Discrete Time Markov Chains, Definition and classification

Bo Friis Nielsen¹

¹Applied Mathematics and Computer Science

02407 Stochastic Processes 1, August 31 2021

Discrete Time Markov Chains, Definition and classification

Discrete time Markov chains

Today:

- Short recap of probability theory
- Markov chain introduction (Markov property)
- Chapmann-Kolmogorov equations
- First step analysis

Next week

- Random walks
- First step analysis revisited
- Branching processes
- Generating functions
- Two weeks from now
 - Classification of states
 - Classification of chains
 - Discrete time Markov chains invariant probability distribution

Discrete Time Markov Chains, Definition and classification

Basic concepts in probability

Sample space	Ω	set of all possible outcomes
Outcome	ω	
Event	A , B	
Complementary event	$oldsymbol{A}^{c}=\Omegaackslasholdsymbol{A}$	
Union	$A \cup B$	outcome in at least one of <i>A</i> or <i>B</i>
Intersection	$A \cap B$	Outcome is in both <i>A</i> and <i>B</i>
(Empty) or impossible event	Ø	

Probability axioms and first results

$$egin{aligned} 0 &\leq \mathbb{P}(A) \leq 1, & \mathbb{P}(\Omega) = 1 \ \mathbb{P}(A \cup B) &= \mathbb{P}(A) + \mathbb{P}(B) & ext{for } A \cap B = \emptyset \end{aligned}$$

Leading to

$$\mathbb{P}(\emptyset) = 0, \qquad \mathbb{P}(A^c) = 1 - \mathbb{P}(A)$$

 $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$

(inclusion- exlusion)

Conditional probability and independence

$$\mathbb{P}(A|B) = rac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} \Leftrightarrow \mathbb{P}(A \cap B) = \mathbb{P}(A|B)\mathbb{P}(B)$$

(multiplication rule)

$$\cup_i B_i = \Omega$$
 $B_i \cap B_j = \emptyset$ $i \neq j$
 $\mathbb{P}(A) = \sum_i \mathbb{P}(A|B_i)\mathbb{P}(B_i)$ (law of total probability)

Independence:

$$\mathbb{P}(A|B) = \mathbb{P}(A|B^c) = \mathbb{P}(A) \Leftrightarrow \mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$$

Discrete Time Markov Chains, Definition and classification

Discrete random variables

Mapping from sample space to metric space (Read: Real space)

Probability mass function

$$f(x) = \mathbb{P}(X = x) = \mathbb{P}\left(\{\omega | X(\omega) = x\}\right)$$

Distribution function

$$F(x) = \mathbb{P}(X \le x) = \mathbb{P}\left(\{\omega | X(\omega) \le x\}\right) = \sum_{t \le x} f(t)$$

Expectation

$$\mathbb{E}(X) = \sum_{x} x \mathbb{P}(X = x), \quad \mathbb{E}(g(X)) = \sum_{x} g(x) \mathbb{P}(X = x) = \sum_{x} g(x) f(x)$$

Discrete Time Markov Chains, Definition and classification

DTU

$$f(x_1, x_2) = \mathbb{P}(X_1 = x_1, X_2 = x_2), \qquad F(x_1, x_2) = \mathbb{P}(X_1 \le x_1, X_2 \le x_2)$$
$$f_{X_1}(x_1) = \mathbb{P}(X_1 = x_1) = \sum_{x_2} \mathbb{P}(X_1 = x_1, X_2 = x_2) = \sum_{x_2} f(x_1, x_2)$$
$$F_{X_1}(x_1) = \sum_{t \le x_1, x_2} \mathbb{P}(X_1 = t_1, X_2 = x_2) = F(x_1, \infty)$$

Straightforward to extend to *n* variables

We can define the joint distribution of (X_0, X_1) through

$$\mathbb{P}(X_0 = x_0, X_1 = x_1) = \mathbb{P}(X_0 = x_0)\mathbb{P}(X_1 = x_1|X_0 = x_0) = \mathbb{P}(X_0 = x_0)P_{x_0, x_1}$$

Suppose now some stationarity in addition that X_2 conditioned on X_1 is independent on X_0

$$\mathbb{P}(X_0 = x_0, X_1 = x_1, X_2 = x_2) =$$

$$\mathbb{P}(X_0 = x_0)\mathbb{P}(X_1 = x_1 | X_0 = x_0)\mathbb{P}(X_2 = x_2 | X_0 = x_0, X_1 = x_1) =$$

$$\mathbb{P}(X_0 = x_0)\mathbb{P}(X_1 = x_1 | X_0 = x_0)\mathbb{P}(X_2 = x_2 | X_1 = x_1) =$$

$$p_{x_0} P_{x_0, x_1} P_{x_1, x_2}$$

which generalizes to arbitrary n.

Markov property

 $\mathbb{P}(X_n = x_n | H)$

$$= \mathbb{P} (X_n = x_n | X_0 = x_0, X_1 = x_1, X_2 = x_2, \dots, X_{n-1} = x_{n-1})$$
$$= \mathbb{P} (X_n = x_n | X_{n-1} = x_{n-1})$$

- Generally the next state depends on the current state and the time
- In most applications the chain is assumed to be time homogeneous, i.e. it does not depend on time
- ▶ The only parameters needed are $\mathbb{P}(X_n = j | X_{n-1} = i) = p_{ij}$
- ► We collect these parameters in a matrix *P* = {*p_{ij}*}
- The joint probability of the first n occurrences is

$$\mathbb{P}(X_0 = x_0, X_1 = x_1, X_2 = x_2 \dots, X_n = x_n) = \rho_{x_0} P_{x_0, x_1} P_{x_1, x_2} \dots P_{x_{n-1}, x_n}$$

Discrete Time Markov Chains, Definition and classification

#

A profuse number of applications

- Storage/inventory models
- Telecommunications systems
- Biological models
- X_n the value attained at time n
- X_n could be
 - The number of cars in stock
 - The number of days since last rainfall
 - The number of passengers booked for a flight
 - See textbook for further examples

Example 1: Random walk with two reflecting barriers 0 and *N*

F

DTU

Discrete Time Markov Chains, Definition and classification

Example 2: Random walk with one reflecting barrier at 0

DTU

Discrete Time Markov Chains, Definition and classification

Example 3: Random walk with two absorbing barriers

Discrete Time Markov Chains, Definition and classification

The matrix can be finite (if the Markov chain is finite)

$$\boldsymbol{P} = \begin{vmatrix} p_{1,1} & p_{1,2} & p_{1,3} & \dots & p_{1,n} \\ p_{2,1} & p_{2,2} & p_{2,3} & \dots & p_{2,n} \\ p_{3,1} & p_{3,2} & p_{3,3} & \dots & p_{3,n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ p_{n,1} & p_{n,2} & p_{n,3} & \dots & p_{n,n} \end{vmatrix}$$

Two reflecting/absorbing barriers

Discrete Time Markov Chains, Definition and classification

or infinite (if the Markov chain is infinite)

At most one barrier

Discrete Time Markov Chains, Definition and classification

- the engine that drives the process
- the statistical descriptor of the quantitative behaviour
- a collection of discrete probability distributions
 - For each i we have a conditional distribution
 - What is the probability of the next state being *j* knowing that the current state is *i* p_{ij} = ℙ (X_n = *j*|X_{n-1} = *i*)

$$\blacktriangleright \sum_{j} p_{ij} =$$

We say that P is a stochastic matrix

More definitions and the first properties

- We have defined rules for the behaviour from one value and onwards
- Boundary conditions specify e.g. behaviour of X₀
 - X_0 could be certain $X_0 = a$
 - or random $\mathbb{P}(X_0 = i) = p_i$
 - Once again we collect the possibly infinite many parameters in a vector p

n step transition probabilities

$$\mathbb{P}\left(X_n=j|X_0=i\right)=P_{ij}^{(n)}$$

- the probability of being in j at the n'th transition having started in i
- Once again collected in a matrix $P^{(n)} = \{P^{(n)}_{ii}\}$
- ▶ The rows of **P**⁽ⁿ⁾ can be interpreted like the rows of **P**
- We can define a new Markov chain on a larger time scale
 (*Pⁿ*)

Small example

$$\boldsymbol{P} = \left\| \begin{array}{cccc} 1-p & p & 0 & 0 \\ q & 0 & p & 0 \\ 0 & q & 0 & p \\ 0 & 0 & q & 1-q \end{array} \right\|$$
$$\boldsymbol{P}^{(2)} = \left\| \begin{array}{cccc} (1-p)^2 + pq & (1-p)p & p^2 & 0 \\ q(1-p) & 2qp & 0 & p^2 \\ q^2 & 0 & 2qp & p(1-q) \\ 0 & q^2 & (1-q)q & (1-q)^2 + qp \end{array} \right\|$$

DTU

Discrete Time Markov Chains, Definition and classification

Chapmann Kolmogorov equations

- There is a generalisation of the example above
- Suppose we start in *i* at time 0 and wants to get to *j* at time n + m
- At some intermediate time n we must be in some state k
- We apply the law of total probability $\mathbb{P}(B) = \sum_{k} \mathbb{P}(B|A_{k}) \mathbb{P}(A_{k})$

$$\mathbb{P}\left(X_{n+m}=j|X_0=i\right)$$

$$= \sum_{k} \mathbb{P} (X_{n+m} = j | X_0 = i, X_n = k) \mathbb{P} (X_n = k | X_0 = i)$$

Discrete Time Markov Chains, Definition and classification

$$\sum_{k} \mathbb{P}\left(X_{n+m} = j | X_0 = i, X_n = k\right) \mathbb{P}\left(X_n = k | X_0 = i\right)$$

by the Markov property we get

$$\sum_{k} \mathbb{P} (X_{n+m} = j | X_n = k) \mathbb{P} (X_n = k | X_0 = i)$$
$$= \sum_{k} P_{kj}^{(m)} P_{ik}^{(n)} = \sum_{k} P_{ik}^{(n)} P_{kj}^{(m)}$$

which in matrix formulation is

$$\boldsymbol{P}^{(n+m)} = \boldsymbol{P}^{(n)} \boldsymbol{P}^{(m)} = \boldsymbol{P}^{n+m}$$

Discrete Time Markov Chains, Definition and classification

- ► The behaviour of the process itself X_n
- The behaviour conditional on $X_0 = i$ is known $(P_{ij}^{(n)})$

• Define
$$\mathbb{P}(X_n = j) = p_j^{(n)}$$

• with
$$p^{(n)} = \{p_j^{(n)}\}$$
 we find

$$\boldsymbol{p}^{(n)} = \boldsymbol{p} \boldsymbol{P}^{(n)} = \boldsymbol{p} \boldsymbol{P}^{n}$$

Small example - revisited

$$\boldsymbol{P} = \left\| \begin{array}{cccc} 1 - p & p & 0 & 0 \\ q & 0 & p & 0 \\ 0 & q & 0 & p \\ 0 & 0 & q & 1 - q \end{array} \right\|$$

with $\boldsymbol{p} = \left(\frac{1}{3}, 0, 0, \frac{2}{3}\right)$ we get
$$\boldsymbol{p}^{(1)} = \left(\frac{1}{3}, 0, 0, \frac{2}{3}\right) \left\| \begin{array}{cccc} 1 - p & p & 0 & 0 \\ q & 0 & p & 0 \\ 0 & q & 0 & p \\ 0 & 0 & q & 1 - q \end{array} \right\| = \left(\frac{1 - p}{3}, \frac{p}{3}, \frac{2q}{3}, \frac{2(1 - q)}{3}\right)$$

Discrete Time Markov Chains, Definition and classification

$$oldsymbol{p} = \left(rac{1}{3}, 0, 0, rac{2}{3}
ight), \ oldsymbol{P}^2 = \left| egin{array}{cccc} (1-p)p & p^2 & 0 \ q(1-p) & 2qp & 0 & p^2 \ q^2 & 0 & 2qp & p(1-q) \ 0 & q^2 & (1-q)q & (1-q)^2 + qp \end{array}
ight|$$

Discrete Time Markov Chains, Definition and classification

$$oldsymbol{p}^{(2)} = \left(rac{1}{3}, 0, 0, rac{2}{3}
ight) \cdot \ \left| egin{array}{cccc} (1-p)^2 + pq & (1-p)p & p^2 & 0 \ q(1-p) & 2qp & 0 & p^2 \ q^2 & 0 & 2qp & p(1-q) \ 0 & q^2 & (1-q)q & (1-q)^2 + qp \end{array}
ight|$$

$$=\left(rac{(1-p)^2+pq}{3},rac{(1-p)p}{3},rac{4qp}{3},rac{2p(1-q)}{3}
ight)$$

Discrete Time Markov Chains, Definition and classification

Consider the transition probability matrix

$$\boldsymbol{P} = \left| \left| \begin{array}{ccc} 1 & 0 & 0 \\ \alpha & \beta & \gamma \\ 0 & 0 & 1 \end{array} \right|$$

Define

$$T = \min \{n \ge 0 : X_n = 0 \text{ or } X_n = 2\}$$

and

$$u = \mathbb{P}(X_T = 0 | X_0 = 1)$$
 $v = \mathbb{E}(T | X_0 = 1)$

Discrete Time Markov Chains, Definition and classification

First step analysis - absorption probability

$$u = \mathbb{P}(X_T = 0 | X_0 = 1)$$

= $\sum_{k=0}^{2} \mathbb{P}(X_1 = k | X_0 = 1) \mathbb{P}(X_T = 0 | X_0 = 1, X_1 = k)$
= $\sum_{k=0}^{2} \mathbb{P}(X_1 = k | X_0 = 1) \mathbb{P}(X_T = 0 | X_1 = k)$
= $P_{1,0} \cdot 1 + P_{1,1} \cdot u + P_{1,2} \cdot 0.$

And we find

$$u = \frac{P_{1,0}}{1 - P_{1,1}} = \frac{\alpha}{\alpha + \gamma}$$

Discrete Time Markov Chains, Definition and classification

DTU

First step analysis - time to absorption

$$v = \mathbb{E}(T|X_0 = 1)$$

= $\sum_{k=0}^{2} \mathbb{P}(X_1 = k | X_0 = 1) \mathbb{E}(T|X_0 = 1, X_1 = k)$
= $1 + \sum_{k=0}^{2} \mathbb{P}(X_1 = k | X_0 = 1) \mathbb{E}(T|X_0 = k)$ (NB!
= $1 + P_{1,0} \cdot 0 + P_{1,1} \cdot v + P_{1,2} \cdot 0.$

And we find

$$v = \frac{1}{1 - P_{1,1}} = \frac{1}{1 - \beta}$$

Discrete Time Markov Chains, Definition and classification

DTU

More than one transient state

$$\boldsymbol{P} = \left| \begin{array}{cccc} 1 & 0 & 0 & 0 \\ P_{1,0} & P_{1,1} & P_{1,2} & P_{1,3} \\ P_{2,0} & P_{2,1} & P_{2,2} & P_{2,3} \\ 0 & 0 & 0 & 1 \end{array} \right|$$

- ► Here we will need conditional probabilities $u_i = \mathbb{P}(X_T = 0 | X_0 = i)$
- and conditional expectations $v_i = \mathbb{E}(T|X_0 = i)$

$$u_1 = P_{1,0} + P_{1,1}u_1 + P_{1,2}u_2$$

$$u_2 = P_{2,0} + P_{2,1}u_1 + P_{2,2}u_2$$

and

$$\begin{array}{rcl} v_1 &=& 1 + P_{1,1}v_1 + P_{1,2}v_2 \\ v_2 &=& 1 + P_{2,1}v_1 + P_{2,2}v_2 \end{array}$$

Discrete Time Markov Chains, Definition and classification

General finite state Markov chain

$$\boldsymbol{P} = \left| \left| \begin{array}{cc} \boldsymbol{Q} & \boldsymbol{R} \\ \boldsymbol{0} & \boldsymbol{I} \end{array} \right| \right|$$

Discrete Time Markov Chains, Definition and classification

General absorbing Markov chain

$$T = \min\{n \ge 0, X_n \ge r\}$$

In state *j* we accumulate reward g(j), w_i is expected total reward conditioned on start in state *i*

$$w_i = \mathbb{E}\left(\sum_{n=0}^{T-1} g(X_n) | X_0 = i\right)$$

leading to

$$w_i = g(i) + \sum_j P_{i,j} w_j$$

Discrete Time Markov Chains, Definition and classification

- g(i) = 1 expected time to absorption (v_i)
- $g(i) = \delta_{ik}$ expected visits to state k before absorption