Today:

- Random walks
- First step analysis revisited
- Branching processes
- Generating functions

Next week

- Classification of states
- Classification of chains
- Discrete time Markov chains - invariant probability distribution
Two weeks from now
- Poisson process

Simple random walk with two reflecting barriers 0 and N

$$
\begin{array}{r}
\boldsymbol{P}=\left\|\begin{array}{ccccccc}
1 & 0 & 0 & \ldots & 0 & 0 & 0 \\
q & 0 & p & \ldots & 0 & 0 & 0 \\
0 & q & 0 & \ldots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & q & 0 & p \\
0 & 0 & 0 & \ldots & 0 & 0 & 1
\end{array}\right\| \\
T=\min \left\{n \geq 0 ; X_{n} \in\{0,1\}\right\} \\
u_{k}=\mathbb{P}\left\{X_{T}=0 \mid X_{0}=k\right\}
\end{array}
$$

$$
\begin{aligned}
& u_{k}=p u_{k+1}+q u_{k-1}, \quad k=1,2, \ldots, N-1 \\
& u_{0}=1 \\
& u_{N}=0
\end{aligned}
$$

Rewriting the first equation using $p+q=1$ we get

$$
\begin{aligned}
(p+q) u_{k} & =p u_{k+1}+q u_{k-1} \Leftrightarrow \\
0 & =p\left(u_{k+1}-u_{k}\right)-q\left(u_{k}-u_{k-1}\right) \Leftrightarrow \\
x_{k} & =(q / p) x_{k-1}
\end{aligned}
$$

with $x_{k}=u_{k}-u_{k-1}$, such that

$$
x_{k}=(q / p)^{k-1} x_{1}
$$

$$
\begin{aligned}
x_{1} & =u_{1}-u_{0}=u_{1}-1 \\
x_{2} & =u_{2}-u_{1} \\
& \vdots \\
x_{k} & =u_{k}-u_{k-1}
\end{aligned}
$$

such that

$$
\begin{aligned}
u_{1} & =x_{1}+1 \\
u_{2} & =x_{2}+x_{1}+1 \\
& \vdots \\
u_{k} & =x_{k}+x_{k-1}+\cdots+1=1+x_{1} \sum_{i=0}^{k-1}(q / p)^{i}
\end{aligned}
$$

From $u_{N}=0$ we get

$$
\begin{aligned}
0 & =1+x_{1} \sum_{i=0}^{N-1}(q / p)^{i} \Leftrightarrow \\
x_{1} & =-\frac{1}{\sum_{i=0}^{N-1}(q / p)^{i}}
\end{aligned}
$$

Leading to

$$
u_{k}= \begin{cases}1-(k / N)=(N-k) / N & \text { when } p=q=\frac{1}{2} \\ \frac{(q / p)^{k}-(q / p)^{N}}{1-(q / p)^{N}} & \text { when } p \neq q\end{cases}
$$

Expected number of visits to states

$$
W_{i j}^{(n)}=Q_{i j}^{(0)}+Q_{i j}^{(1)}+\ldots Q_{i j}^{(n)}
$$

In matrix notation we get

$$
\begin{aligned}
\boldsymbol{W}^{(n)} & =\boldsymbol{I}+\boldsymbol{Q}+\boldsymbol{Q}^{2}+\cdots+\boldsymbol{Q}^{n} \\
& =\boldsymbol{I}+\boldsymbol{Q}\left(\boldsymbol{I}+\boldsymbol{Q}+\cdots+\boldsymbol{Q}^{n-1}\right) \\
& =\boldsymbol{I}+\boldsymbol{Q} \boldsymbol{W}^{(n-1)}
\end{aligned}
$$

Elementwise we get the "first step analysis" equations

$$
W_{i j}^{(n)}=\delta_{i j}+\sum_{k=0}^{r-1} P_{i k} W_{k j}^{(n-1)}
$$

$$
\begin{array}{r}
\boldsymbol{W}=\boldsymbol{I}+\boldsymbol{Q}+\boldsymbol{Q}^{2}+\cdots=\sum_{i=0}^{\infty} \boldsymbol{Q}^{i} \\
\boldsymbol{W}=\boldsymbol{I}+\boldsymbol{Q} \boldsymbol{W}
\end{array}
$$

From the latter we get

$$
(\boldsymbol{I}-\boldsymbol{Q}) \boldsymbol{W}=\boldsymbol{I}
$$

When all states related to \boldsymbol{Q} are transient (we have assumed that) we have

$$
\boldsymbol{W}=\sum_{i=0}^{\infty} \boldsymbol{Q}^{i}=(\boldsymbol{I}-\boldsymbol{Q})^{-1}
$$

With $T=\min \left\{n \geq 0, r \leq X_{n} \leq N\right\}$ we have that

$$
W_{i j}=\mathbb{E}\left[\sum_{n=0}^{T-1} \mathbb{1}\left(X_{n}=j\right) \mid X_{0}=i\right]
$$

Absorption probabilities

Absorption time

$$
\sum_{n=0}^{T-1} \sum_{j=0}^{r} 1\left(X_{n}=j\right)=\sum_{n=0}^{T-1} 1=T
$$

Thus

$$
\begin{aligned}
\mathbb{E}\left(T \mid X_{0}=i\right) & =\mathbb{E}\left[\sum_{j=0}^{r} \sum_{n=0}^{T-1} \mathbb{1}\left(X_{n}=j\right) X_{0}=i\right] \\
& =\sum_{j=0}^{r} \mathbb{E}\left[\sum_{n=0}^{T-1} \mathbb{1}\left(X_{n}=j \mid X_{0}=i\right]\right. \\
& =\sum_{j=0}^{r} W_{i j}
\end{aligned}
$$

In matrix formulation

$$
\boldsymbol{v}=\boldsymbol{W} \mathbf{1}
$$

where $v_{i}=\mathbb{E}\left(T \mid X_{0}=i\right)$ as last week, and $\mathbf{1}$ is a column vector of ones.

Conditional expectation discrete case (2.1)

$$
\begin{gathered}
U_{i j}^{(n)}=\mathbb{P}\left\{T \leq n, X_{T}=j \mid X_{0}=i\right\} \\
\boldsymbol{U}^{(1)}=\boldsymbol{R}=\boldsymbol{I} \boldsymbol{R} \\
\boldsymbol{U}^{(2)}=\boldsymbol{I} \boldsymbol{R}+\boldsymbol{Q} \boldsymbol{R} \\
\boldsymbol{U}^{(n)}=\left(\boldsymbol{I}+\boldsymbol{Q}+\cdots+\boldsymbol{Q}^{(n-1)} \boldsymbol{R}=\boldsymbol{W}^{(n-1)} \boldsymbol{R}\right.
\end{gathered}
$$

Leading to

$$
\boldsymbol{U}=\boldsymbol{W} \boldsymbol{R}
$$

$$
\begin{gathered}
\mathbb{P}\{Y=y \mid X=x\}=\frac{\mathbb{P}\{X=x, Y=y\}}{\mathbb{P}\{X=x\}} \\
\mathbb{E}[Y=y \mid X=x]=\sum_{y} y \mathbb{P}\{Y=y \mid X=x\}
\end{gathered}
$$

$h(x)=\mathbb{E}[Y=y \mid X=x]$ is a function of x, thus $h(X)$ is a random variable, which we call $\mathbb{E}[Y=y \mid X]$. Now
$\mathbb{E}[h(X)]=\sum_{x} \mathbb{P}\{X=x\} h(x)=\sum_{x} \mathbb{P}\{X=x\} \sum_{y} y \mathbb{P}\{Y=y \mid X=x\}$

$$
\begin{gathered}
=\sum_{x} \sum_{y} y \mathbb{P}\{X=x\} \frac{\mathbb{P}\{X=x, Y=y\}}{\mathbb{P}\{X=x\}}=\sum_{x} \sum_{y} y \mathbb{P}\{X=x, Y=y\} \\
=\mathbb{E}[Y]=\mathbb{E}\{\mathbb{E}[Y \mid X]\}, \quad(\mathbb{E}[g(Y)]=\mathbb{E}\{\mathbb{E}[g(Y) \mid X]\})
\end{gathered}
$$

$$
\begin{gathered}
\operatorname{Var}[Y]=\mathrm{E}\left[Y^{2}\right]-\mathbb{E}[Y]^{2}=\mathbb{E}\left\{\mathbb{E}\left[Y^{2} \mid X\right]\right\}-\mathbb{E}[Y]^{2} \\
=\mathbb{E}\left\{\operatorname{Var}[Y \mid X]+\mathbb{E}[Y \mid X]^{2}\right\}-\mathbb{E}\{\mathbb{E}[Y \mid X]\}^{2} \\
\left.=\mathbb{E}\{\operatorname{Var}[Y \mid X]\}+\mathbb{E}\left\{\mathbb{E}[Y \mid X]^{2}\right\}-\mathbb{E}\{\mathbb{E}[Y \mid X]\}^{2}\right\} \\
\mathbb{E}\{\operatorname{Var}[Y \mid X]\}+\operatorname{Var}\{\mathbb{E}[Y \mid X]\}
\end{gathered}
$$

$$
X=\xi_{1}+\cdots+\xi_{N}=\sum_{i=1}^{N} \xi_{i}
$$

where N is a random variable taking values among the non-negative integers; with

$$
\begin{aligned}
\mathbb{E}(N)=\nu, & \operatorname{Var}(N)=\tau^{2}, \mathbb{E}\left(\xi_{i}\right)=\mu, \operatorname{Var}\left(\xi_{i}\right)=\sigma^{2} \\
\mathbb{E}(X) & =\mathbb{E}(\mathbb{E}(X \mid N))=\mathbb{E}(N \mu)=\nu \mu \\
\operatorname{Var}(X) & =\mathbb{E}(\operatorname{Var}(X \mid N))+\operatorname{Var}(\mathbb{E}(X \mid N)) \\
& =\mathbb{E}\left(N \sigma^{2}\right)+\operatorname{Var}(N \mu)=\nu \sigma^{2}+\tau^{2} \mu^{2}
\end{aligned}
$$

Extinction probabilities

Define N to be the random time of extinction
$(N$ can be defective - i.e. $\mathbb{P}\{N=\infty)>0)\}$

$$
u_{n}=\mathbb{P}\{N \leq n\}=\mathbb{P}\left\{X_{N}=0\right\}
$$

And we get

$$
u_{n}=\sum_{k=0}^{\infty} p_{k} u_{n-1}^{k}
$$

The generating function - an important analytic tool

- Manipulations with probability distributions
- Determining the distribution of a sum of random variables
- Determining the distribution of a random sum of random variables
- Calculation of moments
- Unique characterisation of the distribution
- Same information as CDF

$$
\phi(s)=\mathbb{E}\left(s^{\xi}\right)=\sum_{k=0}^{\infty} p_{k} s^{k}, \quad p_{k}=\left.\frac{1}{k!} \frac{\mathrm{d}^{k} \phi(s)}{\mathrm{d} s^{k}}\right|_{s=0}
$$

Moments from generating functions

$$
\left.\frac{\mathrm{d} \phi(s)}{\mathrm{d} s}\right|_{s=1}=\left.\sum_{k=1}^{\infty} p_{k} k s^{k-1}\right|_{s=1}=\mathbb{E}(\xi)
$$

Similarly

$$
\left.\frac{\mathrm{d}^{2} \phi(s)}{\mathrm{d} s^{2}}\right|_{s=1}=\left.\sum_{k=2}^{\infty} p_{k} k(k-1) s^{k-2}\right|_{s=1}=\mathbb{E}(\xi(\xi-1))
$$

a factorial moment

$$
\operatorname{Var}(\xi)=\phi^{\prime \prime}(1)+\phi^{\prime}(1)-\left(\phi^{\prime}(1)\right)^{2}
$$

The sum of iid random variables

Remember Independent Identically Distributed
$S_{n}=X_{1}+X_{2}+\cdots+X_{n}=\sum_{i=1}^{n} X_{i}$
With $p_{x}=P\left\{X_{i}=x\right\}, \quad X_{i} \geq 0$ we find for $n=2 S_{2}=X_{1}+X_{2}$
The event $\left\{S_{2}=x\right\}$ can be decomposed into the set
$\left\{\left(X_{1}=0, X_{2}=x\right),\left(X_{1}=1, X_{2}=x-1\right)\right.$
$\left.\ldots\left(X_{1}=i, X_{2}=x-i\right), \ldots\left(X_{1}=x, X_{2}=0\right)\right\}$
The probability of the event $\left\{S_{2}=x\right\}$ is the sum of the
probabilities of the individual outcomes.

Binomial distribution

And now to the reason for all this

variables)

Theorem
If X and Y are independent then \square
A probabilistic proof (which I think is instructive)

$$
\phi_{X+Y}(s)=\mathbb{E}\left(s^{X+Y}\right)=\mathbb{E}\left(s^{X} s^{Y}\right)=\mathbb{E}\left(s^{X}\right) \mathbb{E}\left(s^{Y}\right)=\phi_{X}(s) \phi_{Y}(s)
$$

$$
\begin{gathered}
p_{k}=\binom{n}{k} p^{k}(1-p)^{n-k} \\
\phi_{\text {bin }}(s)=\sum_{k=0}^{n} s^{k} p_{k}=\sum_{k=0}^{n} s^{k}\binom{n}{k} p^{k}(1-p)^{n-k} \\
=\sum_{k=0}^{n}\binom{n}{k}(s p)^{k}(1-p)^{n-k}=(1-p+p s)^{n}
\end{gathered}
$$

$$
\begin{aligned}
& \text { Poisson distribution } \\
& \qquad \begin{array}{c}
p_{k}=\frac{\lambda^{k}}{k!} e^{-\lambda} \\
\phi_{\text {poi }}(s)=\sum_{k=0}^{\infty} s^{k} p_{k}=\sum_{k=0}^{\infty} s^{k} \frac{\lambda^{k}}{k!} e^{-\lambda}=e^{-\lambda} \sum_{k=0}^{\infty} \frac{(s \lambda)^{k}}{k!} \\
=e^{-\lambda} e^{s \lambda}=e^{-\lambda(1-s)}
\end{array}
\end{aligned}
$$

(2)

Sum of two Poisson distributed random variables
The convolution can be tough to deal with (sum of random

$$
\phi_{X+Y}(s)=\phi_{X}(s) \phi_{Y}(s)
$$

where $\phi_{X}(s)$ and $\phi_{Y}(s)$ are the generating functions of X and Y

$$
\begin{gathered}
X \sim P(\lambda) \quad Y \sim P(\mu) \quad Z=X+Y \\
\phi_{X}(s)=e^{-\lambda(1-s)} \phi_{Y}(s)=e^{-\mu(1-s)} \quad\left(\mathbb{P}\{X=x\}=p_{X}=\frac{\lambda^{x}}{x!} e^{-\lambda}\right)
\end{gathered}
$$

And we get

$$
\phi_{Z}(s)=\phi_{X}(s) \phi_{Y}(s)=e^{-\lambda(1-s)} e^{-\mu(1-s)}=e^{-(\lambda+\mu)(1-s)}
$$

Such that

$$
Z \sim P(\lambda+\mu)
$$

$$
\begin{array}{cl}
X \sim B(n, p) & Y \sim B(m, p) \quad Z=X+Y \\
\phi_{X}(s)=(1-p+p s)^{n} \\
\phi_{Y}(s)=(1-p+p s)^{m} & \left(\mathbb{P}\{X=x\}=p_{X}=\binom{n}{x} p^{x}(1-p)^{n-x}\right)
\end{array}
$$

And we get
$\phi_{Z}(s)=\phi_{X}(s) \phi_{Y}(s)=(1-p+p s)^{n}(1-p+p s)^{m}=(1-p+p s)^{n+m}$
Such that

$$
Z \sim B(n+m, p)
$$

$$
\begin{gathered}
X \sim P(\lambda) \quad \phi_{X}(s)=e^{-\lambda(1-s)} \quad\left(P\{X=x\}=p_{x}=\frac{\lambda^{x}}{x!} e^{-\lambda}\right) \\
\phi^{\prime}(s)=-(-\lambda) e^{-\lambda(1-s)}=\lambda e^{-\lambda(1-s)}
\end{gathered}
$$

And we find

$$
\begin{gathered}
E(X)=\phi^{\prime}(1)=\lambda e^{0}=\lambda \\
\phi^{\prime \prime}(s)=\lambda^{2} e^{-\lambda(1-s)} \\
V(X)=\phi^{\prime \prime}(1)+\phi^{\prime}(1)-\left(\phi^{\prime}(1)\right)^{2}=\lambda^{2}+\lambda-\lambda^{2}=\lambda
\end{gathered}
$$

Generating function - the geometric distribution

Generating function for random sum

$$
\begin{aligned}
\phi_{\text {geo }}(s) & =\sum_{x=1}^{\infty} s_{x}=\left(1{ }_{x} p_{x}=\sum_{x=1}^{x-1} s^{x-1} p\right. \\
& =\sum_{x=1}^{\infty} s(1-p)^{x-1} p
\end{aligned}
$$

A useful power series is:

$$
\sum_{i=0}^{N} a^{i}=\left\{\begin{array}{cc}
\frac{1-a^{N+1}}{1-a} & N<\infty, a \neq 1 \\
N+1 & N<\infty, a=1 \\
\frac{1}{1-a} & N=\infty,|a|<1
\end{array}\right.
$$

And we get $\phi_{\text {geo }}(s)=\frac{s p}{1-s(1-p)}$

Generating function for the sum of independent random variables

$$
\begin{aligned}
& X \text { with pdf } p_{X} \quad Y \text { with pdf } q_{y} \\
& Z=X+Y \text { what is } r_{z}=P\{Z=z\} ? \\
& \quad P\{Z=z\}=r_{z}=\sum_{i=0}^{z} p_{i} q_{z-i}
\end{aligned}
$$

Theorem

(23) page 153 If X and Y are independent then

$$
\phi_{X+Y}(s)=\phi_{X}(s) \phi_{Y}(s)
$$

where $\phi_{X}(s)$ and $\phi_{Y}(s)$ are the generating functions of X and Y \square

Sum of \mathbf{k} geometric random variables with the same p

More generally - sum of k geometric variables

$$
p_{x}=\binom{x-1}{k-1}(1-p)^{x-k} p^{k} \quad \phi_{x}(s)=\left(\frac{s p}{1-s(1-p)}\right)^{k}
$$

Sum of two geometric random variables with the same p

$$
\begin{array}{cc}
X \sim \operatorname{geo}(p) & Y \sim g e o(p) \quad Z=X+Y \\
\phi_{X}(s)=\frac{s p}{1-s(1-p)} \\
\phi_{Y}(s)=\frac{s p}{1-s(1-p)} & \left(P\{X=x\}=p_{X}=(1-p)^{x-1} p\right)
\end{array}
$$

And we get

$$
\phi_{Z}(s)=\phi_{X}(s) \phi_{Y}(s)=\frac{s p}{1-s(1-p)} \frac{s p}{1-s(1-p)}=\left(\frac{s p}{(1-s(1-p)}\right)^{2}
$$

The density of this distribution is

$$
P\{Z=z\}=h(z)=(z-1)(1-p)^{z-2} p^{2}
$$

Negative binomial.

Characteristic function and other

- Characteristic function: $\mathbb{E}\left(e^{i t x}\right)$
- Moment generating function: $\mathbb{E}\left(e^{\theta X}\right)$
- Laplace Stieltjes transform: $\mathbb{E}\left(e^{-s X}\right)$

EXAMPLE: (exponential)

$$
\mathbb{E}\left(e^{\theta X}\right)=\int_{0}^{\infty} e^{\theta x} \lambda e^{-\lambda x} d x=\frac{\lambda}{\lambda-\theta}, \theta<\lambda
$$

