Hashing

- Dictionaries
- Chained Hashing
- Universal Hashing
- Static Dictionaries and Perfect Hashing

Hashing

- Dictionaries
- Chained Hashing
- Universal Hashing
- Static Dictionaries and Perfect Hashing

Dictionaries

- Applications.
- Many!
- Key component in other data structures and algorithms.

Dictionaries

- Which solutions do we know?

Chained Hashing

- Chained hashing [Dumey 1956]
- Hash function. Pick some crazy, chaotic, random function h that maps U to $\{0, \ldots, m-1\}$, where $m=\Theta(n)$.
- Initialize an array A[0, ..., m-1].
- $A[i]$ stores a linked list containing the keys in S whose hash value is i.

Hashing

- Dictionaries
- Chained Hashing
- Universal Hashing
- Static Dictionaries and Perfect Hashing

Chained Hashing

$U=\{0, \ldots, 99\}$
$S=\{1,16,41,54,66,96\}$
$h(x)=x \bmod 10$

- Operations.
- LOOKUP(x): Compute $h(x)$. Scan through list for $h(x)$. Return true if x is in list and false otherwise.
- INSERT(x$)$: Compute $\mathrm{h}(\mathrm{x})$. Scan through list for $\mathrm{h}(\mathrm{x})$. If x is in list do nothing Otherwise, add x to the front of list.
- Delete (x) : Compute $\mathrm{h}(\mathrm{x})$. Scan through list for $\mathrm{h}(\mathrm{x})$. If x is in list remove it. Otherwise, do nothing.
- Time. $\mathrm{O}(1+$ length of linked list for $\mathrm{h}(\mathrm{x})$)

Chained Hashing

- Hash functions.
- $\mathrm{h}(\mathrm{x})=\mathrm{x}$ mod 10 is not very crazy, chaotic, or random
- For any fixed choice of h, there is a set whose elements all map to the same slot.
- \Rightarrow We end up with a single linked list
- How can we overcome this?
- Use randomness
- Assume the input set is random.
- Choose the hash function at random

Chained Hashing

- Random hash functions. Assume that:

1. h is chosen uniformly at random among all functions from U to $\{0, \ldots, m-1\}$
2. We can store h in $O(n)$ space.
3. We can evaluate h in $\mathrm{O}(1)$ time

- What is the expected length of the linked lists?

Chained Hashing

$E($ length of linked list for $h(x))=E(|\{y \in S \mid h(y)=h(x)\}|)$

$$
\begin{aligned}
& =E\left(\sum_{y \in S}\left\{\begin{array}{ll}
1 & \text { if } h(y)=h(x) \\
0 & \text { if } h(y) \neq h(x)
\end{array}\right)\right. \\
& =\sum_{y \in S} E\left(\left\{\begin{array}{ll}
1 & \text { if } h(y)=h(x) \\
0 & \text { if } h(y) \neq h(x)
\end{array}\right)\right. \\
& =\sum_{y \in S} \operatorname{Pr}(h(x)=h(y)) \\
& \left.=1+\sum_{y \in S \backslash\{x\}} \operatorname{Pr}(h(x)=h(y))\right) \\
& =1+\sum_{y \in S \backslash\{x\}} \frac{1}{m} \quad \mathrm{~m}^{2} \text { choices for pair }(h(x), \mathrm{h}(y)), \\
& \text { m of which cause collision }
\end{aligned},
$$

Chained Hashing

- Theorem. We can solve the dictionary problem (under assumptions $1+2+3$) in
- O(n) space.
- O(1) expected time per operation.
- Expectation is over the choice of hash function.
- Independent of the input set.

Chained Hashing

- Random hash functions assumptions

1. h is chosen uniformly at random among all functions from U to $\{0, \ldots, m-1\}$
2. We can store h in $O(n)$ space.
3. We can evaluate h in $O(1)$ time

- Random hash functions. Can we efficiently compute and store a random function?
- We need $\Theta(u \log m)$ bits to store an arbitrary function $h:\{0, \ldots, u-1\} \rightarrow\{0, \ldots, m-1\}$

We need a lot of random bits to generate the function.

- We need a lot of time to generate the function.
- Do we need a truly random hash function?
- When did we use the fact that h was random in our analysis?
\square

Hashing

- Dictionaries
- Chained Hashing
- Universal Hashing
- Static Dictionaries and Perfect Hashing

Chained Hashing

$E($ length of linked list for $h(x))=E(|\{y \in S \mid h(y)=h(x)\}|)$

$$
\begin{aligned}
& =E\left(\sum_{y \in S}\left\{\begin{array}{ll}
1 & \text { if } h(y)=h(x) \\
0 & \text { if } h(y) \neq h(x)
\end{array}\right)\right. \\
& =\sum_{y \in S} E\left(\left\{\begin{array}{ll}
1 & \text { if } h(y)=h(x) \\
0 & \text { if } h(y) \neq h(x)
\end{array}\right)\right. \\
& =\sum_{y \in S} \operatorname{Pr}(h(x)=h(y)) \\
& \left.=1+\sum_{y \in S \backslash\{x\}} \operatorname{Pr}(h(x)=h(y))\right) \\
& =1+\sum_{y \in S \backslash\{x\}} \frac{1}{m} \quad \text { For all } x \neq y, \operatorname{Pr}(h(x)=h(y)) \leq 1 / m \\
& =1+(n-1) \cdot \frac{1}{m}=O(1)
\end{aligned}
$$

Universal Hashing

- Universel hashing [Carter and Wegman 1979].
- Let H be a family of functions mapping U to $\{0, \ldots, m-1\}$.
- H is universal if for any $x \neq y$ in U and h chosen uniformly at random in H,

Universal Hashing

- Positional number systems. For integers x and m, the base-m representation of x is x written in base m.
- Example.
- $(10)_{10}=(1010)_{2}\left(1 \cdot 2^{3}+0 \cdot 2^{2}+1 \cdot 2^{1}+0 \cdot 2^{0}\right)$
- $(107)_{10}=(212)_{7}\left(2 \cdot 7^{2}+1 \cdot 7^{1}+2 \cdot 7^{0}\right)$

Universal Hashing

- Hash function. Given a prime m and $a=\left(a_{1} a_{2} \ldots a_{r}\right)_{m}$, define

$$
h_{a}\left(x=\left(x_{1} x_{2} \ldots x_{r}\right)_{p}\right)=a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{r} x_{r} \bmod m
$$

- Example.
- $\mathrm{m}=7$
- $\mathrm{a}=(107)_{10}=(212)_{7}$
x $=(214)_{10}=(424)_{7}$
- $\mathrm{h}_{\mathrm{a}}(\mathrm{x})=2 \cdot 4+1 \cdot 2+2 \cdot 4 \bmod 7=18 \bmod 7=4$
- Universal family.
- $H=\left\{h_{a} \mid a=\left(a_{1} a_{2} \ldots a_{r}\right)_{m} \in\{0, \ldots, m-1\} r\right\}$
- Choose random hash function from H ~ choose random a.
- H is universal (analysis next).

O(1) time evaluation.

- O(1) space.

Fast construction.

Universal Hashing

- Lemma. Let m be a prime. For any $\mathrm{a} \in\{1, \ldots, \mathrm{~m}-1\}$ there exists a unique inverse a^{-1} such that $a^{-1} \cdot a \equiv 1 \bmod m$. $\left(Z_{m}\right.$ is a field $)$
- Example. $m=7$

a	1	2	3	4	5	6
a^{-1}	1	4	5	2	3	6

Universal Hashing

- Goal. For random $a=\left(a_{1} a_{2} \ldots a_{r}\right)_{m}$, show that if $x=\left(x_{1} x_{2} \ldots x_{r}\right)_{m} \neq y=\left(y_{1} y_{2} \ldots y_{r}\right)_{m}$ then $\operatorname{Pr}\left[h_{a}(x)=h_{a}(y)\right] \leq 1 / m$
- $\left(x_{1} x_{2} \ldots x_{r}\right)_{m} \neq\left(y_{1} y_{2} \ldots y_{r}\right)_{m} \Rightarrow x_{i} \neq y_{i}$ for some i. Assume wlog. that $x_{r} \neq y_{r}$.
$\operatorname{Pr}\left(h_{a}\left(\left(x_{1} \ldots x_{r}\right)_{m}\right)=h_{a}\left(\left(y_{1} \ldots, y_{r}\right)_{m}\right)\right)$
$=\operatorname{Pr}\left(a_{1} x_{1}+\cdots+a_{r} x_{r} \equiv a_{1} y_{1}+\cdots+a_{r} y_{r} \bmod m\right)$
$=\operatorname{Pr}\left(a_{r} x_{r}-a_{r} y_{r} \equiv a_{1} y_{1}-a_{1} x_{1}+\cdots+a_{r-1} y_{r-1}-a_{r-1} x_{r-1}\right.$ mod $\left.m\right) \quad$ existence of inverses
$=\operatorname{Pr}\left(a_{r}\left(x_{r}-y_{r}\right) \equiv a_{1}\left(y_{1}-x_{1}\right)+\cdots+a_{r-1}\left(y_{r-1}-x_{r-1}\right) \bmod m\right)$ \downarrow
$=\operatorname{Pr}\left(a_{r}\left(x_{r}-y_{r}\right)\left(x_{r}-y_{r}\right)^{-1} \equiv\left(a_{1}\left(y_{1}-x_{1}\right)+\cdots+a_{r-1}\left(y_{r-1}-x_{r-1}\right)\right)\left(x_{r}-y_{r}\right)^{-1} \bmod m\right)$
$=\operatorname{Pr}\left(a_{r} \equiv\left(a_{1}\left(y_{1}-x_{1}\right)+\cdots+a_{r-1}\left(y_{r-1}-x_{r-1}\right)\right)\left(x_{r}-y_{r}\right)^{-1} \bmod m\right)=\frac{1}{m}$
for any choice of $\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{r-1}$, the RH defines a unique a_{r} that matches (uniqueness of inverses), Of the m^{r} choices for a_{1}, a $2, \ldots$, ar exactly m^{r-1} cause a collision \Rightarrow probability is $m^{r-1} / \mathrm{m}^{r}=1 / \mathrm{m}$

Universal Hashing

- Lemma. H is universal with $\mathrm{O}(1)$ time evaluation and $\mathrm{O}(1)$ space.
- Theorem. We can solve the dictionary problem (without special assumptions) in:
- O(n) space.
- O(1) expected time per operation (lookup, insert, delete).
\square

Hashing

- Dictionaries
- Chained Hashing
- Universal Hashing
- Static Dictionaries and Perfect Hashing

Universal Hashing

- Other universal families.
- For prime $p>0, a \in\{1, . ., p-1\}, b \in\{0, \ldots, p-1\}$

$$
\begin{gathered}
h_{a, b}(x)=a x+b \bmod m \\
H=\left\{h_{a, b} \mid a \in\{1, \ldots, m-1\}, b \in\{0, \ldots, m-1\}\right\}
\end{gathered}
$$

- Hash function from k -bit numbers to l -bit numbers. a is an odd k -bit integer

I most significant bits of the k least significant bits of ax

$$
\begin{gathered}
h_{a}(x)=\left(a x \bmod 2^{k}\right) \gg(k-I) \\
H=\left\{h_{a} \mid a \text { is an odd integer in }\left\{1, \ldots, 2^{k}-1\right\}\right\}
\end{gathered}
$$

Static Dictionaries and Perfect Hashing

- Static dictionary problem. Given a set $\mathrm{S} \subseteq \mathrm{U}=\{0, . ., \mathrm{u}-1\}$ of size n for preprocessing support the following operation
- lookup(x): return true if $\mathrm{x} \in \mathrm{S}$ and false otherwise.
- As the dictionary problem with no updates (insert and deletes).
- Set given in advance.

Static Dictionaries and Perfect Hashing

- Dynamic solution. Use chained hashing with a universal hash function as before \Rightarrow solution with $O(n)$ space and $O(1)$ expected time per lookup.
- Can we do better?
- Perfect Hashing. A perfect hash function for S is a collision-free hash function on S
- Perfect hash function in $\mathrm{O}(\mathrm{n})$ space and $\mathrm{O}(1)$ evaluation time \Rightarrow solution with O(n) space and O(1) worst-case lookup time.
- Do perfect hash functions with $O(n)$ space and $O(1)$ evaluation time exist for any set S?

Static Dictionaries and Perfect Hashing

- Goal. Perfect hashing in linear space and constant worst-case time.
- Solution in 3 steps.
- Solution 1. Collision-free but with too much space.
- Solution 2. Many collisions but linear space.
- Solution 3: FKS scheme [Fredman, Komlós, Szemerédi 1984]. Two-level solution. Combines solution 1 and 2
- At level 1 use solution with lots of collisions and linear space.
- Resolve collisions at level 1 with collision-free solution at level 2
- lookup(x): look-up in level 1 to find the correct level 2 dictionary. Lookup in level 2 dictionary.

Static Dictionaries and Perfect Hashing

- Solution 1. Collision-free but with too much space
- Use a universal hash function to map into an array of size n^{2}. What is the expected total number of collisions in the array?

$$
\begin{aligned}
& E(\# \text { collisions })=E\left(\sum_{x, y \in S, x \neq y}\left\{\begin{array}{ll}
1 & \text { if } h(y)=h(x) \\
0 & \text { if } h(y) \neq h(x)
\end{array}\right)\right. \\
&=\sum_{x, y \in S, x \neq y} E\left(\left\{\begin{array}{ll}
1 & \text { if } h(y)=h(x) \\
0 & \text { if } h(y) \neq h(x)
\end{array}\right)\right. \\
&=\sum_{x, y \in S, x \neq y} \operatorname{Pr}(h(x)=h(y))=\binom{n}{2} \frac{1}{n^{2}} \leq \frac{n^{2}}{2} \cdot \frac{1}{n^{2}}=1 / 2 \\
& \text { \#distinct pairs } \rightarrow \text { universal hashing into } n^{2} \text { range }
\end{aligned}
$$

- With probability $1 / 2$ we get perfect hashing function. If not perfect try again.
- \Rightarrow Expected number of trials before we get a perfect hash function is $\mathrm{O}(1)$.
- \Rightarrow For a static set S we can support lookups in $\mathrm{O}(1)$ worst-case time using $\mathrm{O}\left(\mathrm{n}^{2}\right)$ space

Static Dictionaries and Perfect Hashing

- Solution 2. Many collisions but linear space

- As solution 1 but with array of size n . What is the expected total number of collisions in the array?

$$
\begin{aligned}
E(\text { \#collisions }) & =E\left(\sum_{x, y \in S, x \neq y}\left\{\begin{array}{ll}
1 & \text { if } h(y)=h(x) \\
0 & \text { if } h(y) \neq h(x)
\end{array}\right)\right. \\
& =\sum_{x, y \in S, x \neq y} E\left(\left\{\begin{array}{ll}
1 & \text { if } h(y)=h(x) \\
0 & \text { if } h(y) \neq h(x)
\end{array}\right)\right. \\
& =\sum_{x, y \in S, x \neq y} \operatorname{Pr}(h(x)=h(y))=\binom{n}{2} \frac{1}{n} \leq \frac{n^{2}}{2} \cdot \frac{1}{n}=\frac{1}{2} n
\end{aligned}
$$

Static Dictionaries and Perfect Hashing

- Solution 3. Two-level solution
- At level 1 use solution with lots of collisions and linear space.
- Resolve each collisions at level 1 with collision-free solution at level 2.
- lookup(x): look-up in level 1 to find the correct level 2 dictionary. Lookup in level 2 dictionary.
- Example
- $S=\{1,16,41,54,66,96\}$
- Level 1 collision sets:
- $S_{1}=\{1,41\}$,
- $\mathrm{S}_{4}=\{54\}$,
- $\mathrm{S}_{6}=\{16,66,96\}$
- Level 2 hash info stored with subtable. - (size of table, multiplier a, prime p)
- Time. O(1)
- Space?

Static Dictionaries and Perfect Hashing

- FKS scheme.
- $O(n)$ space and $O(n)$ expected preprocessing time
- Lookups with two evaluations of a universal hash function.
- Theorem. We can solve the static dictionary problem for a set S of size n in.
- $O(n)$ space and $O(n)$ expected preprocessing time
- O(1) worst-case time per lookup.
- Multilevel data structures.
- FKS is example of multilevel data structure technique. Combine different solutions for same problem to get an improved solution.

Static Dictionaries and Perfect Hashing

- Space. What is the the total size of level 1 and level 2 hash tables?

$$
\text { \#collisions }=\sum\binom{\left|S_{i}\right|}{2}=O(n)
$$

$$
\begin{aligned}
\text { space } & =O\left(n+\sum_{i}\left|S_{i}\right|^{2}\right)=O\left(n+\sum_{i}\left(\left|S_{i}\right|+2\binom{\left|S_{i}\right|}{2}\right)\right) \\
& =O\left(n+\sum_{i}\left|S_{i}\right|+2 \sum_{i}\binom{\left|S_{i}\right|}{2}\right)=O(n+n+2 n)=O(n)
\end{aligned}
$$

Hashing

- Dictionaries
- Chained Hashing
- Universal Hashing
- Static Dictionaries and Perfect Hashing

