
Lempel-Ziv full-text indexing

Nicola Prezza

Technical University of Denmark
DTU Compute
Building 322, Office 006

1

Outline

Introduction

LZ full-text index

LZ78 trie

LZ sparse suffix tree

LZ77 trie

Primary occurrences

Secondary occurrences

LZ self-index

LZ78

LZ77

References

2

Introduction

compressed indexing

• Suffix trees are very fast indexes, but they take Θ(n) space

• In practice, this translates to 20n Bytes in the most
space-efficient implementations

• The plain text takes n Bytes.

• The LZ77-compressed text can be thousands of times smaller
than the text itself (if the text is very compressible)

3

compressed indexing

Million dollar question

Can we build a fast index taking O(z) words of space?1

1z = number of phrases in the LZ78/LZ77 parse. When clear from the
context, we will simply write z instead of z77 or z78

4

Indexing: definitions

A full-text index I(T) is a data structure that permits to efficiently
(polylog time) answer these queries:

• count: report number occ of occurrences of a string P in T

• locate: report locations of the occ occurrences of P in T

• extract: return T [i , ..., i + m]

We will consider only locate queries in these slides

• If I(T)’s size is proportional to that of the compressed text, I(T)

is a compressed index

• If I(T) does not need T to answer queries, I(T) is a self-index.

5

LZ indexing

State of the art

index compression space (words) locate time
KU-LZI[1] LZ78 O(z) + n O(m2 + occ logε n)
NAV-LZI[3] LZ78 O(z) O(m3 log σ + (m + occ) log n)

KN-LZI[2] LZ77 O(z) O
(

(m2h + (m + occ) log z) log n
z

)
m = pattern length. h = parse height (defined later)

Note 1. For simplicity, we will assume the text is stored in n words.
Note 2. KU-LZI needs the text: not a self-index.

6

LZ indexing

We will combine ideas from all these indexes and first describe a
(LZ77/LZ78) full-text index with these bounds:

• O(z log n) + n space (text needed: not a self-index)

• O(m(m + log z) + occ log n)-time locate

We start describing the index with LZ78 and then extend to LZ77

To conclude, we will see how to get rid of the text and turn the index
into a self-index (same speed with LZ78, slower with LZ77)

7

LZ full-text index

Overview

LZ78(T$) = A|C |G |CG |AC |ACA|CA|CGG |T |GG |GT |$

General idea (applies to both LZ78 and LZ77)

• Consider the orange occurrence of GACAC

• Consider the phrase-aligned split GAC |AC

• AC is a prefix of a phrase

• CAG =
←−−
GAC is a prefix of a phrase-aligned suffix of the reversed text

• these two prefixes define two ranges among:

• lexicographically sorted LZ phrases (AC)
• lexicographically sorted suffixes of the reversed text (CAG)

⇒ 2D range search (2D range trees)

• To find the remaining occurrences: track phrases entirely copying
occurrences that span ≥ 2 phrases (again range search)

8

Pattern occurrences

We divide pattern occurrences in 2 classes:

1. Primary occurrences: those spanning at least 2 LZ phrases or that
end a phrase

2. Secondary occurrences: those contained in a single LZ phrase
(and that do not end a phrase)

9

LZ78 trie

Recall that LZ78 has an elegant trie representation:

LZ78(T$) = A|C |G |CG |AC |ACA|CA|CGG |T |GG |GT |$

root

$
A

C

A

C

A
G

G

G

G T

T

Phrases are in bijection with tree nodes (root excluded) ⇒ there are exactly
z + 1 nodes ⇒ we can store the trie in O(z) words of space 2

2can be improved to 2z + o(z) + z log σ bits using succinct trees. For simplicity, we use a pointer-based
tree representation. 10

LZ78 trie

Consider the lexicographic order of LZ phrases:

LZ78(T$) = A|C |G |CG |AC |ACA|CA|CGG |T |GG |GT |$

0. $

1. A

2. AC

3. ACA

4. C

5. CA

6. CG

7. CGG

8. G

9. GG

10. GT
11. T

11

LZ78 trie

Lexicographic order of phrases

We can augment the trie writing, on each node N, the range [l fw , r fw] of
lexicographic ranks of phrases in the subtree rooted in N.

12

Augmented LZ78 trie

LZ78(T$) = A|C |G |CG |AC |ACA|CA|CGG |T |GG |GT |$

Notation: c[l fw ,r fw], where c ∈ Σ is the node label

root

$[0,0]

A[1,3]

C[2,3]

A[3,3]

C[4,7]

A[5,5]

G[6,7]

G[7,7]

G[8,10]

G[9,9] T[1,10]

T[11,11]

Still O(z) space

13

Now do the same with phrase-aligned suffixes of the reversed text
(lexicographically sorted)

Space-efficient solution: sparse suffix tree

14

Sparse suffix tree

LZ78(T$) = A|C |G |CG |AC |ACA|CA|CGG |T |GG |GT |$
reverse(LZ78(T$)) = $|TG |GG |T |GGC |AC |ACA|CA|GC |G |C |A

Lexicographic order of phrase-aligned suffixes of the reversed text

0. $TGGGTGGCACACACAGCGCA

1. A

2. ACACACAGCGCA

3. ACACAGCGCA

4. CA

5. CAGCGCA

6. GCA

7. GCGCA

8. GGCACACACAGCGCA

9. GGTGGCACACACAGCGCA

10. TGGCACACACAGCGCA

11. TGGGTGGCACACACAGCGCA

15

Sparse suffix tree

• For clarity, the picture shows only [begin, end] labels.
• exercise: add [l rev , r rev] labels in each explicit node

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
A | C | G | C G | A C | A C A | C A | C G G | T | G G | G T | $

root

[20, 0] [9, 5]

[6, 0] [4, 0]

[6, 5]

[6, 0]

[14, 14]

[3, 3]

[0, 0] [2, 0]

[13, 13]

[12, 0] [15, 0]

[15, 13]

[12, 0] [16, 0]

16

LZ77 trie

... what about LZ77?

If we wish to use LZ77, the trie of phrases can have more than O(z) nodes (up
to O(n))

First exercise session (ex. 1 and 2): find a space-efficient solution to represent
the LZ77 trie. Build the LZ77 sparse suffix tree of the previous example.

17

Primary occurrences

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
A | C | G | C G | A C | A C A | C A | C G G | T | G G | G T | $

range search structure

For each phrase starting at position t > 0 in T , let:

• i be the lexicographic rank of the
←−
T suffix ending in position t − 1, and

• j be the lexicographic rank of the phrase starting in position t

We add a labeled 2D point 〈〈i , j〉, t〉 in a range data structure

18

Example: search splitted-pattern
←−
CA|
−→
C (to find all primary occurrences, we have to try all possible splits)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
A | C | G | C G | A C | A C A | C A | C G G | T | G G | G T | $

$T
G
G
G
T
G
G
C
A
C
A
C
A
C
A
G
C
G
C
A

A A
C
A
C
A
C
A
G
C
G
C
A

A
C
A
C
A
G
C
G
C
A

C
A

C
A
G
C
G
C
A

G
C
A

G
C
G
C
A

G
G
C
A
C
A
C
A
C
A
G
C
G
C
A

G
G
T
G
G
C
A
C
A
C
A
C
A
G
C
G
C
A

T
G
G
C
A
C
A
C
A
C
A
G
C
G
C
A

T
G
G
G
T
G
G
C
A
C
A
C
A
C
A
G
C
G
C
A

$

A

AC

ACA

C

CA

CG

CGG

G

GG

GT

T

1

2

3

5

7

15

16

18

20

10

12

19

Primary occurrences

We store z − 1 2D points from [0, z − 1]2 with labels from [0, n − 1].
Using 2D range trees:

• O(z log z) + z − 1 ⊆ O(z log n) space3

• A range reporting query is answered in time O(k + log z), where k

is the number of returned points

3Note: this solution is not space-optimal. Wavelet trees [4] use only O(z) words.

20

Primary occurrences: locate

Let P = p1p2...pm be the pattern. For each split p1...pd/pd+1...pm:

1. use the sparse suffix tree and the trie to find the range [l rev , r rev] of
pd ...p1 among the sorted

←−
T suffixes and the range [l fw , r fw] of

pd+1...pm among the sorted phrases4

2. Query the range structure on the rectangle [l rev , r rev]× [l fw , r fw].
For every retrieved label t, return occurrence t − d

4Note: we also consider the split p1...pm/. In this case, [l fw , r fw] is the full range.

21

Primary occurrences: locate

Let occ1 be the number of primary occurrences of P in T . We can
retrieve these occurrences in O(m(m + log z) + occ1) time.

22

Secondary occurrences

After finding primary occurrences, secondary occurrences can be found by
recursively following the chain of phrase copies: if P occurs in T [i , ..., j],
then retrieve all phrases that entirely copy T [i , ..., j] (and repeat
recursively)

This problem can be solved using a range search data structure5

5Actually, with LZ78 we can again use the LZ78 trie [3]. However, by using range search our index
works also with LZ77 and is therefore more general.

23

Secondary occurrences

range data structure

For each phrase Z = T [t, ..., t′] copied from T [i ′, ..., j ′] (t′ − t = j ′ − i ′), we
add a labeled 2D point 〈〈i ′, j ′〉, t〉 in a range data structure

In the figure below, pattern P occurs in T [i , ..., j] and Z entirely copies it
(hence P occurs also in T [t + (i − i ′), ..., t + (j − i ′)])

T
i ji’ j’ t t’

ZP

i’ i

j’

j
P

Z

24

Secondary occurrences: 2-sided range search

Example: after finding P (i.e. pattern occurrence), use it to query the structure and find other
occurrences

T
i ji’ j’ t t’

ZP

i’ i

j’

j
P

Z

25

Secondary occurrences: 2-sided range search

We store z 2D points from [0, n − 1]2 with labels from [0, n − 1]. Using
2D range trees:

• O(z log n) space6

• A range reporting query is answered in time O(k + log n), where k

is the number of returned points

6with wavelet trees [4] this space becomes O(z)

26

Full locate algorithm

Locate primary occurrences. For each primary occurrence T [i , ..., j] of P,
call the following procedure:

RetrieveSecondaryOcc(i , j)

1. Query the 2-sided structure on the rectangle [0, i]× [j , n − 1]

2. For all secondary occurrences T [i ′, ..., j ′] found, call
RetrieveSecondaryOcc(i ′, j ′)

Second exercise session (ex. 3): prove the correctness and
completeness of the search algorithm

27

The LZ full-text index

Theorem
The LZ index we described is a full-text index based on LZ78/LZ77
that:

• takes O(z log n) + n words of space

• supports locate in O(m(m + log z) + occ log n) time7

7in the worst case, occ ∈ Θ(occ2) and we perform a separate 2D range reporting for each secondary
occurrence (e.g. search A in the LZ77 index for An−1$)

28

LZ self-index

LZ78 self-index

• Note: the text is needed only to support path-compression in the
tries/suffix trees

• Recall that we can extract any character from LZ78 in O(log log n)

time

• This implies we can delete the text and obtain a LZ78 self-index.
Times are multiplied by O(log log n) w.r.t. the full-text index.

Exercise Show that, on LZ78, the O(log log n) slowdown can be avoided
(i.e. show a LZ78 self-index as fast as the full-text index)

29

LZ77 self-index

LZ77 is harder to treat: we need access to the text to compress both the
LZ77 trie and the LZ77 sparse suffix tree

30

Parse height

Definition
The height hi of character T [i] is the number of times we have to “jump
back” from position i (following phrase copies) until we find an explicitly
stored character

Definition
The parse height h of the LZ77 parse is defined as h = maxi=0,...,n−1 hi

In real-case texts, h is very small [2]

31

LZ77 self index

Exercise: show how to extract any text character in O(h log log n) time
using a data structure of size O(z77) words. We obtain:

Theorem
The LZ index we described is a self-index based on the LZ77 parsing
that:

• takes O(z log n) words of space

• supports locate in O(m(m · h · log log n + log z) + occ log n) time

NB: using wavelet trees we can reach the optimal O(z) words of space

32

References

References I

Juha Kärkkäinen and Esko Ukkonen.
Lempel-Ziv parsing and sublinear-size index structures for
string matching.
In Proc. 3rd South American Workshop on String Processing
(WSP’96). Citeseer, 1996.

Sebastian Kreft and Gonzalo Navarro.
On compressing and indexing repetitive sequences.
Theoretical Computer Science, 483:115–133, 2013.

Gonzalo Navarro.
Indexing text using the ziv–lempel trie.
Journal of Discrete Algorithms, 2(1):87–114, 2004.

33

References II

Gonzalo Navarro.
Wavelet trees for all.
Journal of Discrete Algorithms, 25:2–20, 2014.

Gonzalo Navarro and Veli Mäkinen.
Compressed full-text indexes.
ACM Computing Surveys (CSUR), 39(1):2, 2007.

Nicola Prezza.
Compressed computation for text indexing.
PhD thesis, Universitá degli studi di Udine, 2016.

34

	Introduction
	LZ full-text index
	LZ78 trie
	LZ sparse suffix tree
	LZ77 trie
	Primary occurrences
	Secondary occurrences

	LZ self-index
	LZ78
	LZ77

	References

