closed sets of persistent states �

Lemma
If S is finite, then at least one state is persistent(recurrent) and
all persistent states are non-null (positive recurrent) �
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Basic Limit Theorem

Theorem 4.3 The basic limit theorem of Markov chains
(a) Consider a recurrent irreducible aperiodic Markov

chain. Let P(n)
ii be the probability of entering state i

at the nth transition, n = 1,2, . . . , given that
X0 = i . By our earlier convention P(0)

ii = 1. Let f (n)ii
be the probability of first returning to state i at the
nth transition n = 1,2, . . . , where f (0)ii = 0. Then

lim
n→∞

P(n)
ii =

1∑∞
n=0 nf (n)ii

=
1
mi

(b) under the same conditions as in (a),
limn→∞ P(n)

ji = limn→∞ P(n)
ii for all j .
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An example chain (random walk with reflecting
barriers)

P =



0.6 0.4 0.0 0.0 0.0 0.0 0.0 0.0
0.3 0.3 0.4 0.0 0.0 0.0 0.0 0.0
0.0 0.3 0.3 0.4 0.0 0.0 0.0 0.0
0.0 0.0 0.3 0.3 0.4 0.0 0.0 0.0
0.0 0.0 0.0 0.3 0.3 0.4 0.0 0.0
0.0 0.0 0.0 0.0 0.3 0.3 0.4 0.0
0.0 0.0 0.0 0.0 0.0 0.3 0.3 0.4
0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7


With initial probability distribution p(0) = (1,0,0,0,0,0,0,0) or

X0 = 1.
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Properties of that chain

I We have a finite number of states
I From state 1 we can reach state j with a probability

f1j ≥ 0.4j−1, j > 1.
I From state j we can reach state 1 with a probability

fj1 ≥ 0.3j−1, j > 1.
I Thus all states communicate and the chain is irreducible.

Generally we won’t bother with bounds for the fij ’s.
I Since the chain is finite all states are positive recurrent
I A look on the behaviour of the chain
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A number of different sample paths Xn’s
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The state probabilities

p(n)
j
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Limiting distribution

For an irreducible aperiodic chain, we have that

p(n)
ij →

1
µj

as n→∞, for all i and j

Three important remarks
I If the chain is transient or null-persistent (null-recurrent)

p(n)
ij → 0

I If the chain is positive recurrent p(n)
ij →

1
µj

I The limiting probability of Xn = j does not depend on the
starting state X0 = i
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The stationary distribution

I A distribution that does not change with n
I The elements of p(n) are all constant
I The implication of this is p(n) = p(n−1)P = p(n−1) by our

assumption of p(n) being constant
I Expressed differently π = πP
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Stationary distribution

Definition
The vector π is called a stationary distribution of the chain if π
has entries (πj : j ∈ S) such that
I (a) πj ≥ 0 for all j , and

∑
j πj = 1

I (b) π = πP, which is to say that πj =
∑

i πipij for all j .
�

VERY IMPORTANT
An irreducible chain has a stationary distribution π if and only if
all the states are non-null persistent (positive recurrent);in this
case, π is the unique stationary distribution and is given by
πi =

1
µi

for each i ∈ S, where µi is the mean recurrence time of
i .
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The example chain (random walk with reflecting
barriers)

P =



0.6 0.4 0.0 0.0 0.0 0.0 0.0 0.0
0.3 0.3 0.4 0.0 0.0 0.0 0.0 0.0
0.0 0.3 0.3 0.4 0.0 0.0 0.0 0.0
0.0 0.0 0.3 0.3 0.4 0.0 0.0 0.0
0.0 0.0 0.0 0.3 0.3 0.4 0.0 0.0
0.0 0.0 0.0 0.0 0.3 0.3 0.4 0.0
0.0 0.0 0.0 0.0 0.0 0.3 0.3 0.4
0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7


π = πP

Elementwise the matrix equation is πi =
∑

j πjpji

π1 = π1 · 0.6 + π2 · 0.3
π2 = π1 · 0.4 + π2 · 0.3 + π3 · 0.3
π3 = π2 · 0.4 + π3 · 0.3 + π4 · 0.3
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π1 = π1 · 0.6 + π2 · 0.3
πj = πj−1 · 0.4 + πj · 0.3 + πj+1 · 0.3
π8 = π7 · 0.4 + π8 · 0.7

Or

π2 =
1− 0.6

0.3
π1

πj+1 =
1

0.3
((1− 0.3)πj − 0.4πj−1)

Can be solved recursively to find:

πj =

(
0.4
0.3

)j−1

π1
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The normalising condition
I We note that we don’t have to use the last equation
I We need a solution which is a probability distribution

8∑
j=1

πj = 1,
8∑

j=1

(
0.4
0.3

)j−1

π1 = π1

7∑
k=0

(
0.4
0.3

)k

N∑
i=0

ai =


1−aN+1

1−a N <∞,a 6= 1
N + 1 N <∞,a = 1

1
1−a N =∞, |a| < 1

Such that

1 = π1
1−

(0.4
0.3

)8

1− 0.4
0.3

⇔ π1 =
1− 0.4

0.3

1−
(0.4

0.3

)8

Bo Friis Nielsen Limiting Distribution and Classification

The solution of π = πP

I More or less straightforward, but one problem
I if x is a solution such that x = xP then obviously

(kx) = (kx)P is also a solution.
I Recall the definition of eigenvalues/eigen vectors
I If Ay = λy we say that λ is an eigenvalue of A with an

associated eigenvector y . Here y is a right eigenvector,
there is also a left eigenvector
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The solution of π = πP continued

I The vector π is a left eigenvector of P.
I The main theorem says that there is a unique eigenvector

associated with the eigenvalue 1 of P
I In practice this means that the we can only solve but a

normalising condition
I But we have the normalising condition by

∑
j πj = 1 this

can expressed as π1 = 1. Where

1 =


1
1
...
1


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Roles of the solution to π = πP

For an irreducible Markov chain, (the condition we need to
verify)
I The stationary solution. If p(0) = π then p(n) = π for all n.
I The limiting distribution, i.e. p(n) → π for n→∞ (the

Markov chain has to be aperiodic too). Also p(n)
ij → πj .

I The mean recurrence time for state i is µi =
1
πi

.
I The mean number of visits in state j between two

successive visits to state i is πj
πi

.
I The long run average probability of finding the Markov

chain in state i is πi . πi = limn→∞
1
n
∑n

k=1 p(k)
i also true for

periodic chains.
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Example (null-recurrent) chain

P =



p1 p2 p3 p4 p5 . . .
1 0 0 0 0 . . .
0 1 0 0 0 . . .
0 0 1 0 0 . . .
0 0 0 1 0 . . .
0 0 0 0 1 . . .
. . . . . . . . . . . . . . . . . .


For pj > 0 the chain is obviously irreducible.
The main theorem tells us that we can investigate directly for
π = πP.

π1 = π1p1 + π2 π2 = π1p2 + π3 πj = π1pj + πj+1
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π1 = π1p1 + π2 π2 = π1p2 + π3 πj = π1pj + πj+1

we get

π2 = (1−p1)π1 π3 = (1−p1−p2)π1 πj = (1−p1 · · ·−pj−1)π1

πj = (1− p1 · · · − pj−1)π1 ⇔ πj = π1

1−
j−1∑
i=1

pi

⇔ πj = π1

∞∑
i=j

pi

Normalisation

∞∑
j=1

πj = 1
∞∑

j=1

π1

∞∑
i=j

pi = π1

∞∑
i=1

i∑
j=1

pi = π1

∞∑
i=1

ipi
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1 2

p

p

pp11

12

22

21

P =

[
p11 p12
p21 p22

]
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Reversible Markov chains

I Solve sequence of linear equations instead of the whole
system

I Local balance in probability flow as opposed to global
balance

I Nice theoretical construction
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Local balance equations

πi =
∑

j

πjpji πi · 1 =
∑

j

πjpji πi
∑

j

pij =
∑

j

πjpji

∑
j

πipij =
∑

j

πjpji

Term for term we get
πipij = πjpji

If they are fulfilled for each i and j , the global balance equations
can be obtained by summation.
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Why reversible?

P{Xn−1 = i ∩ Xn = j} = P{Xn−1 = i}P{Xn = j |Xn−1 = i}

= P{Xn−1 = i}pij

and for a stationary chain

πipij

For a reversible chain (local balance) this is πipij = πjpji =
P{Xn−1 = j}P{Xn = i |Xn−1 = j} = P{Xn−1 = j ∩ Xn = i} the
reversed sequence.
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Another look at a similar question

P{Xn−1 = j |Xn = i} = P{Xn−1 = j ∩ Xn = i}
P{Xn = i}

=
P{Xn−1 = j}P{Xn = i |Xn−1 = j}

P{Xn = i}
=
P{Xn−1 = j}pji

P{Xn = i}
For a stationary chain we get

πjpji

πi

The chain is reversible if P{Xn−1 = j |Xn = i} = pij leading to
the local balance equations

pij =
πjpji

πi
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Exercise 10 (16/12/91 ex.1)

In connection with an examination of the reliability of some
software intended for use in control of modern ferries one is
interested in examining a stochastic model of the use of a
control program.
The control program works as " state machine " i.e. it can be in
a number of different levels, 4 are considered here. The levels
depend on the physical state of the ferry. With every shift of
time unit while the program is run, the program will change from
level j to level k with probability pjk .
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Two possibilities are considered:
The program has no errors and will run continously shifting between the four
levels.
The program has a critical error. In this case it is possible that the error is
found, this happens with probality qi , i = 1, 2, 3, 4 depending on the level.
The error will be corrected immediately and the program will from then on be
without faults.
Alternatively the program can stop with a critical error (the ferry will continue
to sail, but without control). This happens with probability ri , i = 1, 2, 3, 4.
In general qi + ri < 1, a program with errors can thus work and the error is
not nescesarily discovered. It is assumed that detection of an error, as well
as the apperance of a fault happens coincidently with shift between levels.
The program starts running in level 1, and it is known that the program
contains one critical error.
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Solution: Question 1

Formulate a stochastic process ( Markov chain) in discrete
time describing this system.

The model is a discrete time Markov chain. A possible
definition of states could be

0: The programme has stopped.
1-4: The programme is operating safely in level i .
5-8: The programme is operating in level i-4, the critical

error is not detected.
The transition matrix A is

A =

 1 ~0 ~0
~0 P 0
~r Diag(qi)P Diag(Si)P


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Question 1 - continued

The model is a discrete time Markov chain. Where P = {pij}

~r =


r1
r2
r3
r4

 Diag(Si) =


S1 0 0 0
0 S2 0 0
0 0 S3 0
0 0 0 S4

 Si = 1− ri − qi

Diag(qi) =


q1 0 0 0
0 q2 0 0
0 0 q3 0
0 0 0 q4


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Question 1 - continued

Or without matrix notation:

A =



1 0 0 0 0 0 0 0 0
0 p11 p12 p13 p14 0 0 0 0
0 p21 p22 p23 p24 0 0 0 0
0 p31 p32 p33 p34 0 0 0 0
0 p41 p42 p43 p44 0 0 0 0
r1 q1p11 q1p12 q1p13 q1p14 S1p11 S1p12 S1p13 S1p14
r2 q2p21 q2p22 q2p23 q2p24 S2p21 S2p22 S2p23 S2p24
r3 q3p31 q3p32 q3p33 q3p34 S3p31 S3p32 S3p33 S3p34
r4 q4p41 q4p42 q4p43 q4p44 S4p41 S4p42 S4p43 S4p44


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Solution question 2

Characterise the states in the Markov chain.
With reasonable assumptions on P (i.e. irreducible) we get
State 0 Absorbing1 Positive recurrent2 Positive recurrent3 Positive recurrent4 Positive recurrent5 Transient6 Transient7 Transient8 Transient
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Solution question 3

We now consider the case where the stability of the system has
been assured, i.e. the error has been found and corrected, and
the program has been running for long time without errors. The
parameters are as follows.
Pi,i+1 = 0.6 i = 1,2,3 Pi,i−1 = 0.2 i = 2,3,4
Pi,j = 0 |i − j | > 1 qi = 10−3i ri = 10−3i−5

Characterise the stochastic proces, that describes the
stable system.

The system becomes stable by reaching one of the states 1-4.
The process is ergodic from then on. The procces is a
reversible ergodic Markov chain in discrete time.
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Solution question 4

For what fraction of time will the system be in level 1.
We obtain the following steady state equations

πi = 3i−1π1

4∑
i=1

3i−1π1 = 1⇔ 40π1 = 1

π1 =
1

40

The sum
∑4

i=1 3i−1 can be obtained by using∑4
i=1 3i−1 = 1−34

1−3 = 40.
4∑

i=1

3i−1π1 = 1⇔ 1− 34

1− 3
π1 = 1
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