
Mandatory Exercise: Predecessor, RMQ and LCA

Philip Bille Inge Li Gørtz

1 Heap Jumping Consider the following problem. Let T be a perfectly balanced binary tree with n nodes. Each
node v in T is numbered with a distinct integer i(v) from the range [0, . . . , n3]. The numbers are heap-ordered,
that is, for any internal node v with children vl and vr , we have that i(v) < i(vl) and i(v) < i(vr). In particular,
along any root-to-leaf path p the numbers on the path are strictly increasing.

Given a leaf node ` and an integer x , the heap jump query is defined as follows.

• heap-jump(`, x): return the largest numbered node with number smaller than x on the path from the root
to the leaf `.

Given a tree T as above, the heap jumping problem is to preprocess T into a compact data structure that
supports heap jump queries.

Solve the following exercises.

1.1 Give a data structure for the heap jumping problem that answer queries in O(log n) time and uses linear
space.

1.2 Give a data structure for the heap jumping problem that answers queries in O(log log n) time and O(n log n)
space.

1.3 Give a data structure for the heap jumping problem that answers queries in O(log log n) time and O(n) space.

Ignore preprocessing in all of the exercises.

1


