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Basic concepts in probability

Discrete time Markov chains

Sample space Q set of all possible outcomes
Outcome w
Event A B
Complementary event AC=0\A

; outcome in at least one of
Union AUB Aor B

; Outcome is in

Intersection ANB both A and B
(Empty) or impossible event 0

Y

-
-—

Discrete Time Markov Chains, Definition and classification
Bo Friis Nielsen

Today:
» Short recap of probability theory
» Markov chain introduction (Markov property)
» Chapmann-Kolmogorov equations
> First step analysis
Next week
» Random walks
> First step analysis revisited
» Branching processes
» Generating functions
Two weeks from now
» Classification of states
» Classification of chains

» Discrete time Markov chains - invariant probability 01U
distribution =
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Probability axioms and first results

0<PA) <1, PQ)="1
P(AUB) =P(A)+P(B) for ANB=10

Leading to
P(0) =0, P(A°) =1 —P(A)

P(AU B) = P(A) + P(B) — P(AN B)

(inclusion- exlusion)
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Conditional probability and independence

P(ANn B)

P(AIB) = 55

& P(AN B) = P(AB)P(B)
(multiplication rule)
UBi=Q BnNB=0 i#]j
=> P(AB)P(B;)  (law of total probability)

Independence:
P(A|B) = P(A|B°) = P(A) & P(ANn B) = P(A)P(B)
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Joint distribution

Discrete random variables

Mapping from sample space to metric space
(Read: Real space)

Probability mass function

f(x) = P(X = x) = P ({w|X(w) = x})
Distribution function

F(x) =P(X < x) =P ({w|X(w) < x}) =) _f(t)

t<x

Expectation

= D2XPX =), E(g(X)) = 3 goPX =) = 32 g01()
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f(x1, %) =P(X1 =x1, X2 = Xx2),  F(x1,X%) =P(X) < X1, X2 < Xo)

fi,(x1) =P(Xy = x1) = > _P(Xy = x1, X2 = X2) = > _ (X1, %)

X2

Fx,(x1)= > P(Xi =t, Xz = X2) = F(x1,0)

t<x1,X2

Straightforward to extend to n variables
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We can define the joint distribution of (X, X7) through

P(Xo = X0, X1 = x1) = P(Xo = X0)P(X1 = x1|Xo = X0) = P(Xo = X0) Pxy,x,

Suppose now some stationarity in addition that X, conditioned
on Xj is independent on Xj

P(Xo = X0, X1 = X1, Xo = X2) =

P(Xo = X0)P(X1 = x1|Xo = X0)P(X2 = X2|Xo = X0, X1 = Xx1) =
P(Xo = x0)P(X1 = X1|Xo = X0)P(X2 = x| X1 = x1) =

Pxo Pxo,x1 Px1 Xo

which generalizes to arbitrary n.
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Markov property

P (Xn = xa|H)

=P (Xn = xn|Xo = X0, X1 = X1, Xo = X2, ... Xp_1 = Xn_1)
=P (Xn = xn|Xn_1 = Xn_1)
» Generally the next state depends on the current state and
the time

» In most applications the chain is assumed to be time
homogeneous, i.e. it does not depend on time

» The only parameters needed are P (X, = j| X,—1 = i) = p;
» We collect these parameters in a matrix P = {p;}
» The joint probability of the first n occurrences is

P(Xo = X0, X1 = X1, X2 = X2..., Xn = Xn) = PxoPxoxs Pxi %0 - - - Pxo_1.xn
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Example 1: Random walk with two
reflecting barriers 0 and N

A profuse number of applications

1—p p 0 0 0 0

g 1-p-q p 0 0 0

0 1—-p— 0 0 0
P K AR

0 0 0 qQ 1-p-q p

0 0 0 0 q 1—-qg
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» Storage/inventory models
» Telecommunications systems
» Biological models

> X, the value attained at time n
> X, could be
» The number of cars in stock
» The number of days since last rainfall
» The number of passengers booked for a flight
» See textbook for further examples
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Example 2: Random walk with one
reflecting barrier at 0

el eNeNel
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Example 3: Random walk with two
absorbing barriers

1 0 0 0 0 0 0 0
qg 1-p—q p 0 0 0 0 0
0 q 1-p—q p 0 0 0 0
0 0 q 1-p—-qg p 0 0 0
0 0 0 0 qgq 1—-p—q p
0 0 0 0 0 0 0 1

o

Discrete Time Markov Chains, Definition and classification
Bo Friis Nielsen

or infinite (if the Markov chain is infinite)

P11 P12 P13 .- Pin
P21 P22 P23 ... P2n
P31 P32 P33 .. P3n
P = : : : : :
Pni Pn2 Pn3 ... Pnn

At most one barrier
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The matrix can be finite (if the Markov chain is finite)

P11 P12 P13 - Pin
P21 P22 P23 ... P2on
P=1| P31 P32 P33 ... P3n
Pni Pn2 Pn3 --- Pnn

Two reflecting/absorbing barriers
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The matrix P can be interpreted as

» the engine that drives the process

» the statistical descriptor of the quantitative behaviour
» a collection of discrete probability distributions
» For each i we have a conditional distribution
> What is the probability of the next state being j knowing that
the current state is i pj = P (X, = j| Xh—1 =)

> Z/ pij =1
» We say that P is a stochastic matrix
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More definitions and the first properties

» We have defined rules for the behaviour from one value
and onwards
» Boundary conditions specify e.g. behaviour of Xj

» X, could be certain Xo = a

» orrandom P (Xp = i) = pj

» Once again we collect the possibly infinite many
parameters in a vector p

n step transition probabilities

P (Xn = j|Xo = i) = P

> the probability of being in j at the n’'th transition having
started in i

» Once again collected in a matrix P(") = {P,.(j”)}

» The rows of P(") can be interpreted like the rows of P

» We can define a new Markov chain on a larger time scale
(P")
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Chapmann Kolmogorov equations
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Small example
1—-p p O 0
|| ¢ 0op o0
P= 0 g0 p
0 0 g 1—qg
(1-p2+pg (1-pp P 0
p _ || a(1-p) 2qp 0 p?
9 0 2qp p(1—q)
0 #? (1-9q (1-9°+gp
QIE
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» There is a generalisation of the example above

» Suppose we start in / at time 0 and wants to get to j at time
n+m

> At some intermediate time n we must be in some state k

» We apply the law of total probability
P (B) = >k P (B|A) P (Ax)

g (Xn+m :j|X0 = i)

= P (Xopm=j1Xo = i,Xn = K)P (X = k| Xo = i)
Kk
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D P (Xopm=j1Xo =i, Xn = K) P (Xn = k| Xo = /)
k
by the Markov property we get

ZIP(Xn—i-m:ﬂXn:k)IP(Xn: k|Xo =)
k

- SRR = S PR
k k

which in matrix formulation is

pn+m) _ p(n) p(m) _ pn+m

o

Discrete Time Markov Chains, Definition and classification
Bo Friis Nielsen

Small example - revisited

The probability of X,

» The behaviour of the process itself - X,

> The behaviour conditional on Xy = i is known (PIS.”))
> Define P (X, = j) = p"

> with p(7) = {p}”)} we find

p(n) — pP(n) — pP”
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1—-p p O 0
| 9 op o
P= 0 g0 p
0 0 g 1—qg
with p = (4,0,0, 2) we get
1—-p p O 0
pt) = 1008 g 0p 0 :1;‘)327(72(1_@
37 ) 73 0 q 0 p 3 7373) 3
0 0 g 1—q
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1 2
p: (3707073>7
o

(1-pP2+pg (1-p)p ? 0
p2 _ q(1 - p) 2qp p?
9 0 2qp p(1—q)
0 ® (1-q9q (1-9°+qp
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1 2
@ (= =),
p <3’0’0’ 3)

(1-pP+pg (1-pp P 0
q(1 - p) 2qp 0 p?
9 0 2qp p(1—q)

0 q (1-9)a (1-92+ap

_ <(1 —-p)?+pg (1-p)p 4gp 2p(1 —q)>
3 "3 3 3
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First step analysis - absorption probability

First step analysis - setup

u = P(Xr=0|Xo=1)

2
= > P(Xi =k|Xo =1)P(X7 =0[Xo =1, X =k)
k=0
2
= Y P(X; = k|Xo = 1)P(Xr = 0|X; = k)
k=0

= Pig-1+Pi1-u+Py2-0.

And we find
P1 ,0 «

TPy atny
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Consider the transition probability matrix

1 00
P=|la g v
0O 0 1
Define
T=min{n>0:X,=00rX,=2}
and

U=PXr=0[Xp=1) v=ET|Xg=1)
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First step analysis - time to absorption

v = B(T|X =1)

2
= > P(Xi = k|Xo = 1)E(T|X =1,X; = k)
k=0
2
= 1+ ) P(X; =k|Xo =1)E(T|Xo = k)( NB!
k=0
= 1+P1o-0+P11- v+ P20

And we find
1 1

TPy 15
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More than one transient state

1 0 0 0
Pio P11 P12 Pis
Poo Poy Poo Pog

0 0 0 1

P:

» Here we will need conditional probabilities
Ui = IP(XT = O‘XO = I)
» and conditional expectations v; = E(T| Xy = i)
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General finite state Markov chain

Leading to

sl

0o |/
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Uy = Pio+ Priur+ Prouz
U = Poo+ Poqus+ Poouo
and
vi = 14+ Piqvi+Piow
Vo = 14+ Poqvi+Poowe
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General absorbing Markov chain

T=min{n>0,X,>r}

In state j we accumulate reward g(j), w; is expected total
reward conditioned on start in state i

T
wi=E (Z 9(Xn)| Xo = f)

n=0

leading to
wi = g(i)+ > Piw;
j
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Special cases of general absorbing Markov chain

» g(i) = 1 expected time to absorption (v;)
> g(i) = dix expected visits to state k before absorption
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