Variations and Brownian Motion with drift

Bo Friis Nielsen¹

¹DTU Informatics

02407 Stochastic Processes 12, November 27 2018

Brownian Motion

Today:

 Various variations of Brownian motion, reflected, absorbed, Brownian bridge, with drift, geometric

Next week

General course overview

Reflected Brownian Motion

$$R(t) = \begin{cases} B(t) & \text{if } B(t) \ge 0 \\ -B(t) & \text{if } B(t) < 0 \end{cases}$$

$$\mathbb{E}(R(t)) = \sqrt{2t/\pi}$$

$$\mathbb{V}\text{ar}(R(t)) = \left(1 - \frac{2}{\pi}\right)t$$

$$\mathbb{P}\{R(t) \le y | R(0) = x\} = \int_{-y}^{y} \phi_t(z - x) dx$$

$$p(y, t | x) = \phi_t(y - x) + \phi_t(y + x)$$

Absorbed Brownian Motion

The movement ceases once the level 0 is reached.

$$G_t(x,y) = \mathbb{P}\{A(t) > y | A(0) = x\}$$

= $\mathbb{P}\{B(t) > y, \min\{B(u) > 0; 0 \le u \le t | B(0) = x\}$

We first observe

$$\mathbb{P}\{B(t) > y | B(0) = x\} = G_t(x, y)$$

$$+ \mathbb{P}\{B(t) > y, \min\{B(u) \le 0; 0 \le u \le t\} | B(0) = x\}$$

Due to reflection the latter term is also

$$\mathbb{P}\{B(t) > y, \min\{B(u) \le 0; 0 \le u \le t\} | B(0) = x\}$$

$$= \mathbb{P}\{B(t) < -y, \min\{B(u) \le 0; 0 \le u \le t\} | B(0) = x\}$$

$$= \mathbb{P}\{B(t) < -y | B(0) = x\}$$

Absorbed Brownian Motion

Summarizing we get

$$\mathbb{P}\{A(t) > y | A(0) = x\} = G_t(x, y)
= 1 - \Phi_t(y - x) - \Phi_t(-y - x)
= \Phi_t(y + x) - \Phi_t(y - x)$$

We have already seen that

$$\mathbb{P}\{A(t) = 0 | A(0) = x\} = 2[1 - \Phi_t(x)]$$

Brownian Bridge

Distribution of B(t); $0 \le t \le 1$ conditioned on $\{B(0) = 0, B(1) = 0\}$.

X = B(t) and B(1) - B(t) are independent normal variables.

$$Y = B(1) - B(t) + B(t)$$
 and X are bivariate normal.

$$\mathbb{V}\operatorname{ar}(x) = t$$

$$\mathbb{C}\operatorname{ov}(X, Y) = \mathbb{E}(B(t)B(t) + B(t)(1 - B(t))) = t = \rho\sqrt{t}\sqrt{1}$$

$$\mathbb{E}(X|Y = y = 0) = \mathbb{E}(X) + \rho\frac{\sigma_X}{\sigma_Y} \cdot (y - \mathbb{E}(Y)) = 0$$

$$\mathbb{V}\operatorname{ar}(X|Y) = t(1 - \rho^2) = t(1 - t)$$

$$\mathbb{E}\{B(t)|B(0) = 0, B(1) = 0\} = 0$$

$$\mathbb{V}ar\{B(t)|B(0) = 0, B(1) = 0\} = t(1-t)$$

$$\mathbb{C}ov\{B(s), B(t)|B(0) = 0, B(1) = 0\} = s(1-t)$$

The process is Gaussian

Brownian Motion with Drift

$$X(t) = \mu t + \sigma B(t)$$

- A continuous sample path process with independent increments
- $X(t+s) X(s) \sim N(\mu t, \sigma^2 t)$ $\mathbb{P} \left\{ X(t) \le y | X(0) = x \right\} = \Phi \left(\frac{y \mu t x}{\sigma \sqrt{t}} \right)$

Absorption Probabilities

$$T_{ab} = \min\{t \ge 0; X(t) = a \text{ or } X(t) = b\}$$

 $u(x) = \mathbb{P}\{X(T_{ab}) = b | X(0) = x\}$

We assume that absorption has not occurred at $(\Delta t, x + \Delta X)$

$$u(x) = \mathbb{E}(u(x + \Delta X))$$

Taylor series expansion of right hand side

$$u(x) = \mathbb{E}\left[u(x) + u'(x)\Delta(X) + \frac{1}{2}u''(x)(\Delta X)^{2} + o\left((\Delta X)^{2}\right)\right]$$

$$= u(x) + u'(x)\mathbb{E}\left[\Delta(X)\right] + \frac{1}{2}u''(x)\mathbb{E}\left[(\Delta X)^{2}\right] + \mathbb{E}\left[o\left((\Delta X)^{2}\right)\right]$$

$$\mathbb{E}\left[\Delta(X)\right] = \mu\Delta t, \qquad \mathbb{E}\left[(\Delta X)^{2}\right] = \sigma^{2}\Delta t + (\mu\Delta t)^{2}$$

$$\mu u'(x) + \frac{1}{2}\sigma^{2}u''(x) = 0, \qquad u(x) = Ae^{-\frac{2\mu x}{\sigma^{2}}} + B$$

Absorption probabilities Theorem 8.1

$$\mu u'(x) + \frac{1}{2}\sigma^2 u''(x) = 0, \qquad u(x) = Ae^{-\frac{2\mu x}{\sigma^2}} + B$$

$$u(x) = Ae^{-\frac{2\mu x}{\sigma^2}} + B, \qquad u(a) = 0, u(b) = 1$$

$$u(x) = \frac{e^{-\frac{2\mu x}{\sigma^2}} - e^{-\frac{2\mu a}{\sigma^2}}}{e^{-\frac{2\mu a}{\sigma^2}} - e^{-\frac{2\mu a}{\sigma^2}}}$$

Mean Time to Absorption

$$T_{ab} = \min\{t \ge 0; X(t) = a \text{ or } X(t) = b\}$$
 $v(x) = \mathbb{E}\{T_{ab}|X(0) = x\}$
 $v(x) = \Delta t + \mathbb{E}(v(x + \Delta X))$
 $1 + \mu v'(x) + \frac{1}{2}\sigma^2 v''(x) = 0$
 $v(a) = v(b) = 0$
 $v(x) = \frac{1}{\mu}[u(x)(b - a) - (x - a)]$

Maximum of Brownian Motion with Negative Drift

We assume μ < 0, using Theorem 8.2.1

$$u(x) = \frac{e^{-\frac{2\mu x}{\sigma^2}} - e^{-\frac{2\mu a}{\sigma^2}}}{e^{-\frac{2\mu b}{\sigma^2}} - e^{-\frac{2\mu a}{\sigma^2}}}$$

we get

$$\mathbb{P}\{\max_{0 \le t} X(t) > y\} = \lim_{a \to -\infty} \frac{e^{-\frac{2\mu \cdot 0}{\sigma^2}} - e^{-\frac{2\mu a}{\sigma^2}}}{e^{-\frac{2\mu y}{\sigma^2}} - e^{-\frac{2\mu a}{\sigma^2}}} = e^{-\frac{2|\mu|}{\sigma^2}y}$$

Geometric Brownian Motion

$$Z(t)=ze^{\left(lpha-rac{1}{2}\sigma^2
ight)t+\sigma B(t)} \hspace{0.5cm} (Z(0)=z)$$
 $X(t)=\log{(z)}+\log{(Z(t)}, \hspace{0.5cm} X(t)\sim N\left(lpha-rac{1}{2}\sigma^2,\sigma^2
ight)$ $\mathbb{E}(Z(t))=ze^{\left(lpha-rac{1}{2}\sigma^2
ight)t}\mathbb{E}\left[e^{\sigma B(t)}
ight]=ze^{\left(lpha-rac{1}{2}\sigma^2
ight)t}e^{\left(rac{1}{2}\sigma^2
ight)t}=ze^{lpha t}$ For $lpha<rac{1}{2}\sigma^2$ we have that $Z(t) o 0$ with probability 1 $\mathbb{V}\mathrm{ar}(Z(t))=z^2e^{2lpha t}\left(e^{\sigma^2 t}-1
ight)$

