Discrete Time Markov Chains, Limiting Distribution and Classification

Bo Friis Nielsen ${ }^{1}$

${ }^{1}$ DTU Informatics
02407 Stochastic Processes 3, September 192017

Discrete time Markov chains

Today:

- Discrete time Markov chains - invariant probability distribution
- Classification of states
- Classification of chains

Next week

- Poisson process

Two weeks from now

- Birth- and Death Processes

Regular Transition Probability Matrices

$$
\boldsymbol{P}=\left\|P_{i j}\right\|, \quad 0 \leq i, j \leq N
$$

Regular: If $\boldsymbol{P}^{k}>0$ for some k
In that case $\lim _{n \rightarrow \infty} P_{i j}^{(n)}=\pi_{j}$
Theorem 4.1 (Page 168) let \boldsymbol{P} be a regular transition probability matrix on the states $0,1, \ldots, N$. Then the limiting distribution $\boldsymbol{\pi}=\left(\pi_{0}, \pi_{1}, \pi_{N}\right)$ is the unique nonnegative solution of the equations

$$
\begin{gathered}
\pi_{j}=\sum_{k=0}^{N} \pi_{k} P_{i j}, \quad \boldsymbol{\pi}=\boldsymbol{\pi} \boldsymbol{P} \\
\sum_{k=0}^{N} \pi_{k}=1, \quad \boldsymbol{\pi 1}=1
\end{gathered}
$$

Interpretation of π_{j} 's

Interpretation of π_{j} 's

- Limiting probabilities $\lim _{n \rightarrow \infty} P_{i j}^{(n)}=\pi_{j}$

Interpretation of π_{j} 's

- Limiting probabilities $\lim _{n \rightarrow \infty} P_{i j}^{(n)}=\pi_{j}$
- Long term averages $\lim _{n \rightarrow \infty} \frac{1}{1} \sum_{n=1}^{m} P_{i j}^{(n)}=\pi_{j}$

Interpretation of π_{j} 's

- Limiting probabilities $\lim _{n \rightarrow \infty} P_{i j}^{(n)}=\pi_{j}$
- Long term averages $\lim _{n \rightarrow \infty} \frac{1}{1} \sum_{n=1}^{m} P_{i j}^{(n)}=\pi_{j}$
- Stationary distribution $\boldsymbol{\pi}=\boldsymbol{\pi} \boldsymbol{P}$

A Social Mobility Example

						Son's Class		
	Lower		Middle	Upper				
	Lower	0.40	0.50	0.10				
Father's	Middle	0.05	0.70	0.25				
Class	Upper	0.05	0.50	0.45				

$$
\begin{aligned}
\boldsymbol{P}^{8}= & \left\|\begin{array}{lll}
0.0772 & 0.6250 & 0.2978 \\
0.0769 & 0.6250 & 0.2981 \\
0.0769 & 0.6250 & 0.2981
\end{array}\right\| \\
\pi_{0} & =0.40 \pi_{0}+0.05 \pi_{1}+0.05 \pi_{2} \\
\pi_{1} & =0.50 \pi_{0}+0.70 \pi_{1}+0.50 \pi_{2} \\
\pi_{2} & =0.10 \pi_{0}+0.25 \pi_{1}+0.45 \pi_{2} \\
1 & =\pi_{0}+\pi_{1}+\pi_{2}
\end{aligned}
$$

Classification of Markov chain states

Classification of Markov chain states

- States which cannot be left, once entered

Classification of Markov chain states

- States which cannot be left, once entered - absorbing states

Classification of Markov chain states

- States which cannot be left, once entered - absorbing states
- States where the return some time in the future is certain

Classification of Markov chain states

- States which cannot be left, once entered - absorbing states
- States where the return some time in the future is certain recurrent or persistent states

Classification of Markov chain states

- States which cannot be left, once entered - absorbing states
- States where the return some time in the future is certain recurrent or persistent states
- The mean time to return can be

Classification of Markov chain states

- States which cannot be left, once entered - absorbing states
- States where the return some time in the future is certain recurrent or persistent states
- The mean time to return can be
- finite

Classification of Markov chain states

- States which cannot be left, once entered - absorbing states
- States where the return some time in the future is certain recurrent or persistent states
- The mean time to return can be
- finite - postive recurrence/non-null recurrent

Classification of Markov chain states

- States which cannot be left, once entered - absorbing states
- States where the return some time in the future is certain recurrent or persistent states
- The mean time to return can be
- finite - postive recurrence/non-null recurrent
- infinite

Classification of Markov chain states

- States which cannot be left, once entered - absorbing states
- States where the return some time in the future is certain recurrent or persistent states
- The mean time to return can be
- finite - postive recurrence/non-null recurrent
- infinite - null recurrent

Classification of Markov chain states

- States which cannot be left, once entered - absorbing states
- States where the return some time in the future is certain recurrent or persistent states
- The mean time to return can be
- finite - postive recurrence/non-null recurrent
- infinite - null recurrent
- States where the return some time in the future is uncertain

Classification of Markov chain states

- States which cannot be left, once entered - absorbing states
- States where the return some time in the future is certain recurrent or persistent states
- The mean time to return can be
- finite - postive recurrence/non-null recurrent
- infinite - null recurrent
- States where the return some time in the future is uncertain - transient states

Classification of Markov chain states

- States which cannot be left, once entered - absorbing states
- States where the return some time in the future is certain recurrent or persistent states
- The mean time to return can be
- finite - postive recurrence/non-null recurrent
- infinite - null recurrent
- States where the return some time in the future is uncertain - transient states
- States which can only be visited at certain time epochs

Classification of Markov chain states

- States which cannot be left, once entered - absorbing states
- States where the return some time in the future is certain recurrent or persistent states
- The mean time to return can be
- finite - postive recurrence/non-null recurrent
- infinite - null recurrent
- States where the return some time in the future is uncertain - transient states
- States which can only be visited at certain time epochs periodic states

Classification of States

Classification of States

- j is accessible from i if $P_{i j}^{(n)}>0$ for some n
- j is accessible from i if $P_{i j}^{(n)}>0$ for some n
- If j is accessible from i and i is accessible from j we say that the two states communicate
- j is accessible from i if $P_{i j}^{(n)}>0$ for some n
- If j is accessible from i and i is accessible from j we say that the two states communicate
- Communicating states constitute equivalence classes (an equivalence relation)
- j is accessible from i if $P_{i j}^{(n)}>0$ for some n
- If j is accessible from i and i is accessible from j we say that the two states communicate
- Communicating states constitute equivalence classes (an equivalence relation)
- i communicates with j and j communicates with k then i and k communicates

First passage and first return times

We can formalise the discussion of state classification by use of a certain class of probability distributions

First passage and first return times

We can formalise the discussion of state classification by use of a certain class of probability distributions - first passage time distributions.

First passage and first return times

We can formalise the discussion of state classification by use of a certain class of probability distributions - first passage time distributions. Define the first passage probability

$$
f_{i j}^{(n)}=
$$

First passage and first return times

We can formalise the discussion of state classification by use of a certain class of probability distributions - first passage time distributions. Define the first passage probability

$$
f_{i j}^{(n)}=\mathbb{P}\left\{X_{1} \neq j, X_{2} \neq j, \ldots, X_{n-1} \neq j, X_{n}=j \mid X_{0}=i\right\}
$$

First passage and first return times

We can formalise the discussion of state classification by use of a certain class of probability distributions - first passage time distributions. Define the first passage probability

$$
f_{i j}^{(n)}=\mathbb{P}\left\{X_{1} \neq j, X_{2} \neq j, \ldots, X_{n-1} \neq j, X_{n}=j \mid X_{0}=i\right\}
$$

This is the probability of reaching j for the first time at time n having started in i.

First passage and first return times

We can formalise the discussion of state classification by use of a certain class of probability distributions - first passage time distributions. Define the first passage probability

$$
f_{i j}^{(n)}=\mathbb{P}\left\{X_{1} \neq j, X_{2} \neq j, \ldots, X_{n-1} \neq j, X_{n}=j \mid X_{0}=i\right\}
$$

This is the probability of reaching j for the first time at time n having started in i.
What is the probability of ever reaching j ?

First passage and first return times

We can formalise the discussion of state classification by use of a certain class of probability distributions - first passage time distributions. Define the first passage probability

$$
f_{i j}^{(n)}=\mathbb{P}\left\{X_{1} \neq j, X_{2} \neq j, \ldots, X_{n-1} \neq j, X_{n}=j \mid X_{0}=i\right\}
$$

This is the probability of reaching j for the first time at time n having started in i.
What is the probability of ever reaching j ?
$f_{i j}$

First passage and first return times

We can formalise the discussion of state classification by use of a certain class of probability distributions - first passage time distributions. Define the first passage probability

$$
f_{i j}^{(n)}=\mathbb{P}\left\{X_{1} \neq j, X_{2} \neq j, \ldots, X_{n-1} \neq j, X_{n}=j \mid X_{0}=i\right\}
$$

This is the probability of reaching j for the first time at time n having started in i.
What is the probability of ever reaching j ?

$$
f_{i j}=\sum_{n=1}^{\infty} f_{i j}^{(n)}
$$

First passage and first return times

We can formalise the discussion of state classification by use of a certain class of probability distributions - first passage time distributions. Define the first passage probability

$$
f_{i j}^{(n)}=\mathbb{P}\left\{X_{1} \neq j, X_{2} \neq j, \ldots, X_{n-1} \neq j, X_{n}=j \mid X_{0}=i\right\}
$$

This is the probability of reaching j for the first time at time n having started in i.
What is the probability of ever reaching j ?

$$
f_{i j}=\sum_{n=1}^{\infty} f_{i j}^{(n)} \leq 1
$$

First passage and first return times

We can formalise the discussion of state classification by use of a certain class of probability distributions - first passage time distributions. Define the first passage probability

$$
f_{i j}^{(n)}=\mathbb{P}\left\{X_{1} \neq j, X_{2} \neq j, \ldots, X_{n-1} \neq j, X_{n}=j \mid X_{0}=i\right\}
$$

This is the probability of reaching j for the first time at time n having started in i.
What is the probability of ever reaching j ?

$$
f_{i j}=\sum_{n=1}^{\infty} f_{i j}^{(n)} \leq 1
$$

The probabilities $f_{i j}^{(n)}$ constitiute a probability distribution.

First passage and first return times

We can formalise the discussion of state classification by use of a certain class of probability distributions - first passage time distributions. Define the first passage probability

$$
f_{i j}^{(n)}=\mathbb{P}\left\{X_{1} \neq j, X_{2} \neq j, \ldots, X_{n-1} \neq j, X_{n}=j \mid X_{0}=i\right\}
$$

This is the probability of reaching j for the first time at time n having started in i.
What is the probability of ever reaching j ?

$$
f_{i j}=\sum_{n=1}^{\infty} f_{i j}^{(n)} \leq 1
$$

The probabilities $f_{i j}^{(n)}$ constitiute a probability distribution. On the contrary we cannot say anything in general on $\sum_{n=1}^{\infty} p_{i j}^{(n)}$

First passage and first return times

We can formalise the discussion of state classification by use of a certain class of probability distributions - first passage time distributions. Define the first passage probability

$$
f_{i j}^{(n)}=\mathbb{P}\left\{X_{1} \neq j, X_{2} \neq j, \ldots, X_{n-1} \neq j, X_{n}=j \mid X_{0}=i\right\}
$$

This is the probability of reaching j for the first time at time n having started in i.
What is the probability of ever reaching j ?

$$
f_{i j}=\sum_{n=1}^{\infty} f_{i j}^{(n)} \leq 1
$$

The probabilities $f_{i j}^{(n)}$ constitiute a probability distribution. On the contrary we cannot say anything in general on $\sum_{n=1}^{\infty} p_{i j}^{(n)}$ (the n-step transition probabilities)

State classification by $f_{i j}^{(n)}$

State classification by $f_{i j}^{(n)}$

- A state is recurrent (persistent) if

State classification by $f_{i j}^{(n)}$

- A state is recurrent (persistent) if $f_{i i}$

State classification by $f_{i j}^{(n)}$

- A state is recurrent (persistent) if $f_{i j}\left(=\sum_{n=1}^{\infty} f_{i j}^{(n)}\right)$

State classification by $f_{i j}^{(n)}$

- A state is recurrent (persistent) if $f_{i i}\left(=\sum_{n=1}^{\infty} f_{i i}^{(n)}\right)=1$

State classification by $f_{i j}^{(n)}$

- A state is recurrent (persistent) if $f_{i j}\left(=\sum_{n=1}^{\infty} f_{i i}^{(n)}\right)=1$
- A state is positive or non-null recurrent if

State classification by $f_{i j}^{(n)}$

- A state is recurrent (persistent) if $f_{i i}\left(=\sum_{n=1}^{\infty} f_{i i}^{(n)}\right)=1$
- A state is positive or non-null recurrent if $E\left(T_{i}\right)$

State classification by $f_{i j}^{(n)}$

- A state is recurrent (persistent) if $f_{i i}\left(=\sum_{n=1}^{\infty} f_{i i}^{(n)}\right)=1$
- A state is positive or non-null recurrent if $E\left(T_{i}\right)<\infty$.

State classification by $f_{i j}^{(n)}$

- A state is recurrent (persistent) if $f_{i i}\left(=\sum_{n=1}^{\infty} f_{i i}^{(n)}\right)=1$
- A state is positive or non-null recurrent if $E\left(T_{i}\right)<\infty$. $E\left(T_{i}\right)=\sum_{n=1}^{\infty} n f_{i i}^{(n)}$

State classification by $f_{i j}^{(n)}$

- A state is recurrent (persistent) if $f_{i i}\left(=\sum_{n=1}^{\infty} f_{i i}^{(n)}\right)=1$
- A state is positive or non-null recurrent if $E\left(T_{i}\right)<\infty$.

$$
E\left(T_{i}\right)=\sum_{n=1}^{\infty} n f_{i i}^{(n)}=\mu_{i}
$$

State classification by $f_{i j}^{(n)}$

- A state is recurrent (persistent) if $f_{i i}\left(=\sum_{n=1}^{\infty} f_{i i}^{(n)}\right)=1$
- A state is positive or non-null recurrent if $E\left(T_{i}\right)<\infty$. $E\left(T_{i}\right)=\sum_{n=1}^{\infty} n f_{i j}^{(n)}=\mu_{i}$
- A state is null recurrent if

State classification by $f_{i j}^{(n)}$

- A state is recurrent (persistent) if $f_{i i}\left(=\sum_{n=1}^{\infty} f_{i i}^{(n)}\right)=1$
- A state is positive or non-null recurrent if $E\left(T_{i}\right)<\infty$. $E\left(T_{i}\right)=\sum_{n=1}^{\infty} n f_{i j}^{(n)}=\mu_{i}$
- A state is null recurrent if $E\left(T_{i}\right)=$

State classification by $f_{i j}^{(n)}$

- A state is recurrent (persistent) if $f_{i i}\left(=\sum_{n=1}^{\infty} f_{i i}^{(n)}\right)=1$
- A state is positive or non-null recurrent if $E\left(T_{i}\right)<\infty$. $E\left(T_{i}\right)=\sum_{n=1}^{\infty} n f_{i i}^{(n)}=\mu_{i}$
- A state is null recurrent if $E\left(T_{i}\right)=\mu_{i}=\infty$

State classification by $f_{i i}^{(n)}$

- A state is recurrent (persistent) if $f_{i i}\left(=\sum_{n=1}^{\infty} f_{i i}^{(n)}\right)=1$
- A state is positive or non-null recurrent if $E\left(T_{i}\right)<\infty$. $E\left(T_{i}\right)=\sum_{n=1}^{\infty} n f_{i i}^{(n)}=\mu_{i}$
- A state is null recurrent if $E\left(T_{i}\right)=\mu_{i}=\infty$
- A state is transient if
- A state is recurrent (persistent) if $f_{i i}\left(=\sum_{n=1}^{\infty} f_{i i}^{(n)}\right)=1$
- A state is positive or non-null recurrent if $E\left(T_{i}\right)<\infty$. $E\left(T_{i}\right)=\sum_{n=1}^{\infty} n f_{i i}^{(n)}=\mu_{i}$
- A state is null recurrent if $E\left(T_{i}\right)=\mu_{i}=\infty$
- A state is transient if $f_{i j}$
- A state is recurrent (persistent) if $f_{i i}\left(=\sum_{n=1}^{\infty} f_{i i}^{(n)}\right)=1$
- A state is positive or non-null recurrent if $E\left(T_{i}\right)<\infty$. $E\left(T_{i}\right)=\sum_{n=1}^{\infty} n f_{i i}^{(n)}=\mu_{i}$
- A state is null recurrent if $E\left(T_{i}\right)=\mu_{i}=\infty$
- A state is transient if $f_{i j}<1$.
- A state is recurrent (persistent) if $f_{i i}\left(=\sum_{n=1}^{\infty} f_{i i}^{(n)}\right)=1$
- A state is positive or non-null recurrent if $E\left(T_{i}\right)<\infty$.

$$
E\left(T_{i}\right)=\sum_{n=1}^{\infty} n f_{i i}^{(n)}=\mu_{i}
$$

- A state is null recurrent if $E\left(T_{i}\right)=\mu_{i}=\infty$
- A state is transient if $f_{i i}<1$.

In this case we define $\mu_{i}=\infty$ for later convenience.

- A state is recurrent (persistent) if $f_{i i}\left(=\sum_{n=1}^{\infty} f_{i i}^{(n)}\right)=1$
- A state is positive or non-null recurrent if $E\left(T_{i}\right)<\infty$.

$$
E\left(T_{i}\right)=\sum_{n=1}^{\infty} n f_{i i}^{(n)}=\mu_{i}
$$

- A state is null recurrent if $E\left(T_{i}\right)=\mu_{i}=\infty$
- A state is transient if $f_{i j}<1$. In this case we define $\mu_{i}=\infty$ for later convenience.
- A peridoic state has nonzero $p_{i i}(n k)$ for some k.
- A state is recurrent (persistent) if $f_{i i}\left(=\sum_{n=1}^{\infty} f_{i i}^{(n)}\right)=1$
- A state is positive or non-null recurrent if $E\left(T_{i}\right)<\infty$.

$$
E\left(T_{i}\right)=\sum_{n=1}^{\infty} n f_{i i}^{(n)}=\mu_{i}
$$

- A state is null recurrent if $E\left(T_{i}\right)=\mu_{i}=\infty$
- A state is transient if $f_{i j}<1$. In this case we define $\mu_{i}=\infty$ for later convenience.
- A peridoic state has nonzero $p_{i i}(n k)$ for some k.
- A state is ergodic

State classification by $f_{i i}^{(n)}$

- A state is recurrent (persistent) if $f_{i i}\left(=\sum_{n=1}^{\infty} f_{i i}^{(n)}\right)=1$
- A state is positive or non-null recurrent if $E\left(T_{i}\right)<\infty$.

$$
E\left(T_{i}\right)=\sum_{n=1}^{\infty} n f_{i i}^{(n)}=\mu_{i}
$$

- A state is null recurrent if $E\left(T_{i}\right)=\mu_{i}=\infty$
- A state is transient if $f_{i i}<1$. In this case we define $\mu_{i}=\infty$ for later convenience.
- A peridoic state has nonzero $p_{i i}(n k)$ for some k.
- A state is ergodic if it is positive recurrent and aperiodic.

Classification of Markov chains

Classification of Markov chains

- We can identify subclasses of states with the same properties

Classification of Markov chains

- We can identify subclasses of states with the same properties
- All states which can mutually reach each other will be of the same type

Classification of Markov chains

- We can identify subclasses of states with the same properties
- All states which can mutually reach each other will be of the same type
- Once again the formal analysis is a little bit heavy,

Classification of Markov chains

- We can identify subclasses of states with the same properties
- All states which can mutually reach each other will be of the same type
- Once again the formal analysis is a little bit heavy, but try to stick to the fundamentals,

Classification of Markov chains

- We can identify subclasses of states with the same properties
- All states which can mutually reach each other will be of the same type
- Once again the formal analysis is a little bit heavy, but try to stick to the fundamentals, definitions (concepts) and results

Properties of sets of intercommunicating states

Properties of sets of intercommunicating states

- (a) i and j has the same period
- (a) i and j has the same period
- (b) i is transient if and only if j is transient
- (a) i and j has the same period
- (b) i is transient if and only if j is transient
- (c) i is null persistent (null recurrent) if and only if j is null persistent

A set C of states is called

A set C of states is called

- (a) Closed if $p_{i j}=0$ for all $i \in C, j \notin C$

A set C of states is called

- (a) Closed if $p_{i j}=0$ for all $i \in C, j \notin C$
- (b) Irreducible if $i \leftrightarrow j$ for all $i, j \in C$.

Theorem

A set C of states is called

- (a) Closed if $p_{i j}=0$ for all $i \in C, j \notin C$
- (b) Irreducible if $i \leftrightarrow j$ for all $i, j \in C$.

Theorem
Decomposition Theorem The state space S can be partitioned uniquely as

$$
S=T \cup C_{1} \cup C_{2} \cup \ldots
$$

A set C of states is called

- (a) Closed if $p_{i j}=0$ for all $i \in C, j \notin C$
- (b) Irreducible if $i \leftrightarrow j$ for all $i, j \in C$.

Theorem
Decomposition Theorem The state space S can be partitioned uniquely as

$$
S=T \cup C_{1} \cup C_{2} \cup \ldots
$$

where T is the set of transient states, and the C_{i} are irreducible closed sets of persistent states

A set C of states is called

- (a) Closed if $p_{i j}=0$ for all $i \in C, j \notin C$
- (b) Irreducible if $i \leftrightarrow j$ for all $i, j \in C$.

Theorem
Decomposition Theorem The state space S can be partitioned uniquely as

$$
S=T \cup C_{1} \cup C_{2} \cup \ldots
$$

where T is the set of transient states, and the C_{i} are irreducible closed sets of persistent states

Lemma
If S is finite, then at least one state is persistent(recurrent) and all persistent states are non-null (positive recurrent)

Basic Limit Theorem

Theorem 4.3 The basic limit theorem of Markov chains

Basic Limit Theorem

Theorem 4.3 The basic limit theorem of Markov chains
(a) Consider a recurrent irreducible aperiodic Markov chain. Let $P_{i j}^{(n)}$ be the probability of entering state i at the nth transition, $n=1,2, \ldots$, given that $X_{0}=i$. By our earlier convention $P_{i i}^{(0)}=1$. Let $f_{i i}^{(n)}$ be the probability of first returning to state i at the nth transition $n=1,2, \ldots$, where $f_{i i}^{(0)}=0$. Then

$$
\lim _{n \rightarrow \infty} P_{i i}^{(n)}=\frac{1}{\sum_{n=0}^{\infty} n f_{i i}^{(n)}}=\frac{1}{m_{i}}
$$

Basic Limit Theorem

Theorem 4.3 The basic limit theorem of Markov chains
(a) Consider a recurrent irreducible aperiodic Markov chain. Let $P_{i j}^{(n)}$ be the probability of entering state i at the nth transition, $n=1,2, \ldots$, given that $X_{0}=i$. By our earlier convention $P_{i i}^{(0)}=1$. Let $f_{i i}^{(n)}$ be the probability of first returning to state i at the nth transition $n=1,2, \ldots$, where $f_{i i}^{(0)}=0$. Then

$$
\lim _{n \rightarrow \infty} P_{i i}^{(n)}=\frac{1}{\sum_{n=0}^{\infty} n f_{i i}^{(n)}}=\frac{1}{m_{i}}
$$

(b) under the same conditions as in (a), $\lim _{n \rightarrow \infty} P_{j i}^{(n)}=\lim _{n \rightarrow \infty} P_{i i}^{(n)}$ for all j.

An example chain (random walk with reflecting barriers)

P

An example chain (random walk with reflecting barriers)

$$
\boldsymbol{P}=\left[\begin{array}{llllllll}
0.6 & 0.4 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.3 & 0.3 & 0.4 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.3 & 0.3 & 0.4 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.3 & 0.3 & 0.4 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.3 & 0.3 & 0.4 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.3 & 0.3 & 0.4 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.3 & 0.3 & 0.4 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.3 & 0.7
\end{array}\right]
$$

An example chain (random walk with reflecting barriers)

$$
\boldsymbol{P}=\left[\begin{array}{llllllll}
0.6 & 0.4 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.3 & 0.3 & 0.4 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.3 & 0.3 & 0.4 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.3 & 0.3 & 0.4 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.3 & 0.3 & 0.4 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.3 & 0.3 & 0.4 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.3 & 0.3 & 0.4 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.3 & 0.7
\end{array}\right]
$$

With initial probability distribution $\boldsymbol{p}^{(0)}=(1,0,0,0,0,0,0,0)$ or $x_{0}=1$.

Properties of that chain

- We have a finite number of states

Properties of that chain

- We have a finite number of states
- From state 1 we can reach state j

Properties of that chain

- We have a finite number of states
- From state 1 we can reach state j with a probability

Properties of that chain

- We have a finite number of states
- From state 1 we can reach state j with a probability $f_{1 j} \geq 0.4^{j-1}$,

Properties of that chain

- We have a finite number of states
- From state 1 we can reach state j with a probability $f_{1 j} \geq 0.4^{j-1}, j>1$.
- We have a finite number of states
- From state 1 we can reach state j with a probability $f_{1 j} \geq 0.4^{j-1}, j>1$.
- From state j we can reach state 1 with a probability
- We have a finite number of states
- From state 1 we can reach state j with a probability $f_{1 j} \geq 0.4^{j-1}, j>1$.
- From state j we can reach state 1 with a probability $f_{j 1} \geq 0.3^{j-1}$,
- We have a finite number of states
- From state 1 we can reach state j with a probability $f_{1 j} \geq 0.4^{j-1}, j>1$.
- From state j we can reach state 1 with a probability $f_{j 1} \geq 0.3^{j-1}, j>1$.

Properties of that chain

- We have a finite number of states
- From state 1 we can reach state j with a probability $f_{1 j} \geq 0.4^{j-1}, j>1$.
- From state j we can reach state 1 with a probability $f_{j 1} \geq 0.3^{j-1}, j>1$.
- Thus all states communicate and the chain is irreducible.

Properties of that chain

- We have a finite number of states
- From state 1 we can reach state j with a probability $f_{1 j} \geq 0.4^{j-1}, j>1$.
- From state j we can reach state 1 with a probability $f_{j 1} \geq 0.3^{j-1}, j>1$.
- Thus all states communicate and the chain is irreducible. Generally we won't bother with bounds for the $f_{i j}$'s.

Properties of that chain

- We have a finite number of states
- From state 1 we can reach state j with a probability $f_{1 j} \geq 0.4^{j-1}, j>1$.
- From state j we can reach state 1 with a probability $f_{j 1} \geq 0.3^{j-1}, j>1$.
- Thus all states communicate and the chain is irreducible. Generally we won't bother with bounds for the $f_{i j}$'s.
- Since the chain is finite all states are positive recurrent

Properties of that chain

- We have a finite number of states
- From state 1 we can reach state j with a probability $f_{1 j} \geq 0.4^{j-1}, j>1$.
- From state j we can reach state 1 with a probability $f_{j 1} \geq 0.3^{j-1}, j>1$.
- Thus all states communicate and the chain is irreducible. Generally we won't bother with bounds for the $f_{i j}$'s.
- Since the chain is finite all states are positive recurrent
- A look on the behaviour of the chain

A number of different sample paths X_{n} 's

A number of different sample paths X_{n} 's

A number of different sample paths X_{n} 's

A number of different sample paths X_{n} 's

A number of different sample paths X_{n} 's

The state probabilities

$p_{j}^{(n)}$

The state probabilities

$p_{j}^{(n)}$

Limiting distribution

For an irreducible aperiodic chain, we have that

$p_{i j}^{(n)}$

Limiting distribution

For an irreducible aperiodic chain, we have that

$$
p_{i j}^{(n)} \rightarrow \frac{1}{\mu_{j}} \text { as } n \rightarrow \infty, \text { for all } i \text { and } j
$$

Three important remarks

Limiting distribution

For an irreducible aperiodic chain, we have that

$$
p_{i j}^{(n)} \rightarrow \frac{1}{\mu_{j}} \text { as } n \rightarrow \infty, \text { for all } i \text { and } j
$$

Three important remarks

- If the chain is transient or null-persistent (null-recurrent)

Limiting distribution

For an irreducible aperiodic chain, we have that

$$
p_{i j}^{(n)} \rightarrow \frac{1}{\mu_{j}} \text { as } n \rightarrow \infty, \text { for all } i \text { and } j
$$

Three important remarks

- If the chain is transient or null-persistent (null-recurrent) $p_{i j}^{(n)} \rightarrow 0$

Limiting distribution

For an irreducible aperiodic chain, we have that

$$
p_{i j}^{(n)} \rightarrow \frac{1}{\mu_{j}} \text { as } n \rightarrow \infty, \text { for all } i \text { and } j
$$

Three important remarks

- If the chain is transient or null-persistent (null-recurrent) $p_{i j}^{(n)} \rightarrow 0$
- If the chain is positive recurrent $p_{i j}^{(n)} \rightarrow$

Limiting distribution

For an irreducible aperiodic chain, we have that

$$
p_{i j}^{(n)} \rightarrow \frac{1}{\mu_{j}} \text { as } n \rightarrow \infty, \text { for all } i \text { and } j
$$

Three important remarks

- If the chain is transient or null-persistent (null-recurrent) $p_{i j}^{(n)} \rightarrow 0$
- If the chain is positive recurrent $p_{i j}^{(n)} \rightarrow \frac{1}{\mu_{j}}$

Limiting distribution

For an irreducible aperiodic chain, we have that

$$
p_{i j}^{(n)} \rightarrow \frac{1}{\mu_{j}} \text { as } n \rightarrow \infty, \text { for all } i \text { and } j
$$

Three important remarks

- If the chain is transient or null-persistent (null-recurrent) $p_{i j}^{(n)} \rightarrow 0$
- If the chain is positive recurrent $p_{i j}^{(n)} \rightarrow \frac{1}{\mu_{j}}$
- The limiting probability of $X_{n}=j$

Limiting distribution

For an irreducible aperiodic chain, we have that

$$
p_{i j}^{(n)} \rightarrow \frac{1}{\mu_{j}} \text { as } n \rightarrow \infty, \text { for all } i \text { and } j
$$

Three important remarks

- If the chain is transient or null-persistent (null-recurrent) $p_{i j}^{(n)} \rightarrow 0$
- If the chain is positive recurrent $p_{i j}^{(n)} \rightarrow \frac{1}{\mu_{j}}$
- The limiting probability of $X_{n}=j$ does not depend on the starting state $X_{0}=i$
- A distribution that does not change with n

The stationary distribution

- A distribution that does not change with n
- The elements of $\boldsymbol{p}^{(n)}$ are all constant

The stationary distribution

- A distribution that does not change with n
- The elements of $\boldsymbol{p}^{(n)}$ are all constant
- The implication of this is $\boldsymbol{p}^{(n)}$

The stationary distribution

- A distribution that does not change with n
- The elements of $\boldsymbol{p}^{(n)}$ are all constant
- The implication of this is $\boldsymbol{p}^{(n)}=\boldsymbol{p}^{(n-1)} \boldsymbol{P}$

The stationary distribution

- A distribution that does not change with n
- The elements of $\boldsymbol{p}^{(n)}$ are all constant
- The implication of this is $\boldsymbol{p}^{(n)}=\boldsymbol{p}^{(n-1)} \boldsymbol{P}=\boldsymbol{p}^{(n-1)}$

The stationary distribution

- A distribution that does not change with n
- The elements of $\boldsymbol{p}^{(n)}$ are all constant
- The implication of this is $\boldsymbol{p}^{(n)}=\boldsymbol{p}^{(n-1)} \boldsymbol{P}=\boldsymbol{p}^{(n-1)}$ by our assumption of $\boldsymbol{p}^{(n)}$ being constant

The stationary distribution

- A distribution that does not change with n
- The elements of $\boldsymbol{p}^{(n)}$ are all constant
- The implication of this is $\boldsymbol{p}^{(n)}=\boldsymbol{p}^{(n-1)} \boldsymbol{P}=\boldsymbol{p}^{(n-1)}$ by our assumption of $\boldsymbol{p}^{(n)}$ being constant
- Expressed differently

The stationary distribution

- A distribution that does not change with n
- The elements of $\boldsymbol{p}^{(n)}$ are all constant
- The implication of this is $\boldsymbol{p}^{(n)}=\boldsymbol{p}^{(n-1)} \boldsymbol{P}=\boldsymbol{p}^{(n-1)}$ by our assumption of $\boldsymbol{p}^{(n)}$ being constant
- Expressed differently $\pi=$

The stationary distribution

- A distribution that does not change with n
- The elements of $\boldsymbol{p}^{(n)}$ are all constant
- The implication of this is $\boldsymbol{p}^{(n)}=\boldsymbol{p}^{(n-1)} \boldsymbol{P}=\boldsymbol{p}^{(n-1)}$ by our assumption of $\boldsymbol{p}^{(n)}$ being constant
- Expressed differently $\pi=\pi$

The stationary distribution

- A distribution that does not change with n
- The elements of $\boldsymbol{p}^{(n)}$ are all constant
- The implication of this is $\boldsymbol{p}^{(n)}=\boldsymbol{p}^{(n-1)} \boldsymbol{P}=\boldsymbol{p}^{(n-1)}$ by our assumption of $\boldsymbol{p}^{(n)}$ being constant
- Expressed differently $\boldsymbol{\pi}=\boldsymbol{\pi} \boldsymbol{P}$

Definition

The vector π is called a stationary distribution of the chain if π has entries $\left(\pi_{j}: j \in S\right)$ such that

Stationary distribution

Definition

The vector π is called a stationary distribution of the chain if π has entries $\left(\pi_{j}: j \in S\right)$ such that

- (a) $\pi_{j} \geq 0$ for all j, and $\sum_{j} \pi_{j}=1$

Stationary distribution

Definition

The vector π is called a stationary distribution of the chain if π has entries $\left(\pi_{j}: j \in S\right)$ such that

- (a) $\pi_{j} \geq 0$ for all j, and $\sum_{j} \pi_{j}=1$
- (b) $\boldsymbol{\pi}=\boldsymbol{\pi} \boldsymbol{P}$, which is to say that $\pi_{j}=\sum_{i} \pi_{i} p_{i j}$ for all j.

Definition

The vector π is called a stationary distribution of the chain if π has entries $\left(\pi_{j}: j \in S\right)$ such that

- (a) $\pi_{j} \geq 0$ for all j, and $\sum_{j} \pi_{j}=1$
- (b) $\boldsymbol{\pi}=\boldsymbol{\pi} \boldsymbol{P}$, which is to say that $\pi_{j}=\sum_{i} \pi_{i} p_{i j}$ for all j.

Definition

The vector π is called a stationary distribution of the chain if π has entries $\left(\pi_{j}: j \in S\right)$ such that

- (a) $\pi_{j} \geq 0$ for all j, and $\sum_{j} \pi_{j}=1$
- (b) $\boldsymbol{\pi}=\boldsymbol{\pi} \boldsymbol{P}$, which is to say that $\pi_{j}=\sum_{i} \pi_{i} p_{i j}$ for all j.

VERY IMPORTANT

An irreducible chain has a stationary distribution π

Definition

The vector π is called a stationary distribution of the chain if π has entries $\left(\pi_{j}: j \in S\right)$ such that

- (a) $\pi_{j} \geq 0$ for all j, and $\sum_{j} \pi_{j}=1$
- (b) $\boldsymbol{\pi}=\boldsymbol{\pi} \boldsymbol{P}$, which is to say that $\pi_{j}=\sum_{i} \pi_{i} p_{i j}$ for all j.

VERY IMPORTANT

An irreducible chain has a stationary distribution π if and only if all the states are non-null persistent

Definition

The vector π is called a stationary distribution of the chain if π has entries $\left(\pi_{j}: j \in S\right)$ such that

- (a) $\pi_{j} \geq 0$ for all j, and $\sum_{j} \pi_{j}=1$
- (b) $\boldsymbol{\pi}=\boldsymbol{\pi} \boldsymbol{P}$, which is to say that $\pi_{j}=\sum_{i} \pi_{i} p_{i j}$ for all j.

VERY IMPORTANT

An irreducible chain has a stationary distribution π if and only if all the states are non-null persistent (positive recurrent);

Stationary distribution

Definition

The vector π is called a stationary distribution of the chain if π has entries $\left(\pi_{j}: j \in S\right)$ such that

- (a) $\pi_{j} \geq 0$ for all j, and $\sum_{j} \pi_{j}=1$
- (b) $\boldsymbol{\pi}=\boldsymbol{\pi} \boldsymbol{P}$, which is to say that $\pi_{j}=\sum_{i} \pi_{i} p_{i j}$ for all j.

VERY IMPORTANT

An irreducible chain has a stationary distribution π if and only if all the states are non-null persistent (positive recurrent);in this case, π is the unique stationary distribution

Stationary distribution

Definition

The vector π is called a stationary distribution of the chain if π has entries $\left(\pi_{j}: j \in S\right)$ such that

- (a) $\pi_{j} \geq 0$ for all j, and $\sum_{j} \pi_{j}=1$
- (b) $\boldsymbol{\pi}=\boldsymbol{\pi} \boldsymbol{P}$, which is to say that $\pi_{j}=\sum_{i} \pi_{i} p_{i j}$ for all j.

VERY IMPORTANT

An irreducible chain has a stationary distribution π if and only if all the states are non-null persistent (positive recurrent);in this case, π is the unique stationary distribution and is given by $\pi_{i}=\frac{1}{\mu_{i}}$ for each $i \in S$,

Stationary distribution

Definition

The vector π is called a stationary distribution of the chain if π has entries $\left(\pi_{j}: j \in S\right)$ such that

- (a) $\pi_{j} \geq 0$ for all j, and $\sum_{j} \pi_{j}=1$
- (b) $\boldsymbol{\pi}=\boldsymbol{\pi} \boldsymbol{P}$, which is to say that $\pi_{j}=\sum_{i} \pi_{i} p_{i j}$ for all j.

VERY IMPORTANT

An irreducible chain has a stationary distribution π if and only if all the states are non-null persistent (positive recurrent);in this case, π is the unique stationary distribution and is given by $\pi_{i}=\frac{1}{\mu_{i}}$ for each $i \in S$, where μ_{i} is the mean recurrence time of i.

The example chain (random walk with reflecting barriers)

The example chain (random walk with reflecting barriers)

$$
\boldsymbol{P}=\left[\begin{array}{llllllll}
0.6 & 0.4 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.3 & 0.3 & 0.4 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.3 & 0.3 & 0.4 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.3 & 0.3 & 0.4 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.3 & 0.3 & 0.4 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.3 & 0.3 & 0.4 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.3 & 0.3 & 0.4 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.3 & 0.7
\end{array}\right] \quad \pi=\pi \boldsymbol{P}
$$

The example chain (random walk with reflecting barriers)

$$
\boldsymbol{P}=\left[\begin{array}{cccccccc}
0.6 & 0.4 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.3 & 0.3 & 0.4 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.3 & 0.3 & 0.4 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.3 & 0.3 & 0.4 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.3 & 0.3 & 0.4 & 0.0 & 0.0
\end{array}\right] \quad \pi=\pi \boldsymbol{P}
$$

Elementwise the matrix equation is $\pi_{i}=\sum_{j} \pi_{j} p_{j i}$

The example chain (random walk with reflecting barriers)

$$
\boldsymbol{P}=\left[\begin{array}{cccccccc}
0.6 & 0.4 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.3 & 0.3 & 0.4 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.3 & 0.3 & 0.4 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.3 & 0.3 & 0.4 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.3 & 0.3 & 0.4 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.3 & 0.3 & 0.4 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.3 & 0.3 & 0.4 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.3 & 0.7
\end{array}\right] \quad \boldsymbol{\pi}=\boldsymbol{\pi} \boldsymbol{P}
$$

Elementwise the matrix equation is $\pi_{i}=\sum_{j} \pi_{j} p_{j i}$
π_{1}

The example chain (random walk with reflecting barriers)

$$
\boldsymbol{P}=\left[\begin{array}{llllllll}
0.6 & 0.4 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.3 & 0.3 & 0.4 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.3 & 0.3 & 0.4 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.3 & 0.3 & 0.4 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.3 & 0.3 & 0.4 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.3 & 0.3 & 0.4 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.3 & 0.3 & 0.4 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.3 & 0.7
\end{array}\right] \quad \pi=\pi \boldsymbol{P}
$$

Elementwise the matrix equation is $\pi_{i}=\sum_{j} \pi_{j} p_{j i}$

$$
\pi_{1}=\pi_{1}
$$

The example chain (random walk with reflecting barriers)

$$
\boldsymbol{P}=\left[\begin{array}{llllllll}
0.6 & 0.4 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.3 & 0.3 & 0.4 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.3 & 0.3 & 0.4 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.3 & 0.3 & 0.4 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.3 & 0.3 & 0.4 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.3 & 0.3 & 0.4 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.3 & 0.3 & 0.4 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.3 & 0.7
\end{array}\right] \quad \pi=\pi \boldsymbol{P}
$$

Elementwise the matrix equation is $\pi_{i}=\sum_{j} \pi_{j} p_{j i}$

$$
\pi_{1}=\pi_{1} \cdot 0.6+
$$

The example chain (random walk with reflecting barriers)

$$
\boldsymbol{P}=\left[\begin{array}{llllllll}
0.6 & 0.4 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.3 & 0.3 & 0.4 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.3 & 0.3 & 0.4 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.3 & 0.3 & 0.4 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.3 & 0.3 & 0.4 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.3 & 0.3 & 0.4 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.3 & 0.3 & 0.4 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.3 & 0.7
\end{array}\right] \quad \pi=\pi \boldsymbol{P}
$$

Elementwise the matrix equation is $\pi_{i}=\sum_{j} \pi_{j} p_{j i}$

$$
\pi_{1}=\pi_{1} \cdot 0.6+\pi_{2}
$$

The example chain (random walk with reflecting barriers)

$$
\boldsymbol{P}=\left[\begin{array}{llllllll}
0.6 & 0.4 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.3 & 0.3 & 0.4 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.3 & 0.3 & 0.4 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.3 & 0.3 & 0.4 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.3 & 0.3 & 0.4 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.3 & 0.3 & 0.4 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.3 & 0.3 & 0.4 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.3 & 0.7
\end{array}\right] \quad \pi=\pi \boldsymbol{P}
$$

Elementwise the matrix equation is $\pi_{i}=\sum_{j} \pi_{j} p_{j i}$

$$
\pi_{1}=\pi_{1} \cdot 0.6+\pi_{2} \cdot 0.3
$$

The example chain (random walk with reflecting barriers)

$$
\boldsymbol{P}=\left[\begin{array}{llllllll}
0.6 & 0.4 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.3 & 0.3 & 0.4 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.3 & 0.3 & 0.4 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.3 & 0.3 & 0.4 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.3 & 0.3 & 0.4 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.3 & 0.3 & 0.4 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.3 & 0.3 & 0.4 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.3 & 0.7
\end{array}\right] \quad \pi=\pi \boldsymbol{P}
$$

Elementwise the matrix equation is $\pi_{i}=\sum_{j} \pi_{j} p_{j i}$

$$
\begin{aligned}
& \pi_{1}=\pi_{1} \cdot 0.6+\pi_{2} \cdot 0.3 \\
& \pi_{2}
\end{aligned}
$$

The example chain (random walk with reflecting barriers)

$$
\boldsymbol{P}=\left[\begin{array}{cccccccc}
0.6 & 0.4 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.3 & 0.3 & 0.4 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.3 & 0.3 & 0.4 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.3 & 0.3 & 0.4 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.3 & 0.3 & 0.4 & 0.0 & 0.0
\end{array}\right] \quad \boldsymbol{\pi}=\boldsymbol{\pi} \boldsymbol{P}
$$

Elementwise the matrix equation is $\pi_{i}=\sum_{j} \pi_{j} p_{j i}$

$$
\begin{aligned}
& \pi_{1}=\pi_{1} \cdot 0.6+\pi_{2} \cdot 0.3 \\
& \pi_{2}=\pi_{1}
\end{aligned}
$$

The example chain (random walk with reflecting barriers)

$$
\boldsymbol{P}=\left[\begin{array}{cccccccc}
0.6 & 0.4 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.3 & 0.3 & 0.4 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.3 & 0.3 & 0.4 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.3 & 0.3 & 0.4 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.3 & 0.3 & 0.4 & 0.0 & 0.0
\end{array}\right] \quad \boldsymbol{\pi}=\boldsymbol{\pi} \boldsymbol{P}
$$

Elementwise the matrix equation is $\pi_{i}=\sum_{j} \pi_{j} p_{j i}$

$$
\begin{aligned}
& \pi_{1}=\pi_{1} \cdot 0.6+\pi_{2} \cdot 0.3 \\
& \pi_{2}=\pi_{1} \cdot 0.4
\end{aligned}
$$

The example chain (random walk with reflecting barriers)

$$
\boldsymbol{P}=\left[\begin{array}{cccccccc}
0.6 & 0.4 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.3 & 0.3 & 0.4 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.3 & 0.3 & 0.4 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.3 & 0.3 & 0.4 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.3 & 0.3 & 0.4 & 0.0 & 0.0
\end{array}\right] \quad \boldsymbol{\pi}=\boldsymbol{\pi} \boldsymbol{P}
$$

Elementwise the matrix equation is $\pi_{i}=\sum_{j} \pi_{j} p_{j i}$

$$
\begin{aligned}
& \pi_{1}=\pi_{1} \cdot 0.6+\pi_{2} \cdot 0.3 \\
& \pi_{2}=\pi_{1} \cdot 0.4+\pi_{2}
\end{aligned}
$$

The example chain (random walk with reflecting barriers)

$$
\boldsymbol{P}=\left[\begin{array}{cccccccc}
0.6 & 0.4 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.3 & 0.3 & 0.4 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.3 & 0.3 & 0.4 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.3 & 0.3 & 0.4 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.3 & 0.3 & 0.4 & 0.0 & 0.0
\end{array}\right] \quad \boldsymbol{\pi}=\boldsymbol{\pi} \boldsymbol{P}
$$

Elementwise the matrix equation is $\pi_{i}=\sum_{j} \pi_{j} p_{j i}$

$$
\begin{aligned}
& \pi_{1}=\pi_{1} \cdot 0.6+\pi_{2} \cdot 0.3 \\
& \pi_{2}=\pi_{1} \cdot 0.4+\pi_{2}
\end{aligned}
$$

The example chain (random walk with reflecting barriers)

$$
\boldsymbol{P}=\left[\begin{array}{cccccccc}
0.6 & 0.4 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.3 & 0.3 & 0.4 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.3 & 0.3 & 0.4 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.3 & 0.3 & 0.4 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.3 & 0.3 & 0.4 & 0.0 & 0.0
\end{array}\right] \quad \boldsymbol{\pi}=\boldsymbol{\pi} \boldsymbol{P}
$$

Elementwise the matrix equation is $\pi_{i}=\sum_{j} \pi_{j} p_{j i}$

$$
\begin{aligned}
& \pi_{1}=\pi_{1} \cdot 0.6+\pi_{2} \cdot 0.3 \\
& \pi_{2}=\pi_{1} \cdot 0.4+\pi_{2} \cdot 0.3+
\end{aligned}
$$

The example chain (random walk with reflecting barriers)

$$
\boldsymbol{P}=\left[\begin{array}{cccccccc}
0.6 & 0.4 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.3 & 0.3 & 0.4 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.3 & 0.3 & 0.4 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.3 & 0.3 & 0.4 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.3 & 0.3 & 0.4 & 0.0 & 0.0
\end{array}\right] \quad \boldsymbol{\pi}=\boldsymbol{\pi} \boldsymbol{P}
$$

Elementwise the matrix equation is $\pi_{i}=\sum_{j} \pi_{j} p_{j i}$

$$
\begin{aligned}
& \pi_{1}=\pi_{1} \cdot 0.6+\pi_{2} \cdot 0.3 \\
& \pi_{2}=\pi_{1} \cdot 0.4+\pi_{2} \cdot 0.3+\pi_{3}
\end{aligned}
$$

The example chain (random walk with reflecting barriers)

$$
\boldsymbol{P}=\left[\begin{array}{cccccccc}
0.6 & 0.4 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.3 & 0.3 & 0.4 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.3 & 0.3 & 0.4 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.3 & 0.3 & 0.4 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.3 & 0.3 & 0.4 & 0.0 & 0.0
\end{array}\right] \quad \boldsymbol{\pi}=\boldsymbol{\pi} \boldsymbol{P}
$$

Elementwise the matrix equation is $\pi_{i}=\sum_{j} \pi_{j} p_{j i}$

$$
\begin{aligned}
& \pi_{1}=\pi_{1} \cdot 0.6+\pi_{2} \cdot 0.3 \\
& \pi_{2}=\pi_{1} \cdot 0.4+\pi_{2} \cdot 0.3+\pi_{3} \cdot 0.3
\end{aligned}
$$

The example chain (random walk with reflecting barriers)

$$
\boldsymbol{P}=\left[\begin{array}{llllllll}
0.6 & 0.4 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.3 & 0.3 & 0.4 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.3 & 0.3 & 0.4 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.3 & 0.3 & 0.4 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.3 & 0.3 & 0.4 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.3 & 0.3 & 0.4 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.3 & 0.3 & 0.4 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.3 & 0.7
\end{array}\right] \quad \boldsymbol{\pi}=\boldsymbol{\pi} \boldsymbol{P}
$$

Elementwise the matrix equation is $\pi_{i}=\sum_{j} \pi_{j} p_{j i}$

$$
\begin{aligned}
& \pi_{1}=\pi_{1} \cdot 0.6+\pi_{2} \cdot 0.3 \\
& \pi_{2}=\pi_{1} \cdot 0.4+\pi_{2} \cdot 0.3+\pi_{3} \cdot 0.3 \\
& \pi_{3}=\pi_{2} \cdot 0.4+\pi_{3} \cdot 0.3+\pi_{4} \cdot 0.3
\end{aligned}
$$

$$
\pi_{1}=\pi_{1} \cdot 0.6+\pi_{2} \cdot 0.3
$$

$$
\begin{aligned}
\pi_{1} & =\pi_{1} \cdot 0.6+\pi_{2} \cdot 0.3 \\
\pi_{j} & =\pi_{j-1} \cdot 0.4+\pi_{j} \cdot 0.3+\pi_{j+1} \cdot 0.3
\end{aligned}
$$

$$
\begin{aligned}
\pi_{1} & =\pi_{1} \cdot 0.6+\pi_{2} \cdot 0.3 \\
\pi_{j} & =\pi_{j-1} \cdot 0.4+\pi_{j} \cdot 0.3+\pi_{j+1} \cdot 0.3 \\
\pi_{8} & =\pi_{7} \cdot 0.4+\pi_{8} \cdot 0.7
\end{aligned}
$$

$$
\begin{aligned}
\pi_{1} & =\pi_{1} \cdot 0.6+\pi_{2} \cdot 0.3 \\
\pi_{j} & =\pi_{j-1} \cdot 0.4+\pi_{j} \cdot 0.3+\pi_{j+1} \cdot 0.3 \\
\pi_{8} & =\pi_{7} \cdot 0.4+\pi_{8} \cdot 0.7
\end{aligned}
$$

Or

$$
\pi_{2}=\frac{1-0.6}{0.3} \pi_{1}
$$

$$
\begin{aligned}
\pi_{1} & =\pi_{1} \cdot 0.6+\pi_{2} \cdot 0.3 \\
\pi_{j} & =\pi_{j-1} \cdot 0.4+\pi_{j} \cdot 0.3+\pi_{j+1} \cdot 0.3 \\
\pi_{8} & =\pi_{7} \cdot 0.4+\pi_{8} \cdot 0.7
\end{aligned}
$$

Or

$$
\begin{aligned}
\pi_{2} & =\frac{1-0.6}{0.3} \pi_{1} \\
\pi_{j+1} & =\frac{1}{0.3}\left((1-0.3) \pi_{j}-0.4 \pi_{j-1}\right)
\end{aligned}
$$

$$
\begin{aligned}
\pi_{1} & =\pi_{1} \cdot 0.6+\pi_{2} \cdot 0.3 \\
\pi_{j} & =\pi_{j-1} \cdot 0.4+\pi_{j} \cdot 0.3+\pi_{j+1} \cdot 0.3 \\
\pi_{8} & =\pi_{7} \cdot 0.4+\pi_{8} \cdot 0.7
\end{aligned}
$$

Or

$$
\begin{aligned}
\pi_{2} & =\frac{1-0.6}{0.3} \pi_{1} \\
\pi_{j+1} & =\frac{1}{0.3}\left((1-0.3) \pi_{j}-0.4 \pi_{j-1}\right)
\end{aligned}
$$

Can be solved recursively

$$
\begin{aligned}
\pi_{1} & =\pi_{1} \cdot 0.6+\pi_{2} \cdot 0.3 \\
\pi_{j} & =\pi_{j-1} \cdot 0.4+\pi_{j} \cdot 0.3+\pi_{j+1} \cdot 0.3 \\
\pi_{8} & =\pi_{7} \cdot 0.4+\pi_{8} \cdot 0.7
\end{aligned}
$$

Or

$$
\begin{aligned}
\pi_{2} & =\frac{1-0.6}{0.3} \pi_{1} \\
\pi_{j+1} & =\frac{1}{0.3}\left((1-0.3) \pi_{j}-0.4 \pi_{j-1}\right)
\end{aligned}
$$

Can be solved recursively to find:

$$
\pi_{j}=\left(\frac{0.4}{0.3}\right)^{j-1} \pi_{1}
$$

The normalising condition

- We note that we don't have to use the last equation

The normalising condition

- We note that we don't have to use the last equation
- We need a solution which is a probability distribution

The normalising condition

- We note that we don't have to use the last equation
- We need a solution which is a probability distribution

$$
\sum_{j=1}^{8} \pi_{j}
$$

The normalising condition

- We note that we don't have to use the last equation
- We need a solution which is a probability distribution

$$
\sum_{j=1}^{8} \pi_{j}=1, \quad \sum_{j=1}^{8}
$$

The normalising condition

- We note that we don't have to use the last equation
- We need a solution which is a probability distribution

$$
\sum_{j=1}^{8} \pi_{j}=1, \quad \sum_{j=1}^{8}\left(\frac{0.4}{0.3}\right)^{j-1} \pi_{1}
$$

The normalising condition

- We note that we don't have to use the last equation
- We need a solution which is a probability distribution

$$
\sum_{j=1}^{8} \pi_{j}=1, \quad \sum_{j=1}^{8}\left(\frac{0.4}{0.3}\right)^{j-1} \pi_{1}=\pi_{1}
$$

The normalising condition

- We note that we don't have to use the last equation
- We need a solution which is a probability distribution

$$
\sum_{j=1}^{8} \pi_{j}=1, \quad \sum_{j=1}^{8}\left(\frac{0.4}{0.3}\right)^{j-1} \pi_{1}=\pi_{1} \sum_{k=0}^{7}\left(\frac{0.4}{0.3}\right)^{k}
$$

The normalising condition

- We note that we don't have to use the last equation
- We need a solution which is a probability distribution

$$
\begin{aligned}
\sum_{j=1}^{8} \pi_{j}=1, \quad & \sum_{j=1}^{8}\left(\frac{0.4}{0.3}\right)^{j-1} \pi_{1}=\pi_{1} \sum_{k=0}^{7}\left(\frac{0.4}{0.3}\right)^{k} \\
& \sum_{i=0}^{N} a^{i}=\{
\end{aligned}
$$

The normalising condition

- We note that we don't have to use the last equation
- We need a solution which is a probability distribution

$$
\begin{aligned}
\sum_{j=1}^{8} \pi_{j}=1, \quad & \sum_{j=1}^{8}\left(\frac{0.4}{0.3}\right)^{j-1} \pi_{1}=\pi_{1} \sum_{k=0}^{7}\left(\frac{0.4}{0.3}\right)^{k} \\
& \sum_{i=0}^{N} a^{i}= \begin{cases}\frac{1-a^{N+1}}{1-a} & N<\infty, a \neq 1\end{cases}
\end{aligned}
$$

The normalising condition

- We note that we don't have to use the last equation
- We need a solution which is a probability distribution

$$
\begin{gathered}
\sum_{j=1}^{8} \pi_{j}=1, \quad \sum_{j=1}^{8}\left(\frac{0.4}{0.3}\right)^{j-1} \pi_{1}=\pi_{1} \sum_{k=0}^{7}\left(\frac{0.4}{0.3}\right)^{k} \\
\sum_{i=0}^{N} a^{i}=\left\{\begin{array}{cc}
\frac{1-a^{N+1}}{1-a} & N<\infty, a \neq 1 \\
N+1 & N<\infty, a=1
\end{array}\right.
\end{gathered}
$$

The normalising condition

- We note that we don't have to use the last equation
- We need a solution which is a probability distribution

$$
\begin{gathered}
\sum_{j=1}^{8} \pi_{j}=1, \quad \sum_{j=1}^{8}\left(\frac{0.4}{0.3}\right)^{j-1} \pi_{1}=\pi_{1} \sum_{k=0}^{7}\left(\frac{0.4}{0.3}\right)^{k} \\
\sum_{i=0}^{N} a^{i}=\left\{\begin{array}{cc}
\frac{1-a^{N+1}}{1-a} & N<\infty, a \neq 1 \\
N+1 & N<\infty, a=1 \\
\frac{1}{1-a} & N=\infty,|a|<1
\end{array}\right.
\end{gathered}
$$

The normalising condition

- We note that we don't have to use the last equation
- We need a solution which is a probability distribution

$$
\begin{gathered}
\sum_{j=1}^{8} \pi_{j}=1, \quad \sum_{j=1}^{8}\left(\frac{0.4}{0.3}\right)^{j-1} \pi_{1}=\pi_{1} \sum_{k=0}^{7}\left(\frac{0.4}{0.3}\right)^{k} \\
\sum_{i=0}^{N} a^{i}=\left\{\begin{array}{cc}
\frac{1-a^{N+1}}{1-a} & N<\infty, a \neq 1 \\
N+1 & N<\infty, a=1 \\
\frac{1}{1-a} & N=\infty,|a|<1
\end{array}\right.
\end{gathered}
$$

Such that

$$
1=\pi_{1} \frac{1-\left(\frac{0.4}{0.3}\right)^{8}}{1-\frac{0.4}{0.3}}
$$

The normalising condition

- We note that we don't have to use the last equation
- We need a solution which is a probability distribution

$$
\begin{gathered}
\sum_{j=1}^{8} \pi_{j}=1, \quad \sum_{j=1}^{8}\left(\frac{0.4}{0.3}\right)^{j-1} \pi_{1}=\pi_{1} \sum_{k=0}^{7}\left(\frac{0.4}{0.3}\right)^{k} \\
\sum_{i=0}^{N} a^{i}=\left\{\begin{array}{cc}
\frac{1-a^{N+1}}{1-a} & N<\infty, a \neq 1 \\
N+1 & N<\infty, a=1 \\
\frac{1}{1-a} & N=\infty,|a|<1
\end{array}\right.
\end{gathered}
$$

Such that

$$
1=\pi_{1} \frac{1-\left(\frac{0.4}{0.3}\right)^{8}}{1-\frac{0.4}{0.3}} \Leftrightarrow \pi_{1}=\frac{1-\frac{0.4}{0.3}}{1-\left(\frac{0.4}{0.3}\right)^{8}}
$$

- More or less straightforward,
- More or less straightforward, but one problem
- More or less straightforward, but one problem
- if \boldsymbol{x} is a solution such that $\boldsymbol{x}=\boldsymbol{x} \boldsymbol{P}$
- More or less straightforward, but one problem
- if \boldsymbol{x} is a solution such that $\boldsymbol{x}=\boldsymbol{x} \boldsymbol{P}$ then obviously $(k \boldsymbol{x})=(k \boldsymbol{x}) \boldsymbol{P}$ is also a solution.
- More or less straightforward, but one problem
- if \boldsymbol{x} is a solution such that $\boldsymbol{x}=\boldsymbol{x} \boldsymbol{P}$ then obviously $(k \boldsymbol{x})=(k \boldsymbol{x}) \boldsymbol{P}$ is also a solution.
- Recall the definition of eigenvalues/eigen vectors

The solution of $\pi=\pi P$

- More or less straightforward, but one problem
- if \boldsymbol{x} is a solution such that $\boldsymbol{x}=\boldsymbol{x} \boldsymbol{P}$ then obviously $(k \boldsymbol{x})=(k \boldsymbol{x}) \boldsymbol{P}$ is also a solution.
- Recall the definition of eigenvalues/eigen vectors
- If $\boldsymbol{A} \boldsymbol{y}=\lambda \boldsymbol{y}$ we say that λ is an eigenvalue of \boldsymbol{A} with an associated eigenvector \boldsymbol{y}. Here \boldsymbol{y} is a right eigenvector, there is also a left eigenvector
- The vector $\boldsymbol{\pi}$ is a left eigenvector of \boldsymbol{P}.
- The vector $\boldsymbol{\pi}$ is a left eigenvector of \boldsymbol{P}.
- The main theorem says that there is a unique eigenvector associated with the eigenvalue 1 of \boldsymbol{P}
- The vector $\boldsymbol{\pi}$ is a left eigenvector of \boldsymbol{P}.
- The main theorem says that there is a unique eigenvector associated with the eigenvalue 1 of \boldsymbol{P}
- In practice this means that the we can only solve but a normalising condition
- The vector $\boldsymbol{\pi}$ is a left eigenvector of \boldsymbol{P}.
- The main theorem says that there is a unique eigenvector associated with the eigenvalue 1 of \boldsymbol{P}
- In practice this means that the we can only solve but a normalising condition
- But we have the normalising condition by $\sum_{j} \pi_{j}=1$
- The vector $\boldsymbol{\pi}$ is a left eigenvector of \boldsymbol{P}.
- The main theorem says that there is a unique eigenvector associated with the eigenvalue 1 of \boldsymbol{P}
- In practice this means that the we can only solve but a normalising condition
- But we have the normalising condition by $\sum_{j} \pi_{j}=1$ this can expressed as $\boldsymbol{\pi 1}=1$. Where

$$
\mathbf{1}=\left(\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right)
$$

For an irreducible Markov chain, (the condition we need to verify)

For an irreducible Markov chain, (the condition we need to verify)

- The stationary solution.

For an irreducible Markov chain, (the condition we need to verify)

- The stationary solution. If $\boldsymbol{p}^{(0)}=\boldsymbol{\pi}$ then $\boldsymbol{p}^{(n)}=\boldsymbol{\pi}$ for all n.

For an irreducible Markov chain, (the condition we need to verify)

- The stationary solution. If $\boldsymbol{p}^{(0)}=\boldsymbol{\pi}$ then $\boldsymbol{p}^{(n)}=\boldsymbol{\pi}$ for all n.
- The limiting distribution,

For an irreducible Markov chain, (the condition we need to verify)

- The stationary solution. If $\boldsymbol{p}^{(0)}=\boldsymbol{\pi}$ then $\boldsymbol{p}^{(n)}=\boldsymbol{\pi}$ for all n.
- The limiting distribution, i.e. $\boldsymbol{p}^{(n)}$

For an irreducible Markov chain, (the condition we need to verify)

- The stationary solution. If $\boldsymbol{p}^{(0)}=\boldsymbol{\pi}$ then $\boldsymbol{p}^{(n)}=\boldsymbol{\pi}$ for all n.
- The limiting distribution, i.e. $\boldsymbol{p}^{(n)} \rightarrow \pi$ for $n \rightarrow \infty$

For an irreducible Markov chain, (the condition we need to verify)

- The stationary solution. If $\boldsymbol{p}^{(0)}=\boldsymbol{\pi}$ then $\boldsymbol{p}^{(n)}=\boldsymbol{\pi}$ for all n.
- The limiting distribution, i.e. $\boldsymbol{p}^{(n)} \rightarrow \boldsymbol{\pi}$ for $n \rightarrow \infty$ (the Markov chain has to be aperiodic too).

For an irreducible Markov chain, (the condition we need to verify)

- The stationary solution. If $\boldsymbol{p}^{(0)}=\boldsymbol{\pi}$ then $\boldsymbol{p}^{(n)}=\boldsymbol{\pi}$ for all n.
- The limiting distribution, i.e. $\boldsymbol{p}^{(n)} \rightarrow \boldsymbol{\pi}$ for $n \rightarrow \infty$ (the Markov chain has to be aperiodic too). Also $p_{i j}^{(n)}$

For an irreducible Markov chain, (the condition we need to verify)

- The stationary solution. If $\boldsymbol{p}^{(0)}=\boldsymbol{\pi}$ then $\boldsymbol{p}^{(n)}=\boldsymbol{\pi}$ for all n.
- The limiting distribution, i.e. $\boldsymbol{p}^{(n)} \rightarrow \boldsymbol{\pi}$ for $n \rightarrow \infty$ (the Markov chain has to be aperiodic too). Also $p_{i j}^{(n)} \rightarrow \pi_{j}$.

For an irreducible Markov chain, (the condition we need to verify)

- The stationary solution. If $\boldsymbol{p}^{(0)}=\boldsymbol{\pi}$ then $\boldsymbol{p}^{(n)}=\boldsymbol{\pi}$ for all n.
- The limiting distribution, i.e. $\boldsymbol{p}^{(n)} \rightarrow \boldsymbol{\pi}$ for $n \rightarrow \infty$ (the Markov chain has to be aperiodic too). Also $p_{i j}^{(n)} \rightarrow \pi_{j}$.
- The mean recurrence time for state i

For an irreducible Markov chain, (the condition we need to verify)

- The stationary solution. If $\boldsymbol{p}^{(0)}=\boldsymbol{\pi}$ then $\boldsymbol{p}^{(n)}=\boldsymbol{\pi}$ for all n.
- The limiting distribution, i.e. $\boldsymbol{p}^{(n)} \rightarrow \boldsymbol{\pi}$ for $n \rightarrow \infty$ (the Markov chain has to be aperiodic too). Also $p_{i j}^{(n)} \rightarrow \pi_{j}$.
- The mean recurrence time for state i is μ_{i}

For an irreducible Markov chain, (the condition we need to verify)

- The stationary solution. If $\boldsymbol{p}^{(0)}=\boldsymbol{\pi}$ then $\boldsymbol{p}^{(n)}=\boldsymbol{\pi}$ for all n.
- The limiting distribution, i.e. $\boldsymbol{p}^{(n)} \rightarrow \boldsymbol{\pi}$ for $n \rightarrow \infty$ (the Markov chain has to be aperiodic too). Also $p_{i j}^{(n)} \rightarrow \pi_{j}$.
- The mean recurrence time for state i is $\mu_{i}=\frac{1}{\pi_{i}}$.

For an irreducible Markov chain, (the condition we need to verify)

- The stationary solution. If $\boldsymbol{p}^{(0)}=\boldsymbol{\pi}$ then $\boldsymbol{p}^{(n)}=\boldsymbol{\pi}$ for all n.
- The limiting distribution, i.e. $\boldsymbol{p}^{(n)} \rightarrow \boldsymbol{\pi}$ for $n \rightarrow \infty$ (the Markov chain has to be aperiodic too). Also $p_{i j}^{(n)} \rightarrow \pi_{j}$.
- The mean recurrence time for state i is $\mu_{i}=\frac{1}{\pi_{i}}$.
- The mean number of visits in state j between two successive visits to state i

For an irreducible Markov chain, (the condition we need to verify)

- The stationary solution. If $\boldsymbol{p}^{(0)}=\boldsymbol{\pi}$ then $\boldsymbol{p}^{(n)}=\boldsymbol{\pi}$ for all n.
- The limiting distribution, i.e. $\boldsymbol{p}^{(n)} \rightarrow \boldsymbol{\pi}$ for $n \rightarrow \infty$ (the Markov chain has to be aperiodic too). Also $p_{i j}^{(n)} \rightarrow \pi_{j}$.
- The mean recurrence time for state i is $\mu_{i}=\frac{1}{\pi_{i}}$.
- The mean number of visits in state j between two successive visits to state i is $\frac{\pi_{j}}{\pi_{i}}$.

For an irreducible Markov chain, (the condition we need to verify)

- The stationary solution. If $\boldsymbol{p}^{(0)}=\boldsymbol{\pi}$ then $\boldsymbol{p}^{(n)}=\boldsymbol{\pi}$ for all n.
- The limiting distribution, i.e. $\boldsymbol{p}^{(n)} \rightarrow \boldsymbol{\pi}$ for $n \rightarrow \infty$ (the Markov chain has to be aperiodic too). Also $p_{i j}^{(n)} \rightarrow \pi_{j}$.
- The mean recurrence time for state i is $\mu_{i}=\frac{1}{\pi_{i}}$.
- The mean number of visits in state j between two successive visits to state i is $\frac{\pi_{j}}{\pi_{i}}$.
- The long run average probability of finding the Markov chain in state i is π_{i}.

For an irreducible Markov chain, (the condition we need to verify)

- The stationary solution. If $\boldsymbol{p}^{(0)}=\boldsymbol{\pi}$ then $\boldsymbol{p}^{(n)}=\boldsymbol{\pi}$ for all n.
- The limiting distribution, i.e. $\boldsymbol{p}^{(n)} \rightarrow \boldsymbol{\pi}$ for $n \rightarrow \infty$ (the Markov chain has to be aperiodic too). Also $p_{i j}^{(n)} \rightarrow \pi_{j}$.
- The mean recurrence time for state i is $\mu_{i}=\frac{1}{\pi_{i}}$.
- The mean number of visits in state j between two successive visits to state i is $\frac{\pi_{j}}{\pi_{i}}$.
- The long run average probability of finding the Markov chain in state i is $\pi_{i} . \pi_{i}=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} p_{i}^{(k)}$

For an irreducible Markov chain, (the condition we need to verify)

- The stationary solution. If $\boldsymbol{p}^{(0)}=\boldsymbol{\pi}$ then $\boldsymbol{p}^{(n)}=\boldsymbol{\pi}$ for all n.
- The limiting distribution, i.e. $\boldsymbol{p}^{(n)} \rightarrow \boldsymbol{\pi}$ for $n \rightarrow \infty$ (the Markov chain has to be aperiodic too). Also $p_{i j}^{(n)} \rightarrow \pi_{j}$.
- The mean recurrence time for state i is $\mu_{i}=\frac{1}{\pi_{i}}$.
- The mean number of visits in state j between two successive visits to state i is $\frac{\pi_{j}}{\pi_{i}}$.
- The long run average probability of finding the Markov chain in state i is $\pi_{i} . \pi_{i}=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} p_{i}^{(k)}$ also true for periodic chains.

$$
\boldsymbol{P}=\left[\begin{array}{cccccc}
p_{1} & p_{2} & p_{3} & p_{4} & p_{5} & \ldots \\
1 & 0 & 0 & 0 & 0 & \ldots \\
0 & 1 & 0 & 0 & 0 & \ldots \\
0 & 0 & 1 & 0 & 0 & \ldots \\
0 & 0 & 0 & 1 & 0 & \ldots \\
0 & 0 & 0 & 0 & 1 & \ldots \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots
\end{array}\right]
$$

$$
\boldsymbol{P}=\left[\begin{array}{cccccc}
p_{1} & p_{2} & p_{3} & p_{4} & p_{5} & \ldots \\
1 & 0 & 0 & 0 & 0 & \ldots \\
0 & 1 & 0 & 0 & 0 & \ldots \\
0 & 0 & 1 & 0 & 0 & \ldots \\
0 & 0 & 0 & 1 & 0 & \ldots \\
0 & 0 & 0 & 0 & 1 & \ldots \\
\cdots & \ldots & \cdots & \cdots & \cdots & \ldots
\end{array}\right]
$$

For $p_{j}>0$ the chain is obviously irreducible.

$$
\boldsymbol{P}=\left[\begin{array}{cccccc}
p_{1} & p_{2} & p_{3} & p_{4} & p_{5} & \ldots \\
1 & 0 & 0 & 0 & 0 & \ldots \\
0 & 1 & 0 & 0 & 0 & \ldots \\
0 & 0 & 1 & 0 & 0 & \ldots \\
0 & 0 & 0 & 1 & 0 & \ldots \\
0 & 0 & 0 & 0 & 1 & \ldots \\
\cdots & \cdots & \cdots & \cdots & \cdots & \ldots
\end{array}\right]
$$

For $p_{j}>0$ the chain is obviously irreducible.
The main theorem tells us that we can investigate directly for $\pi=\pi P$.

$$
\boldsymbol{P}=\left[\begin{array}{cccccc}
p_{1} & p_{2} & p_{3} & p_{4} & p_{5} & \ldots \\
1 & 0 & 0 & 0 & 0 & \ldots \\
0 & 1 & 0 & 0 & 0 & \ldots \\
0 & 0 & 1 & 0 & 0 & \ldots \\
0 & 0 & 0 & 1 & 0 & \ldots \\
0 & 0 & 0 & 0 & 1 & \ldots \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots
\end{array}\right]
$$

For $p_{j}>0$ the chain is obviously irreducible.
The main theorem tells us that we can investigate directly for $\pi=\pi P$.
π_{1}

$$
\boldsymbol{P}=\left[\begin{array}{cccccc}
p_{1} & p_{2} & p_{3} & p_{4} & p_{5} & \ldots \\
1 & 0 & 0 & 0 & 0 & \ldots \\
0 & 1 & 0 & 0 & 0 & \ldots \\
0 & 0 & 1 & 0 & 0 & \ldots \\
0 & 0 & 0 & 1 & 0 & \ldots \\
0 & 0 & 0 & 0 & 1 & \ldots \\
\cdots & \cdots & \cdots & \cdots & \cdots & \ldots
\end{array}\right]
$$

For $p_{j}>0$ the chain is obviously irreducible.
The main theorem tells us that we can investigate directly for $\pi=\pi P$.
$\pi_{1}=\pi_{1}$

$$
\boldsymbol{P}=\left[\begin{array}{cccccc}
p_{1} & p_{2} & p_{3} & p_{4} & p_{5} & \ldots \\
1 & 0 & 0 & 0 & 0 & \ldots \\
0 & 1 & 0 & 0 & 0 & \ldots \\
0 & 0 & 1 & 0 & 0 & \ldots \\
0 & 0 & 0 & 1 & 0 & \ldots \\
0 & 0 & 0 & 0 & 1 & \ldots \\
\cdots & \cdots & \cdots & \cdots & \cdots & \ldots
\end{array}\right]
$$

For $p_{j}>0$ the chain is obviously irreducible.
The main theorem tells us that we can investigate directly for $\pi=\pi P$.
$\pi_{1}=\pi_{1} p_{1}+$

$$
\boldsymbol{P}=\left[\begin{array}{cccccc}
p_{1} & p_{2} & p_{3} & p_{4} & p_{5} & \ldots \\
1 & 0 & 0 & 0 & 0 & \ldots \\
0 & 1 & 0 & 0 & 0 & \ldots \\
0 & 0 & 1 & 0 & 0 & \ldots \\
0 & 0 & 0 & 1 & 0 & \ldots \\
0 & 0 & 0 & 0 & 1 & \ldots \\
\cdots & \cdots & \cdots & \cdots & \cdots & \ldots
\end{array}\right]
$$

For $p_{j}>0$ the chain is obviously irreducible.
The main theorem tells us that we can investigate directly for $\pi=\pi P$.
$\pi_{1}=\pi_{1} p_{1}+\pi_{2}$

$$
\boldsymbol{P}=\left[\begin{array}{cccccc}
p_{1} & p_{2} & p_{3} & p_{4} & p_{5} & \ldots \\
1 & 0 & 0 & 0 & 0 & \ldots \\
0 & 1 & 0 & 0 & 0 & \ldots \\
0 & 0 & 1 & 0 & 0 & \ldots \\
0 & 0 & 0 & 1 & 0 & \ldots \\
0 & 0 & 0 & 0 & 1 & \ldots \\
\cdots & \cdots & \cdots & \cdots & \cdots & \ldots
\end{array}\right]
$$

For $p_{j}>0$ the chain is obviously irreducible.
The main theorem tells us that we can investigate directly for $\pi=\pi P$.
$\pi_{1}=\pi_{1} p_{1}+\pi_{2} \quad \pi_{2}$

$$
\boldsymbol{P}=\left[\begin{array}{cccccc}
p_{1} & p_{2} & p_{3} & p_{4} & p_{5} & \ldots \\
1 & 0 & 0 & 0 & 0 & \ldots \\
0 & 1 & 0 & 0 & 0 & \ldots \\
0 & 0 & 1 & 0 & 0 & \ldots \\
0 & 0 & 0 & 1 & 0 & \ldots \\
0 & 0 & 0 & 0 & 1 & \ldots \\
\cdots & \cdots & \cdots & \cdots & \cdots & \ldots
\end{array}\right]
$$

For $p_{j}>0$ the chain is obviously irreducible.
The main theorem tells us that we can investigate directly for $\pi=\pi P$.
$\pi_{1}=\pi_{1} p_{1}+\pi_{2} \quad \pi_{2}=\pi_{1}$

$$
\boldsymbol{P}=\left[\begin{array}{cccccc}
p_{1} & p_{2} & p_{3} & p_{4} & p_{5} & \ldots \\
1 & 0 & 0 & 0 & 0 & \ldots \\
0 & 1 & 0 & 0 & 0 & \ldots \\
0 & 0 & 1 & 0 & 0 & \ldots \\
0 & 0 & 0 & 1 & 0 & \ldots \\
0 & 0 & 0 & 0 & 1 & \ldots \\
\cdots & \cdots & \cdots & \cdots & \cdots & \ldots
\end{array}\right]
$$

For $p_{j}>0$ the chain is obviously irreducible.
The main theorem tells us that we can investigate directly for $\pi=\pi P$.
$\pi_{1}=\pi_{1} p_{1}+\pi_{2} \quad \pi_{2}=\pi_{1} p_{2}$

Example (null-recurrent) chain

$$
\boldsymbol{P}=\left[\begin{array}{cccccc}
p_{1} & p_{2} & p_{3} & p_{4} & p_{5} & \ldots \\
1 & 0 & 0 & 0 & 0 & \ldots \\
0 & 1 & 0 & 0 & 0 & \ldots \\
0 & 0 & 1 & 0 & 0 & \ldots \\
0 & 0 & 0 & 1 & 0 & \ldots \\
0 & 0 & 0 & 0 & 1 & \ldots \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots
\end{array}\right]
$$

For $p_{j}>0$ the chain is obviously irreducible.
The main theorem tells us that we can investigate directly for $\pi=\pi P$.
$\pi_{1}=\pi_{1} p_{1}+\pi_{2} \quad \pi_{2}=\pi_{1} p_{2}+\pi_{3}$

Example (null-recurrent) chain

$$
\boldsymbol{P}=\left[\begin{array}{cccccc}
p_{1} & p_{2} & p_{3} & p_{4} & p_{5} & \ldots \\
1 & 0 & 0 & 0 & 0 & \ldots \\
0 & 1 & 0 & 0 & 0 & \ldots \\
0 & 0 & 1 & 0 & 0 & \ldots \\
0 & 0 & 0 & 1 & 0 & \ldots \\
0 & 0 & 0 & 0 & 1 & \ldots \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots
\end{array}\right]
$$

For $p_{j}>0$ the chain is obviously irreducible.
The main theorem tells us that we can investigate directly for $\pi=\pi P$.
$\pi_{1}=\pi_{1} p_{1}+\pi_{2}$
$\pi_{2}=\pi_{1} p_{2}+\pi_{3}$
$\pi_{j}=\pi_{1} p_{j}+\pi_{j+1}$

$$
\pi_{1}=\pi_{1} p_{1}+\pi_{2} \quad \pi_{2}=\pi_{1} p_{2}+\pi_{3} \quad \pi_{j}=\pi_{1} p_{j}+\pi_{j+1}
$$

we get

$$
\pi_{1}=\pi_{1} p_{1}+\pi_{2} \quad \pi_{2}=\pi_{1} p_{2}+\pi_{3} \quad \pi_{j}=\pi_{1} p_{j}+\pi_{j+1}
$$

we get

π_{2}

$$
\pi_{1}=\pi_{1} p_{1}+\pi_{2} \quad \pi_{2}=\pi_{1} p_{2}+\pi_{3} \quad \pi_{j}=\pi_{1} p_{j}+\pi_{j+1}
$$

we get

$$
\pi_{2}=\left(1-p_{1}\right) \pi_{1}
$$

$$
\pi_{1}=\pi_{1} p_{1}+\pi_{2} \quad \pi_{2}=\pi_{1} p_{2}+\pi_{3} \quad \pi_{j}=\pi_{1} p_{j}+\pi_{j+1}
$$

we get

$$
\pi_{2}=\left(1-p_{1}\right) \pi_{1} \quad \pi_{3}=\left(1-p_{1}-p_{2}\right) \pi_{1}
$$

$$
\pi_{1}=\pi_{1} p_{1}+\pi_{2} \quad \pi_{2}=\pi_{1} p_{2}+\pi_{3} \quad \pi_{j}=\pi_{1} p_{j}+\pi_{j+1}
$$

we get

$$
\pi_{2}=\left(1-p_{1}\right) \pi_{1} \quad \pi_{3}=\left(1-p_{1}-p_{2}\right) \pi_{1} \quad \pi_{j}=\left(1-p_{1} \cdots-p_{j-1}\right) \pi_{1}
$$

$$
\pi_{1}=\pi_{1} p_{1}+\pi_{2} \quad \pi_{2}=\pi_{1} p_{2}+\pi_{3} \quad \pi_{j}=\pi_{1} p_{j}+\pi_{j+1}
$$

we get

$$
\pi_{2}=\left(1-p_{1}\right) \pi_{1} \quad \pi_{3}=\left(1-p_{1}-p_{2}\right) \pi_{1} \quad \pi_{j}=\left(1-p_{1} \cdots-p_{j-1}\right) \pi_{1}
$$

$$
\pi_{j}=\left(1-p_{1} \cdots-p_{j-1}\right) \pi_{1}
$$

$$
\pi_{1}=\pi_{1} p_{1}+\pi_{2} \quad \pi_{2}=\pi_{1} p_{2}+\pi_{3} \quad \pi_{j}=\pi_{1} p_{j}+\pi_{j+1}
$$

we get

$$
\begin{aligned}
& \pi_{2}=\left(1-p_{1}\right) \pi_{1} \quad \pi_{3}=\left(1-p_{1}-p_{2}\right) \pi_{1} \quad \pi_{j}=\left(1-p_{1} \cdots-p_{j-1}\right) \pi_{1} \\
& \pi_{j}=\left(1-p_{1} \cdots-p_{j-1}\right) \pi_{1} \Leftrightarrow \pi_{j}=\pi_{1}\left(1-\sum_{i=1}^{j-1} p_{i}\right)
\end{aligned}
$$

$$
\pi_{1}=\pi_{1} p_{1}+\pi_{2} \quad \pi_{2}=\pi_{1} p_{2}+\pi_{3} \quad \pi_{j}=\pi_{1} p_{j}+\pi_{j+1}
$$

we get

$$
\begin{aligned}
& \pi_{2}=\left(1-p_{1}\right) \pi_{1} \quad \pi_{3}=\left(1-p_{1}-p_{2}\right) \pi_{1} \quad \pi_{j}=\left(1-p_{1} \cdots-p_{j-1}\right) \pi_{1} \\
& \pi_{j}=\left(1-p_{1} \cdots-p_{j-1}\right) \pi_{1} \Leftrightarrow \pi_{j}=\pi_{1}\left(1-\sum_{i=1}^{j-1} p_{i}\right) \Leftrightarrow \pi_{j}=\pi_{1} \sum_{i=j}^{\infty} p_{i}
\end{aligned}
$$

$$
\pi_{1}=\pi_{1} \rho_{1}+\pi_{2} \quad \pi_{2}=\pi_{1} \rho_{2}+\pi_{3} \quad \pi_{j}=\pi_{1} D_{j}+\pi_{j+1}
$$

we get

$$
\begin{aligned}
& \pi_{2}=\left(1-p_{1}\right) \pi_{1} \quad \pi_{3}=\left(1-p_{1}-p_{2}\right) \pi_{1} \quad \pi_{j}=\left(1-p_{1} \cdots-p_{j-1}\right) \pi_{1} \\
& \pi_{j}=\left(1-p_{1} \cdots-p_{j-1}\right) \pi_{1} \Leftrightarrow \pi_{j}=\pi_{1}\left(1-\sum_{i=1}^{j-1} p_{i}\right) \Leftrightarrow \pi_{j}=\pi_{1} \sum_{i=j}^{\infty} p_{i}
\end{aligned}
$$

Normalisation

$$
\pi_{1}=\pi_{1} p_{1}+\pi_{2} \quad \pi_{2}=\pi_{1} p_{2}+\pi_{3} \quad \pi_{j}=\pi_{1} p_{j}+\pi_{j+1}
$$

we get

$$
\pi_{2}=\left(1-p_{1}\right) \pi_{1} \quad \pi_{3}=\left(1-p_{1}-p_{2}\right) \pi_{1} \quad \pi_{j}=\left(1-p_{1} \cdots-p_{j-1}\right) \pi_{1}
$$

$$
\pi_{j}=\left(1-p_{1} \cdots-p_{j-1}\right) \pi_{1} \Leftrightarrow \pi_{j}=\pi_{1}\left(1-\sum_{i=1}^{j-1} p_{i}\right) \Leftrightarrow \pi_{j}=\pi_{1} \sum_{i=j}^{\infty} p_{i}
$$

Normalisation

$$
\sum_{j=1}^{\infty} \pi_{j}=1
$$

$$
\pi_{1}=\pi_{1} p_{1}+\pi_{2} \quad \pi_{2}=\pi_{1} p_{2}+\pi_{3} \quad \pi_{j}=\pi_{1} p_{j}+\pi_{j+1}
$$

we get

$$
\pi_{2}=\left(1-p_{1}\right) \pi_{1} \quad \pi_{3}=\left(1-p_{1}-p_{2}\right) \pi_{1} \quad \pi_{j}=\left(1-p_{1} \cdots-p_{j-1}\right) \pi_{1}
$$

$$
\pi_{j}=\left(1-p_{1} \cdots-p_{j-1}\right) \pi_{1} \Leftrightarrow \pi_{j}=\pi_{1}\left(1-\sum_{i=1}^{j-1} p_{i}\right) \Leftrightarrow \pi_{j}=\pi_{1} \sum_{i=j}^{\infty} p_{i}
$$

Normalisation

$$
\sum_{j=1}^{\infty} \pi_{j}=1 \quad \sum_{j=1}^{\infty}
$$

$$
\pi_{1}=\pi_{1} p_{1}+\pi_{2} \quad \pi_{2}=\pi_{1} p_{2}+\pi_{3} \quad \pi_{j}=\pi_{1} p_{j}+\pi_{j+1}
$$

we get

$$
\begin{aligned}
& \pi_{2}=\left(1-p_{1}\right) \pi_{1} \quad \pi_{3}=\left(1-p_{1}-p_{2}\right) \pi_{1} \quad \pi_{j}=\left(1-p_{1} \cdots-p_{j-1}\right) \pi_{1} \\
& \pi_{j}=\left(1-p_{1} \cdots-p_{j-1}\right) \pi_{1} \Leftrightarrow \pi_{j}=\pi_{1}\left(1-\sum_{i=1}^{j-1} p_{i}\right) \Leftrightarrow \pi_{j}=\pi_{1} \sum_{i=j}^{\infty} p_{i}
\end{aligned}
$$

Normalisation

$$
\sum_{j=1}^{\infty} \pi_{j}=1 \quad \sum_{j=1}^{\infty} \pi_{1} \sum_{i=j}^{\infty} p_{i}=
$$

$$
\pi_{1}=\pi_{1} p_{1}+\pi_{2} \quad \pi_{2}=\pi_{1} p_{2}+\pi_{3} \quad \pi_{j}=\pi_{1} p_{j}+\pi_{j+1}
$$

we get

$$
\begin{aligned}
& \pi_{2}=\left(1-p_{1}\right) \pi_{1} \quad \pi_{3}=\left(1-p_{1}-p_{2}\right) \pi_{1} \quad \pi_{j}=\left(1-p_{1} \cdots-p_{j-1}\right) \pi_{1} \\
& \pi_{j}=\left(1-p_{1} \cdots-p_{j-1}\right) \pi_{1} \Leftrightarrow \pi_{j}=\pi_{1}\left(1-\sum_{i=1}^{j-1} p_{i}\right) \Leftrightarrow \pi_{j}=\pi_{1} \sum_{i=j}^{\infty} p_{i}
\end{aligned}
$$

Normalisation

$$
\sum_{j=1}^{\infty} \pi_{j}=1 \quad \sum_{j=1}^{\infty} \pi_{1} \sum_{i=j}^{\infty} p_{i}=\pi_{1}
$$

$$
\pi_{1}=\pi_{1} p_{1}+\pi_{2} \quad \pi_{2}=\pi_{1} p_{2}+\pi_{3} \quad \pi_{j}=\pi_{1} p_{j}+\pi_{j+1}
$$

we get

$$
\begin{aligned}
& \pi_{2}=\left(1-p_{1}\right) \pi_{1} \quad \pi_{3}=\left(1-p_{1}-p_{2}\right) \pi_{1} \quad \pi_{j}=\left(1-p_{1} \cdots-p_{j-1}\right) \pi_{1} \\
& \pi_{j}=\left(1-p_{1} \cdots-p_{j-1}\right) \pi_{1} \Leftrightarrow \pi_{j}=\pi_{1}\left(1-\sum_{i=1}^{j-1} p_{i}\right) \Leftrightarrow \pi_{j}=\pi_{1} \sum_{i=j}^{\infty} p_{i}
\end{aligned}
$$

Normalisation

$$
\sum_{j=1}^{\infty} \pi_{j}=1 \quad \sum_{j=1}^{\infty} \pi_{1} \sum_{i=j}^{\infty} p_{i}=\pi_{1} \sum_{i=1}^{\infty}
$$

$$
\pi_{1}=\pi_{1} p_{1}+\pi_{2} \quad \pi_{2}=\pi_{1} p_{2}+\pi_{3} \quad \pi_{j}=\pi_{1} p_{j}+\pi_{j+1}
$$

we get

$$
\begin{aligned}
& \pi_{2}=\left(1-p_{1}\right) \pi_{1} \quad \pi_{3}=\left(1-p_{1}-p_{2}\right) \pi_{1} \quad \pi_{j}=\left(1-p_{1} \cdots-p_{j-1}\right) \pi_{1} \\
& \pi_{j}=\left(1-p_{1} \cdots-p_{j-1}\right) \pi_{1} \Leftrightarrow \pi_{j}=\pi_{1}\left(1-\sum_{i=1}^{j-1} p_{i}\right) \Leftrightarrow \pi_{j}=\pi_{1} \sum_{i=j}^{\infty} p_{i}
\end{aligned}
$$

Normalisation

$$
\sum_{j=1}^{\infty} \pi_{j}=1 \quad \sum_{j=1}^{\infty} \pi_{1} \sum_{i=j}^{\infty} p_{i}=\pi_{1} \sum_{i=1}^{\infty} \sum_{j=1}^{i}
$$

$$
\pi_{1}=\pi_{1} p_{1}+\pi_{2} \quad \pi_{2}=\pi_{1} p_{2}+\pi_{3} \quad \pi_{j}=\pi_{1} p_{j}+\pi_{j+1}
$$

we get

$$
\begin{aligned}
& \pi_{2}=\left(1-p_{1}\right) \pi_{1} \quad \pi_{3}=\left(1-p_{1}-p_{2}\right) \pi_{1} \quad \pi_{j}=\left(1-p_{1} \cdots-p_{j-1}\right) \pi_{1} \\
& \pi_{j}=\left(1-p_{1} \cdots-p_{j-1}\right) \pi_{1} \Leftrightarrow \pi_{j}=\pi_{1}\left(1-\sum_{i=1}^{j-1} p_{i}\right) \Leftrightarrow \pi_{j}=\pi_{1} \sum_{i=j}^{\infty} p_{i}
\end{aligned}
$$

Normalisation

$$
\sum_{j=1}^{\infty} \pi_{j}=1 \quad \sum_{j=1}^{\infty} \pi_{1} \sum_{i=j}^{\infty} p_{i}=\pi_{1} \sum_{i=1}^{\infty} \sum_{j=1}^{i} p_{i}
$$

$$
\pi_{1}=\pi_{1} p_{1}+\pi_{2} \quad \pi_{2}=\pi_{1} p_{2}+\pi_{3} \quad \pi_{j}=\pi_{1} p_{j}+\pi_{j+1}
$$

we get

$$
\begin{aligned}
& \pi_{2}=\left(1-p_{1}\right) \pi_{1} \quad \pi_{3}=\left(1-p_{1}-p_{2}\right) \pi_{1} \quad \pi_{j}=\left(1-p_{1} \cdots-p_{j-1}\right) \pi_{1} \\
& \pi_{j}=\left(1-p_{1} \cdots-p_{j-1}\right) \pi_{1} \Leftrightarrow \pi_{j}=\pi_{1}\left(1-\sum_{i=1}^{j-1} p_{i}\right) \Leftrightarrow \pi_{j}=\pi_{1} \sum_{i=j}^{\infty} p_{i}
\end{aligned}
$$

Normalisation

$$
\sum_{j=1}^{\infty} \pi_{j}=1 \quad \sum_{j=1}^{\infty} \pi_{1} \sum_{i=j}^{\infty} p_{i}=\pi_{1} \sum_{i=1}^{\infty} \sum_{j=1}^{i} p_{i}=\pi_{1}
$$

$$
\pi_{1}=\pi_{1} p_{1}+\pi_{2} \quad \pi_{2}=\pi_{1} p_{2}+\pi_{3} \quad \pi_{j}=\pi_{1} p_{j}+\pi_{j+1}
$$

we get

$$
\begin{aligned}
& \pi_{2}=\left(1-p_{1}\right) \pi_{1} \quad \pi_{3}=\left(1-p_{1}-p_{2}\right) \pi_{1} \quad \pi_{j}=\left(1-p_{1} \cdots-p_{j-1}\right) \pi_{1} \\
& \pi_{j}=\left(1-p_{1} \cdots-p_{j-1}\right) \pi_{1} \Leftrightarrow \pi_{j}=\pi_{1}\left(1-\sum_{i=1}^{j-1} p_{i}\right) \Leftrightarrow \pi_{j}=\pi_{1} \sum_{i=j}^{\infty} p_{i}
\end{aligned}
$$

Normalisation

$$
\sum_{j=1}^{\infty} \pi_{j}=1 \quad \sum_{j=1}^{\infty} \pi_{1} \sum_{i=j}^{\infty} p_{i}=\pi_{1} \sum_{i=1}^{\infty} \sum_{j=1}^{i} p_{i}=\pi_{1} \sum_{i=1}^{\infty} i p_{i}
$$

$$
\boldsymbol{P}=\left[\begin{array}{ll}
p_{11} & p_{12} \\
p_{21} & p_{22}
\end{array}\right]
$$

Reversible Markov chains

- Solve sequence of linear equations instead of the whole system

Reversible Markov chains

- Solve sequence of linear equations instead of the whole system
- Local balance in probability flow as opposed to global balance

Reversible Markov chains

- Solve sequence of linear equations instead of the whole system
- Local balance in probability flow as opposed to global balance
- Nice theoretical construction

Bo Friis Nielsen Limiting Distribution and Classification

Local balance equations

π_{i}

Local balance equations

$$
\pi_{i}=\sum_{j} \pi_{j}
$$

Local balance equations

$$
\pi_{i}=\sum_{j} \pi_{j} p_{j i}
$$

Local balance equations

$$
\pi_{i}=\sum_{j} \pi_{j} p_{j i} \quad \pi_{i} \cdot 1
$$

Local balance equations

$$
\pi_{i}=\sum_{j} \pi_{j} p_{j i}
$$

$\pi_{i} \cdot 1=\sum_{j} \pi_{j} p_{j i}$

Local balance equations

$$
\pi_{i}=\sum_{j} \pi_{j} p_{i j} \quad \pi_{i} \cdot 1=\sum_{i} \pi_{j} p_{i} \quad \pi_{i}
$$

Local balance equations

$$
\pi_{i}=\sum_{j} \pi_{j} p_{j i}
$$

$\pi_{i} \cdot 1=\sum_{j} \pi_{j} p_{j i}$

Local balance equations

$$
\pi_{i}=\sum_{j} \pi_{j} p_{j i}
$$

$\pi_{i} \cdot 1=\sum_{j} \pi_{j} p_{j i}$
$\pi_{i} \sum_{j} p_{i j}=\sum_{j} \pi_{j} p_{j i}$

Local balance equations

$$
\begin{gathered}
\pi_{i}=\sum_{j} \pi_{j} p_{j i} \quad \pi_{i} \cdot 1=\sum_{j} \pi_{j} p_{j i} \quad \pi_{i} \sum_{j} p_{i j}=\sum_{j} \pi_{j} p_{j i} \\
\sum_{j} \pi_{i} p_{i j}=\sum_{j} \pi_{j} p_{j i}
\end{gathered}
$$

Local balance equations

$$
\begin{gathered}
\pi_{i}=\sum_{j} \pi_{j} p_{j i} \quad \pi_{i} \cdot 1=\sum_{j} \pi_{j} p_{j i} \quad \pi_{i} \sum_{j} p_{i j}=\sum_{j} \pi_{j} p_{j i} \\
\sum_{j} \pi_{i} p_{i j}=\sum_{j} \pi_{j} p_{j i}
\end{gathered}
$$

Term for term we get

Local balance equations

$$
\begin{aligned}
& \pi_{1}=\sum_{i} \pi p_{n} \\
& \pi_{i} \cdot 1=\sum_{j} \pi \cdot \rho_{i} \\
& \pi_{i} \sum_{j} p_{j}=\sum_{i} \pi p_{i} \\
& \sum_{j} \pi_{i} p_{i j}=\sum_{j} \pi_{j} p_{j i}
\end{aligned}
$$

Term for term we get

$$
\pi_{i} p_{i j}=\pi_{j} p_{j i}
$$

Local balance equations

$$
\begin{gathered}
\pi_{i}=\sum_{j} \pi_{j} p_{j i} \pi_{i} \cdot 1=\sum_{j} \pi_{j} p_{j i} \quad \pi_{i} \sum_{j} p_{i j}=\sum_{j} \pi_{j} p_{j i} \\
\sum_{j} \pi_{i} p_{i j}=\sum_{j} \pi_{j} p_{j i}
\end{gathered}
$$

Term for term we get

$$
\pi_{i} p_{i j}=\pi_{j} p_{j i}
$$

If they are fulfilled for each i and j, the global balance equations can be obtained by summation.

Why reversible?

Why reversible?

$$
\mathbb{P}\left\{X_{n-1}=i \cap X_{n}=j\right\}
$$

$$
\mathbb{P}\left\{X_{n-1}=i \cap X_{n}=j\right\}=\mathbb{P}\left\{X_{n-1}=i\right\}
$$

Why reversible?

$$
\mathbb{P}\left\{X_{n-1}=i \cap X_{n}=j\right\}=\mathbb{P}\left\{X_{n-1}=i\right\} \mathbb{P}\left\{X_{n}=j \mid X_{n-1}=i\right\}
$$

Why reversible?

$$
\begin{gathered}
\mathbb{P}\left\{X_{n-1}=i \cap X_{n}=j\right\}= \\
=\mathbb{P}\left\{X_{n-1}=i\right\} \mathbb{P}\left\{X_{n}=j \mid X_{n-1}=i\right\} \\
=\mathbb{P}\left\{X_{n-1}=i\right\} p_{i j}
\end{gathered}
$$

$$
\begin{gathered}
\mathbb{P}\left\{X_{n-1}=i \cap X_{n}=j\right\}= \\
=\mathbb{P}\left\{X_{n-1}=i\right\} \mathbb{P}\left\{X_{n}=j \mid X_{n-1}=i\right\} \\
=\mathbb{P}\left\{X_{n-1}=i\right\} p_{i j}
\end{gathered}
$$

and for a stationary chain

$$
\begin{gathered}
\mathbb{P}\left\{X_{n-1}=i \cap X_{n}=j\right\}= \\
=\mathbb{P}\left\{X_{n-1}=i\right\} \mathbb{P}\left\{X_{n}=j \mid X_{n-1}=i\right\} \\
=\mathbb{P}\left\{X_{n-1}=i\right\} p_{i j}
\end{gathered}
$$

and for a stationary chain

$$
\pi_{i} p_{i j}
$$

$$
\begin{gathered}
\mathbb{P}\left\{X_{n-1}=i \cap X_{n}=j\right\}= \\
=\mathbb{P}\left\{X_{n-1}=i\right\} \mathbb{P}\left\{X_{n}=j \mid X_{n-1}=i\right\} \\
=\mathbb{P}\left\{X_{n-1}=i\right\} p_{i j}
\end{gathered}
$$

and for a stationary chain

$$
\pi_{i} p_{i j}
$$

For a reversible chain (local balance)

$$
\begin{gathered}
\mathbb{P}\left\{X_{n-1}=i \cap X_{n}=j\right\}= \\
=\mathbb{P}\left\{X_{n-1}=i\right\} \mathbb{P}\left\{X_{n}=j \mid X_{n-1}=i\right\} \\
=\mathbb{P}\left\{X_{n-1}=i\right\} p_{i j}
\end{gathered}
$$

and for a stationary chain

$$
\pi_{i} p_{i j}
$$

For a reversible chain (local balance) this is $\pi_{i} p_{i j}=\pi_{j} p_{j i}$

$$
\begin{gathered}
\mathbb{P}\left\{X_{n-1}=i \cap X_{n}=j\right\}= \\
=\mathbb{P}\left\{X_{n-1}=i\right\} \mathbb{P}\left\{X_{n}=j \mid X_{n-1}=i\right\} \\
=\mathbb{P}\left\{X_{n-1}=i\right\} p_{i j}
\end{gathered}
$$

and for a stationary chain

$$
\pi_{i} p_{i j}
$$

For a reversible chain (local balance) this is $\pi_{i} p_{i j}=\pi_{j} p_{j i}=$ $\mathbb{P}\left\{X_{n-1}=j\right\}$

$$
\begin{gathered}
\mathbb{P}\left\{X_{n-1}=i \cap X_{n}=j\right\}= \\
=\mathbb{P}\left\{X_{n-1}=i\right\} \mathbb{P}\left\{X_{n}=j \mid X_{n-1}=i\right\} \\
=\mathbb{P}\left\{X_{n-1}=i\right\} p_{i j}
\end{gathered}
$$

and for a stationary chain

$$
\pi_{i} p_{i j}
$$

For a reversible chain (local balance) this is $\pi_{i} p_{i j}=\pi_{j} p_{j i}=$ $\mathbb{P}\left\{X_{n-1}=j\right\} \mathbb{P}\left\{X_{n}=i \mid X_{n-1}=j\right\}$

$$
\begin{gathered}
\mathbb{P}\left\{X_{n-1}=i \cap X_{n}=j\right\}= \\
=\mathbb{P}\left\{X_{n-1}=i\right\} \mathbb{P}\left\{X_{n}=j \mid X_{n-1}=i\right\} \\
=\mathbb{P}\left\{X_{n-1}=i\right\} p_{i j}
\end{gathered}
$$

and for a stationary chain

$$
\pi_{i} p_{i j}
$$

For a reversible chain (local balance) this is $\pi_{i} p_{i j}=\pi_{j} p_{j i}=$ $\mathbb{P}\left\{X_{n-1}=j\right\} \mathbb{P}\left\{X_{n}=i \mid X_{n-1}=j\right\}=\mathbb{P}\left\{X_{n-1}=j \cap X_{n}=i\right\}$

$$
\begin{gathered}
\mathbb{P}\left\{X_{n-1}=i \cap X_{n}=j\right\}= \\
=\mathbb{P}\left\{X_{n-1}=i\right\} \mathbb{P}\left\{X_{n}=j \mid X_{n-1}=i\right\} \\
=\mathbb{P}\left\{X_{n-1}=i\right\} p_{i j}
\end{gathered}
$$

and for a stationary chain

$$
\pi_{i} p_{i j}
$$

For a reversible chain (local balance) this is $\pi_{i} p_{i j}=\pi_{j} p_{j i}=$ $\mathbb{P}\left\{X_{n-1}=j\right\} \mathbb{P}\left\{X_{n}=i \mid X_{n-1}=j\right\}=\mathbb{P}\left\{X_{n-1}=j \cap X_{n}=i\right\}$ the reversed sequence.

Another look at a similar question

Another look at a similar question

$$
\mathbb{P}\left\{X_{n-1}=j \mid X_{n}=i\right\}
$$

Another look at a similar question

$$
\mathbb{P}\left\{X_{n-1}=j \mid X_{n}=i\right\}=\mathbb{P}\left\{X_{n-1}=j \cap X_{n}=i\right\}
$$

Another look at a similar question

$$
\mathbb{P}\left\{X_{n-1}=j \mid X_{n}=i\right\}=\frac{\mathbb{P}\left\{X_{n-1}=j \cap X_{n}=i\right\}}{\mathbb{P}\left\{X_{n}=i\right\}}
$$

Another look at a similar question

$$
\begin{aligned}
& \mathbb{P}\left\{X_{n-1}=j \mid X_{n}=i\right\}=\frac{\mathbb{P}\left\{X_{n-1}=j \cap X_{n}=i\right\}}{\mathbb{P}\left\{X_{n}=i\right\}} \\
& =\mathbb{P}\left\{X_{n-1}=j\right\}
\end{aligned}
$$

Another look at a similar question

$$
\begin{aligned}
& \mathbb{P}\left\{X_{n-1}=j \mid X_{n}=i\right\}=\frac{\mathbb{P}\left\{X_{n-1}=j \cap X_{n}=i\right\}}{\mathbb{P}\left\{X_{n}=i\right\}} \\
& =\frac{\mathbb{P}\left\{X_{n-1}=j\right\} \mathbb{P}\left\{X_{n}=i \mid X_{n-1}=j\right\}}{\mathbb{P}\left\{X_{n}=i\right\}}
\end{aligned}
$$

Another look at a similar question

$$
\begin{aligned}
& \mathbb{P}\left\{X_{n-1}=j \mid X_{n}=i\right\}=\frac{\mathbb{P}\left\{X_{n-1}=j \cap X_{n}=i\right\}}{\mathbb{P}\left\{X_{n}=i\right\}} \\
& =\frac{\mathbb{P}\left\{X_{n-1}=j\right\} \mathbb{P}\left\{X_{n}=i \mid X_{n-1}=j\right\}}{\mathbb{P}\left\{X_{n}=i\right\}}=\frac{\mathbb{P}\left\{X_{n-1}=j\right\} p_{j i}}{\mathbb{P}\left\{X_{n}=i\right\}}
\end{aligned}
$$

Another look at a similar question

$$
\begin{aligned}
& \mathbb{P}\left\{X_{n-1}=j \mid X_{n}=i\right\}=\frac{\mathbb{P}\left\{X_{n-1}=j \cap X_{n}=i\right\}}{\mathbb{P}\left\{X_{n}=i\right\}} \\
& =\frac{\mathbb{P}\left\{X_{n-1}=j\right\} \mathbb{P}\left\{X_{n}=i \mid X_{n-1}=j\right\}}{\mathbb{P}\left\{X_{n}=i\right\}}=\frac{\mathbb{P}\left\{X_{n-1}=j\right\} p_{j i}}{\mathbb{P}\left\{X_{n}=i\right\}}
\end{aligned}
$$

For a stationary chain we get

Another look at a similar question

$$
\begin{aligned}
& \mathbb{P}\left\{X_{n-1}=j \mid X_{n}=i\right\}=\frac{\mathbb{P}\left\{X_{n-1}=j \cap X_{n}=i\right\}}{\mathbb{P}\left\{X_{n}=i\right\}} \\
& =\frac{\mathbb{P}\left\{X_{n-1}=j\right\} \mathbb{P}\left\{X_{n}=i \mid X_{n-1}=j\right\}}{\mathbb{P}\left\{X_{n}=i\right\}}=\frac{\mathbb{P}\left\{X_{n-1}=j\right\} p_{j i}}{\mathbb{P}\left\{X_{n}=i\right\}}
\end{aligned}
$$

For a stationary chain we get

$$
\frac{\pi_{j} p_{j i}}{\pi_{i}}
$$

Another look at a similar question

$$
\begin{aligned}
& \mathbb{P}\left\{X_{n-1}=j \mid X_{n}=i\right\}=\frac{\mathbb{P}\left\{X_{n-1}=j \cap X_{n}=i\right\}}{\mathbb{P}\left\{X_{n}=i\right\}} \\
& =\frac{\mathbb{P}\left\{X_{n-1}=j\right\} \mathbb{P}\left\{X_{n}=i \mid X_{n-1}=j\right\}}{\mathbb{P}\left\{X_{n}=i\right\}}=\frac{\mathbb{P}\left\{X_{n-1}=j\right\} p_{j i}}{\mathbb{P}\left\{X_{n}=i\right\}}
\end{aligned}
$$

For a stationary chain we get

$$
\frac{\pi_{j} p_{j i}}{\pi_{i}}
$$

The chain is reversible if $\mathbb{P}\left\{X_{n-1}=j \mid X_{n}=i\right\}=p_{i j}$ leading to the local balance equations

Another look at a similar question

$$
\begin{aligned}
& \mathbb{P}\left\{X_{n-1}=j \mid X_{n}=i\right\}=\frac{\mathbb{P}\left\{X_{n-1}=j \cap X_{n}=i\right\}}{\mathbb{P}\left\{X_{n}=i\right\}} \\
& =\frac{\mathbb{P}\left\{X_{n-1}=j\right\} \mathbb{P}\left\{X_{n}=i \mid X_{n-1}=j\right\}}{\mathbb{P}\left\{X_{n}=i\right\}}=\frac{\mathbb{P}\left\{X_{n-1}=j\right\} p_{j i}}{\mathbb{P}\left\{X_{n}=i\right\}}
\end{aligned}
$$

For a stationary chain we get

$$
\frac{\pi_{j} p_{j i}}{\pi_{i}}
$$

The chain is reversible if $\mathbb{P}\left\{X_{n-1}=j \mid X_{n}=i\right\}=p_{i j}$ leading to the local balance equations

$$
p_{i j}=\frac{\pi_{j} p_{j i}}{\pi_{i}}
$$

In connection with an examination of the reliability of some software intended for use in control of modern ferries one is interested in examining a stochastic model of the use of a control program.
The control program works as " state machine " i.e. it can be in a number of different levels, 4 are considered here. The levels depend on the physical state of the ferry. With every shift of time unit while the program is run, the program will change from level j to level k with probability $p_{j k}$.

Two possibilities are considered:

Two possibilities are considered:
The program has no errors and will run continously shifting between the four levels.

Two possibilities are considered:
The program has no errors and will run continously shifting between the four levels.
The program has a critical error. In this case it is possible that the error is found, this happens with probality $q_{i}, i=1,2,3,4$ depending on the level.
The error will be corrected immediately and the program will from then on be without faults.

Two possibilities are considered:
The program has no errors and will run continously shifting between the four levels.
The program has a critical error. In this case it is possible that the error is found, this happens with probality $q_{i}, i=1,2,3,4$ depending on the level.
The error will be corrected immediately and the program will from then on be without faults.
Alternatively the program can stop with a critical error (the ferry will continue to sail, but without control). This happens with probability $r_{i}, i=1,2,3,4$.

Two possibilities are considered:
The program has no errors and will run continously shifting between the four levels.
The program has a critical error. In this case it is possible that the error is found, this happens with probality $q_{i}, i=1,2,3,4$ depending on the level.
The error will be corrected immediately and the program will from then on be without faults.
Alternatively the program can stop with a critical error (the ferry will continue to sail, but without control). This happens with probability $r_{i}, i=1,2,3,4$.
In general $q_{i}+r_{i}<1$, a program with errors can thus work and the error is not nescesarily discovered. It is assumed that detection of an error, as well as the apperance of a fault happens coincidently with shift between levels.

Two possibilities are considered:
The program has no errors and will run continously shifting between the four levels.
The program has a critical error. In this case it is possible that the error is found, this happens with probality $q_{i}, i=1,2,3,4$ depending on the level. The error will be corrected immediately and the program will from then on be without faults.
Alternatively the program can stop with a critical error (the ferry will continue to sail, but without control). This happens with probability $r_{i}, i=1,2,3,4$.
In general $q_{i}+r_{i}<1$, a program with errors can thus work and the error is not nescesarily discovered. It is assumed that detection of an error, as well as the apperance of a fault happens coincidently with shift between levels.
The program starts running in level 1 , and it is known that the program contains one critical error.

Formulate a stochastic process (Markov chain) in discrete time describing this system.

Formulate a stochastic process (Markov chain) in discrete time describing this system.

Formulate a stochastic process (Markov chain) in discrete time describing this system.

The model is a discrete time Markov chain.

Formulate a stochastic process (Markov chain) in discrete time describing this system.

The model is a discrete time Markov chain. A possible definition of states could be

Formulate a stochastic process (Markov chain) in discrete time describing this system.

The model is a discrete time Markov chain. A possible definition of states could be

Formulate a stochastic process (Markov chain) in discrete time describing this system.

The model is a discrete time Markov chain. A possible definition of states could be

0 : The programme has stopped.

Formulate a stochastic process (Markov chain) in discrete time describing this system.

The model is a discrete time Markov chain. A possible definition of states could be

0 : The programme has stopped.

Formulate a stochastic process (Markov chain) in discrete time describing this system.

The model is a discrete time Markov chain. A possible definition of states could be

0 : The programme has stopped.
1-4: The programme is operating safely in level i.

Formulate a stochastic process (Markov chain) in discrete time describing this system.

The model is a discrete time Markov chain. A possible definition of states could be

0 : The programme has stopped.
1-4: The programme is operating safely in level i.

Formulate a stochastic process (Markov chain) in discrete time describing this system.

The model is a discrete time Markov chain. A possible definition of states could be

0 : The programme has stopped.
1-4: The programme is operating safely in level i.
5-8: The programme is operating in level $\mathrm{i}-4$, the critical error is not detected.

Formulate a stochastic process (Markov chain) in discrete time describing this system.

The model is a discrete time Markov chain. A possible definition of states could be

0 : The programme has stopped.
1-4: The programme is operating safely in level i.
5-8: The programme is operating in level $\mathrm{i}-4$, the critical error is not detected.
The transition matrix \mathbf{A} is

Formulate a stochastic process (Markov chain) in discrete time describing this system.

The model is a discrete time Markov chain. A possible definition of states could be

0 : The programme has stopped.
1-4: The programme is operating safely in level i.
5-8: The programme is operating in level $\mathrm{i}-4$, the critical error is not detected.
The transition matrix \mathbf{A} is

$$
\mathbf{A}=\left[\begin{array}{l}
1 \\
\end{array}\right.
$$

Formulate a stochastic process (Markov chain) in discrete time describing this system.

The model is a discrete time Markov chain. A possible definition of states could be

0 : The programme has stopped.
1-4: The programme is operating safely in level i.
5-8: The programme is operating in level $\mathrm{i}-4$, the critical error is not detected.
The transition matrix \mathbf{A} is

$$
\mathbf{A}=\left[\begin{array}{ll}
1 & \overrightarrow{0} \\
&
\end{array}\right.
$$

Formulate a stochastic process (Markov chain) in discrete time describing this system.

The model is a discrete time Markov chain. A possible definition of states could be

0 : The programme has stopped.
1-4: The programme is operating safely in level i.
5-8: The programme is operating in level $\mathrm{i}-4$, the critical error is not detected.
The transition matrix \mathbf{A} is

$$
\mathbf{A}=\left[\begin{array}{lll}
1 & \overrightarrow{0} & \overrightarrow{0} \\
& &
\end{array}\right.
$$

Formulate a stochastic process (Markov chain) in discrete time describing this system.

The model is a discrete time Markov chain. A possible definition of states could be

0 : The programme has stopped.
1-4: The programme is operating safely in level i.
5-8: The programme is operating in level $\mathrm{i}-4$, the critical error is not detected.
The transition matrix \mathbf{A} is

$$
\mathbf{A}=\left[\begin{array}{ccc}
1 & \overrightarrow{0} & \overrightarrow{0} \\
\overrightarrow{0} & &
\end{array}\right.
$$

Formulate a stochastic process (Markov chain) in discrete time describing this system.

The model is a discrete time Markov chain. A possible definition of states could be

0 : The programme has stopped.
1-4: The programme is operating safely in level i.
5-8: The programme is operating in level $\mathrm{i}-4$, the critical error is not detected.
The transition matrix \mathbf{A} is

$$
\mathbf{A}=\left[\begin{array}{ccc}
1 & \overrightarrow{0} & \overrightarrow{0} \\
\overrightarrow{0} & \mathbf{P} &
\end{array}\right.
$$

Formulate a stochastic process (Markov chain) in discrete time describing this system.

The model is a discrete time Markov chain. A possible definition of states could be

0 : The programme has stopped.
1-4: The programme is operating safely in level i.
$5-8$: The programme is operating in level $\mathrm{i}-4$, the critical error is not detected.
The transition matrix \mathbf{A} is

$$
\mathbf{A}=\left[\begin{array}{lll}
1 & \overrightarrow{0} & \overrightarrow{0} \\
\overrightarrow{0} & \mathbf{P} & \mathbf{0}
\end{array}\right.
$$

Formulate a stochastic process (Markov chain) in discrete time describing this system.

The model is a discrete time Markov chain. A possible definition of states could be

0 : The programme has stopped.
1-4: The programme is operating safely in level i.
$5-8$: The programme is operating in level $\mathrm{i}-4$, the critical error is not detected.
The transition matrix \mathbf{A} is

$$
\mathbf{A}=\left[\begin{array}{ccc}
1 & \overrightarrow{0} & \overrightarrow{0} \\
\overrightarrow{0} & \mathbf{P} & \mathbf{0} \\
\vec{r} & &
\end{array}\right.
$$

Formulate a stochastic process (Markov chain) in discrete time describing this system.

The model is a discrete time Markov chain. A possible definition of states could be

0 : The programme has stopped.
1-4: The programme is operating safely in level i.
$5-8$: The programme is operating in level $\mathrm{i}-4$, the critical error is not detected.
The transition matrix \mathbf{A} is

$$
\mathbf{A}=\left[\begin{array}{ccc}
1 & \overrightarrow{0} & \overrightarrow{0} \\
\overrightarrow{0} & \mathbf{P} & \mathbf{0} \\
\vec{r} & \mathbf{D i a g}\left(\mathbf{q}_{\mathbf{i}}\right) \mathbf{P} &
\end{array}\right.
$$

Formulate a stochastic process (Markov chain) in discrete time describing this system.

The model is a discrete time Markov chain. A possible definition of states could be

0 : The programme has stopped.
1-4: The programme is operating safely in level i.
5-8: The programme is operating in level $\mathrm{i}-4$, the critical error is not detected.
The transition matrix \mathbf{A} is

$$
\mathbf{A}=\left[\begin{array}{ccc}
1 & \overrightarrow{0} & \overrightarrow{0} \\
\overrightarrow{0} & \mathbf{P} & \mathbf{0} \\
\vec{r} & \operatorname{Diag}\left(\mathbf{q}_{\mathbf{i}}\right) \mathbf{P} & \operatorname{Diag}\left(\mathbf{S}_{\mathbf{i}}\right) \mathbf{P}
\end{array}\right]
$$

Question 1 - continued

Question 1 - continued

The model is a discrete time Markov chain.

Question 1 - continued

The model is a discrete time Markov chain. Where $\mathbf{P}=\left\{p_{i j}\right\}$

Question 1-continued

The model is a discrete time Markov chain. Where $\mathbf{P}=\left\{p_{i j}\right\}$
$\vec{r}=\left[\begin{array}{l}r_{1} \\ r_{2} \\ r_{3} \\ r_{4}\end{array}\right]$

Question 1 - continued

The model is a discrete time Markov chain. Where $\mathbf{P}=\left\{p_{i j}\right\}$
$\vec{r}=\left[\begin{array}{l}r_{1} \\ r_{2} \\ r_{3} \\ r_{4}\end{array}\right]$

$\operatorname{Diag}\left(\mathbf{S}_{\mathbf{i}}\right)=$

Question 1 - continued

The model is a discrete time Markov chain. Where $\mathbf{P}=\left\{p_{i j}\right\}$

$$
\vec{r}=\left[\begin{array}{l}
r_{1} \\
r_{2} \\
r_{3} \\
r_{4}
\end{array}\right] \quad \operatorname{Diag}\left(\mathbf{S}_{\mathbf{i}}\right)=\left[\begin{array}{cccc}
S_{1} & 0 & 0 & 0 \\
0 & S_{2} & 0 & 0 \\
0 & 0 & S_{3} & 0 \\
0 & 0 & 0 & S_{4}
\end{array}\right]
$$

Question 1 - continued

The model is a discrete time Markov chain. Where $\mathbf{P}=\left\{p_{i j}\right\}$

$$
\vec{r}=\left[\begin{array}{l}
r_{1} \\
r_{2} \\
r_{3} \\
r_{4}
\end{array}\right] \quad \operatorname{Diag}\left(\mathbf{S}_{\mathbf{i}}\right)=\left[\begin{array}{cccc}
S_{1} & 0 & 0 & 0 \\
0 & S_{2} & 0 & 0 \\
0 & 0 & S_{3} & 0 \\
0 & 0 & 0 & S_{4}
\end{array}\right] \quad S_{i}=1-r_{i}-q_{i}
$$

Question 1 - continued

The model is a discrete time Markov chain. Where $\mathbf{P}=\left\{p_{i j}\right\}$

$\operatorname{Diag}\left(\mathrm{q}_{\mathrm{i}}\right)$

Question 1 - continued

The model is a discrete time Markov chain. Where $\mathbf{P}=\left\{p_{i j}\right\}$
$\vec{r}=\left[\begin{array}{l}r_{1} \\ r_{2} \\ r_{3} \\ r_{4}\end{array}\right]$

$$
\operatorname{Diag}\left(\mathbf{S}_{\mathbf{i}}\right)=\left[\begin{array}{cccc}
S_{1} & 0 & 0 & 0 \\
0 & S_{2} & 0 & 0 \\
0 & 0 & S_{3} & 0 \\
0 & 0 & 0 & S_{4}
\end{array}\right] \quad S_{i}=1-r_{i}-q_{i}
$$

$$
\operatorname{Diag}\left(\mathbf{q}_{\mathbf{i}}\right)=\left[\begin{array}{cccc}
q_{1} & 0 & 0 & 0 \\
0 & q_{2} & 0 & 0 \\
0 & 0 & q_{3} & 0 \\
0 & 0 & 0 & q_{4}
\end{array}\right]
$$

Question 1 - continued

Question 1-continued

Or without matrix notation:

Question 1-continued

Or without matrix notation:

Question 1-continued

Or without matrix notation:

$[1$

0
0
0
0
0
0
0
0

Question 1 - continued

Or without matrix notation:
$\left[\begin{array}{ccccccccc}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & p_{11} & p_{12} & p_{13} & p_{14} & 0 & 0 & 0 & 0 \\ 0 & p_{21} & p_{22} & p_{23} & p_{24} & 0 & 0 & 0 & 0 \\ 0 & p_{31} & p_{32} & p_{33} & p_{34} & 0 & 0 & 0 & 0 \\ 0 & p_{41} & p_{42} & p_{43} & p_{44} & 0 & 0 & 0 & 0\end{array}\right.$

Question 1 - continued

Or without matrix notation:
$\left[\begin{array}{ccccccccc}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & p_{11} & p_{12} & p_{13} & p_{14} & 0 & 0 & 0 & 0 \\ 0 & p_{21} & p_{22} & p_{23} & p_{24} & 0 & 0 & 0 & 0 \\ 0 & p_{31} & p_{32} & p_{33} & p_{34} & 0 & 0 & 0 & 0 \\ 0 & p_{41} & p_{42} & p_{43} & p_{44} & 0 & 0 & 0 & 0 \\ r_{1} & q_{1} p_{11} & q_{1} p_{12} & q_{1} p_{13} & q_{1} p_{14} & S_{1} p_{11} & S_{1} p_{12} & S_{1} p_{13} & S_{1} p_{14} \\ r_{2} & q_{2} p_{21} & q_{2} p_{22} & q_{2} p_{23} & q_{2} p_{24} & S_{2} p_{21} & S_{2} p_{22} & S_{2} p_{23} & S_{2} p_{24} \\ r_{3} & q_{3} p_{31} & q_{3} p_{32} & q_{3} p_{33} & q_{3} p_{34} & S_{3} p_{31} & S_{3} p_{32} & S_{3} p_{33} & S_{3} p_{34} \\ r_{4} & q_{4} p_{41} & q_{4} p_{42} & q_{4} p_{43} & q_{4} p_{44} & S_{4} p_{41} & S_{4} p_{42} & S_{4} p_{43} & S_{4} p_{44}\end{array}\right]$

Characterise the states in the Markov chain.

Characterise the states in the Markov chain.

Solution question 2

Characterise the states in the Markov chain.
With reasonable assumptions on \mathbf{P} (i.e. irreducible) we get

Characterise the states in the Markov chain.
With reasonable assumptions on \mathbf{P} (i.e. irreducible) we get State 0

Characterise the states in the Markov chain.
With reasonable assumptions on \mathbf{P} (i.e. irreducible) we get State \cap Absorbing

Characterise the states in the Markov chain.
With reasonable assumptions on \mathbf{P} (i.e. irreducible) we get State 2 Absorbing

Characterise the states in the Markov chain.
With reasonable assumptions on \mathbf{P} (i.e. irreducible) we get $\begin{array}{lll}\text { State } & \text { Absorbing } \\ & \text { ebsitive } \\ & \text { Becurrent } \\ 3 & \text { Bositive recurent } \\ & \text { Positive recurrent }\end{array}$

Characterise the states in the Markov chain.
With reasonable assumptions on \mathbf{P} (i.e. irreducible) we get State 0 Absorbing

We now consider the case where the stability of the system has been assured, i.e. the error has been found and corrected, and the program has been running for long time without errors. The parameters are as follows.

Solution question 3

We now consider the case where the stability of the system has been assured, i.e. the error has been found and corrected, and the program has been running for long time without errors. The parameters are as follows.
$\begin{array}{ll}\mathrm{P}_{i, i+1}=0.6 \quad i=1,2,3 \quad \mathrm{P}_{i, i-1}=0.2 \quad i=2,3,4 \\ \mathrm{P}_{i, j=0} \quad|i-j|>1\end{array} \quad \mathrm{q}_{i}=10^{-3 i} \quad \mathrm{r}_{i}=10^{-3 i-5}$.

We now consider the case where the stability of the system has been assured, i.e. the error has been found and corrected, and the program has been running for long time without errors. The parameters are as follows.
$\mathrm{P}_{i, i+1}=0.6 \quad i=1,2,3 \quad \mathrm{P}_{i, i-1}=0.2 \quad i=2,3,4$
$\mathrm{P}_{i, j=0} \quad|i-j|>1 \quad \mathrm{q}_{i}=10^{-3 i} \quad \mathrm{r}_{i}=10^{-3 i-5}$
Characterise the stochastic proces, that describes the stable system.

We now consider the case where the stability of the system has been assured, i.e. the error has been found and corrected, and the program has been running for long time without errors. The parameters are as follows.
$\mathrm{P}_{i, i+1}=0.6 \quad i=1,2,3 \quad \mathrm{P}_{i, i-1}=0.2 \quad i=2,3,4$
$\mathrm{P}_{i, j}=0 \quad|i-j|>1 \quad \mathrm{q}_{i}=10^{-3 i} \quad \mathrm{r}_{i}=10^{-3 i-5}$
Characterise the stochastic proces, that describes the stable system.
The system becomes stable by reaching one of the states 1-4.

We now consider the case where the stability of the system has been assured, i.e. the error has been found and corrected, and the program has been running for long time without errors. The parameters are as follows.
$\mathrm{P}_{i, i+1}=0.6 \quad i=1,2,3 \quad \mathrm{P}_{i, i-1}=0.2 \quad i=2,3,4$
$\mathrm{P}_{i, j=0} \quad|i-j|>1 \quad \mathrm{q}_{i}=10^{-3 i} \quad \mathrm{r}_{i}=10^{-3 i-5}$
Characterise the stochastic proces, that describes the stable system.
The system becomes stable by reaching one of the states 1-4. The process is ergodic from then on.

We now consider the case where the stability of the system has been assured, i.e. the error has been found and corrected, and the program has been running for long time without errors. The parameters are as follows.
$\mathrm{P}_{i, i+1}=0.6 \quad i=1,2,3 \quad \mathrm{P}_{i, i-1}=0.2 \quad i=2,3,4$
$\mathrm{P}_{i, j=0} \quad|i-j|>1 \quad \mathrm{q}_{i}=10^{-3 i} \quad \mathrm{r}_{i}=10^{-3 i-5}$
Characterise the stochastic proces, that describes the stable system.
The system becomes stable by reaching one of the states 1-4. The process is ergodic from then on. The procces is a reversible ergodic Markov chain in discrete time.

Solution question 4

For what fraction of time will the system be in level 1.

For what fraction of time will the system be in level 1. We obtain the following steady state equations

Solution question 4

For what fraction of time will the system be in level 1. We obtain the following steady state equations

$$
\pi_{i}=3^{i-1} \pi_{1}
$$

Solution question 4

For what fraction of time will the system be in level 1. We obtain the following steady state equations

$$
\pi_{i}=3^{i-1} \pi_{1}
$$

$$
\sum_{i=1}^{4} 3^{i-1} \pi_{1}=1
$$

Solution question 4

For what fraction of time will the system be in level 1. We obtain the following steady state equations

$$
\pi_{i}=3^{i-1} \pi_{1}
$$

$$
\sum_{i=1}^{4} 3^{i-1} \pi_{1}=1 \Leftrightarrow 40 \pi_{1}=1
$$

Solution question 4

For what fraction of time will the system be in level 1. We obtain the following steady state equations

$$
\pi_{i}=3^{i-1} \pi_{1}
$$

$$
\begin{gathered}
\sum_{i=1}^{4} 3^{i-1} \pi_{1}=1 \Leftrightarrow 40 \pi_{1}=1 \\
\pi_{1}=\frac{1}{40}
\end{gathered}
$$

Solution question 4

For what fraction of time will the system be in level 1. We obtain the following steady state equations

$$
\pi_{i}=3^{i-1} \pi_{1}
$$

$$
\begin{aligned}
\sum_{i=1}^{4} 3^{i-1} \pi_{1} & =1 \Leftrightarrow 40 \pi_{1}=1 \\
\pi_{1} & =\frac{1}{40}
\end{aligned}
$$

The sum $\sum_{i=1}^{4} 3^{i-1}$

For what fraction of time will the system be in level 1. We obtain the following steady state equations

$$
\pi_{i}=3^{i-1} \pi_{1}
$$

$$
\begin{gathered}
\sum_{i=1}^{4} 3^{i-1} \pi_{1}=1 \Leftrightarrow 40 \pi_{1}=1 \\
\pi_{1}=\frac{1}{40}
\end{gathered}
$$

The sum $\sum_{i=1}^{4} 3^{i-1}$ can be obtained by using
$\sum_{i=1}^{4} 3^{i-1}=\frac{1-3^{4}}{1-3}=40$.

$$
\sum_{i=1}^{4} 3^{i-1} \pi_{1}=1 \Leftrightarrow \frac{1-3^{4}}{1-3} \pi_{1}=1
$$

