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Discrete time Markov chains

Today:
I Short recap of probability theory
I Markov chain introduction (Markov property)
I Chapmann-Kolmogorov equations
I First step analysis

Next week
I Random walks
I First step analysis revisited
I Branching processes
I Generating functions

Two weeks from now
I Classification of states
I Classification of chains
I Discrete time Markov chains - invariant probability

distribution
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Basic concepts in probability

Sample space Ω set of all possible outcomes
Outcome ω
Event A,B
Complementary event Ac = Ω\A
Union A ∪ B outcome in at least one of

A or B

Intersection A ∩ B Outcome is in
both A and B

(Empty) or impossible event ∅
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Probability axioms and first results

0 ≤ P(A) ≤ 1, P(Ω) = 1

P(A ∪ B) = P(A) + P(B) for A ∩ B = ∅

Leading to
P(∅) = 0, P(Ac) = 1− P(A)

P(A ∪ B) = P(A) + P(B)− P(A ∩ B)

(inclusion- exlusion)
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Conditional probability and independence

P(A|B) =
P(A ∩ B)

P(B)
⇔ P(A ∩ B) = P(A|B)P(B)

(multiplication rule)

∪iBi = Ω Bi ∩ Bj = ∅ i 6= j

P(A) =
∑

i

P(A|Bi)P(Bi) (law of total probability)

Independence:

P(A|B) = P(A|Bc) = P(A)⇔ P(A ∩ B) = P(A)P(B)
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Discrete random variables

Mapping from sample space to metric space
(Read: Real space)

Probability mass function

f (x) = P(X = x) = P ({ω|X (ω) = x})

Distribution function

F (x) = P(X ≤ x) = P ({ω|X (ω) ≤ x}) =
∑
t≤x

f (t)

Expectation

E(X ) =
∑

x

xP(X = x), E(g(X )) =
∑

x

g(x)P(X = x) =
∑

x

g(x)f (x)
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Joint distribution

f (x1, x2) = P(X1 = x1,X2 = x2), F (x1, x2) = P(X1 ≤ x1,X2 ≤ x2)

fX1(x1) = P(X1 = x1) =
∑
x2

P(X1 = x1,X2 = x2) =
∑
x2

f (x1, x2)

FX1(x1) =
∑

t≤x1,x2

P(X1 = t1,X2 = x2) = F (x1,∞)

Straightforward to extend to n variables
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We can define the joint distribution of (X0,X1) through

P(X0 = x0,X1 = x1) = P(X0 = x0)P(X1 = x1|X0 = x0) = P(X0 = x0)Px0,x1

Suppose now some stationarity in addition that X2 conditioned
on X1 is independent on X0

P(X0 = x0,X1 = x1,X2 = x2) =

P(X0 = x0)P(X1 = x1|X0 = x0)P(X2 = x2|X0 = x0,X1 = x1) =

P(X0 = x0)P(X1 = x1|X0 = x0)P(X2 = x2|X1 = x1) =

px0Px0,x1Px1,x2

which generalizes to arbitrary n.
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Markov property
P (Xn = xn|H)

= P (Xn = xn|X0 = x0,X1 = x1,X2 = x2, . . .Xn−1 = xn−1)

= P (Xn = xn|Xn−1 = xn−1)

I Generally the next state depends on the current state and
the time

I In most applications the chain is assumed to be time
homogeneous, i.e. it does not depend on time

I The only parameters needed are P (Xn = j |Xn−1 = i) = pij

I We collect these parameters in a matrix P = {pij}
I The joint probability of the first n occurrences is

P(X0 = x0,X1 = x1,X2 = x2 . . . ,Xn = xn) = px0Px0,x1Px1,x2 . . .Pxn−1,xn
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A profuse number of applications

I Storage/inventory models
I Telecommunications systems
I Biological models

I Xn the value attained at time n
I Xn could be

I The number of cars in stock
I The number of days since last rainfall
I The number of passengers booked for a flight
I See textbook for further examples
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Example 1: Random walk with two
reflecting barriers 0 and N

P =

∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣

1− p p 0 . . . 0 0 0
q 1− p − q p . . . 0 0 0
0 q 1− p − q . . . 0 0 0
...

...
...

...
...

...
...

0 0 0 . . . q 1− p − q p
0 0 0 . . . 0 q 1− q

∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣
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Example 2: Random walk with one
reflecting barrier at 0

P =

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣

1− p p 0 0 0 . . .
q 1− p − q p 0 0 . . .
0 q 1− p − q p 0 . . .
0 0 q 1− p − q p . . .
...

...
...

...
... . . .
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Example 3: Random walk with two
absorbing barriers

P =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 0 . . . 0 0 0
q 1− p − q p 0 0 . . . 0 0 0
0 q 1− p − q p 0 . . . 0 0 0
0 0 q 1− p − q p . . . 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 0 . . . q 1− p − q p
0 0 0 0 0 . . . 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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The matrix can be finite (if the Markov chain is finite)

P =

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣

p1,1 p1,2 p1,3 . . . p1,n
p2,1 p2,2 p2,3 . . . p2,n
p3,1 p3,2 p3,3 . . . p3,n

...
...

...
...

...
pn,1 pn,2 pn,3 . . . pn,n

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣
Two reflecting/absorbing barriers
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or infinite (if the Markov chain is infinite)

P =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

p1,1 p1,2 p1,3 . . . p1,n . . .
p2,1 p2,2 p2,3 . . . p2,n . . .
p3,1 p3,2 p3,3 . . . p3,n . . .

...
...

...
...

...
...

pn,1 pn,2 pn,3 . . . pn,n . . .
...

...
...

...
...

...

At most one barrier
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The matrix P can be interpreted as

I the engine that drives the process
I the statistical descriptor of the quantitative behaviour
I a collection of discrete probability distributions

I For each i we have a conditional distribution
I What is the probability of the next state being j knowing that

the current state is i pij = P (Xn = j |Xn−1 = i)
I
∑

j pij = 1
I We say that P is a stochastic matrix
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More definitions and the first properties

I We have defined rules for the behaviour from one value
and onwards

I Boundary conditions specify e.g. behaviour of X0
I X0 could be certain X0 = a
I or random P (X0 = i) = pi
I Once again we collect the possibly infinite many

parameters in a vector p
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n step transition probabilities

P (Xn = j |X0 = i) = P(n)
ij

I the probability of being in j at the n’th transition having
started in i

I Once again collected in a matrix P(n) = {P(n)
ij }

I The rows of P(n) can be interpreted like the rows of P
I We can define a new Markov chain on a larger time scale

(Pn)
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Small example

P =

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

1− p p 0 0
q 0 p 0
0 q 0 p
0 0 q 1− q

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

P(2) =

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

(1− p)2 + pq (1− p)p p2 0
q(1− p) 2qp 0 p2

q2 0 2qp p(1− q)
0 q2 (1− q)q (1− q)2 + qp

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
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Chapmann Kolmogorov equations

I There is a generalisation of the example above
I Suppose we start in i at time 0 and wants to get to j at time

n + m
I At some intermediate time n we must be in some state k
I We apply the law of total probability
P (B) =

∑
k P (B|Ak )P (Ak )

P (Xn+m = j |X0 = i)

=
∑

k

P (Xn+m = j |X0 = i ,Xn = k)P (Xn = k |X0 = i)
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∑
k

P (Xn+m = j |X0 = i ,Xn = k)P (Xn = k |X0 = i)

by the Markov property we get∑
k

P (Xn+m = j |Xn = k)P (Xn = k |X0 = i)

=
∑

k

P(m)
kj P(n)

ik =
∑

k

P(n)
ik P(m)

kj

which in matrix formulation is

P(n+m) = P(n)P(m) = Pn+m
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The probability of Xn

I The behaviour of the process itself - Xn

I The behaviour conditional on X0 = i is known (P(n)
ij )

I Define P (Xn = j) = p(n)
j

I with p(n) = {p(n)
j } we find

p(n) = pP(n) = pPn
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Small example - revisited

P =

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

1− p p 0 0
q 0 p 0
0 q 0 p
0 0 q 1− q

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

with p =
(1

3 ,0,0,
2
3

)
we get

p(1) =

(
1
3
,0,0,

2
3

) ∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

1− p p 0 0
q 0 p 0
0 q 0 p
0 0 q 1− q

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ =

(
1− p

3
,
p
3
,
2q
3
,
2(1− q)

3

)
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p =

(
1
3
,0,0,

2
3

)
,

P2 =

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

(1− p)2 + pq (1− p)p p2 0
q(1− p) 2qp 0 p2

q2 0 2qp p(1− q)
0 q2 (1− q)q (1− q)2 + qp

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
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p(2) =

(
1
3
,0,0,

2
3

)
·∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
(1− p)2 + pq (1− p)p p2 0

q(1− p) 2qp 0 p2

q2 0 2qp p(1− q)
0 q2 (1− q)q (1− q)2 + qp

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

=

(
(1− p)2 + pq

3
,

(1− p)p
3

,
4qp

3
,
2p(1− q)

3

)
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First step analysis - setup

Consider the transition probability matrix

P =

∣∣∣∣∣∣
∣∣∣∣∣∣

1 0 0
α β γ
0 0 1

∣∣∣∣∣∣
∣∣∣∣∣∣

Define
T = min {n ≥ 0 : Xn = 0 or Xn = 2}

and
u = P(XT = 0|X0 = 1) v = E(T |X0 = 1)
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First step analysis - absorption probability

u = P(XT = 0|X0 = 1)

=
2∑

k=0

P(X1 = k |X0 = 1)P(XT = 0|X0 = 1,X1 = k)

=
2∑

k=0

P(X1 = k |X0 = 1)P(XT = 0|X1 = k)

= P1,0 · 1 + P1,1 · u + P1,2 · 0.

And we find
u =

P1,0

1− P1,1
=

α

α + γ
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First step analysis - time to absorption

v = E(T |X0 = 1)

=
2∑

k=0

P(X1 = k |X0 = 1)E(T |X0 = 1,X1 = k)

= 1 +
2∑

k=0

P(X1 = k |X0 = 1)E(T |X0 = k)( NB!

= 1 + P1,0 · 0 + P1,1 · v + P1,2 · 0.

And we find
v =

1
1− P1,1

=
1

1− β
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More than one transient state

P =

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

1 0 0 0
P1,0 P1,1 P1,2 P1,3
P2,0 P2,1 P2,2 P2,3

0 0 0 1

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

I Here we will need conditional probabilities
ui = P(XT = 0|X0 = i)

I and conditional expectations vi = E(T |X0 = i)
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Leading to

u1 = P1,0 + P1,1u1 + P1,2u2

u2 = P2,0 + P2,1u1 + P2,2u2

and

v1 = 1 + P1,1v1 + P1,2v2

v2 = 1 + P2,1v1 + P2,2v2
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General finite state Markov chain

P =

∣∣∣∣∣∣∣∣ Q R
0 I

∣∣∣∣∣∣∣∣
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General absorbing Markov chain

T = min {n ≥ 0,Xn ≥ r}

In state j we accumulate reward g(j), wi is expected total
reward conditioned on start in state i

wi = E

(
T−1∑
n=0

g(Xn)|X0 = i

)

leading to
wi = g(i) +

∑
j

Pi,jwj
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Special cases of general absorbing Markov chain

I g(i) = 1 expected time to absorption (vi )
I g(i) = δik expected visits to state k before absorption
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