
Philip Bille

Grammar Compression and Random
Access

• Grammar Compression

• Random Access

• Statistical compression.

• Huffman, arithmetic encoding,...

• Dictionary compression.

• Lempel-Ziv, ...

• Grammar compression.

• Repair, sequitur, greedy, bisection, …

• Kolmogorov complexity.

Grammar Compression

• Grammar compression. Encode string S as an grammar
G that generates S.

• Straight-line program. Assume G is a straight-line
program.

• G is acyclic.

• Each production in G is either Xi ➞ XjXk or Xi ➞ τ.

• Encoding. Re-pair, bisection, greedy, …

• Decoding. Unfold productions top-down.

Grammar Compression

a b c a b c a b a b a c a b a b c

X1 X2

X3X4

X5

X1 X2

X3X4

X5

X1 X2

X3X4

X5

X1 X2

X4

X1 X2

X4 X1 X3

X8X7

X6

X1 X2

X4

X9

X11

X12

X10

X12 ➞ X11X9

X11 ➞ X6X10

X10 ➞ X7X8

X9 ➞ X4X5

X8 ➞ X1X3

X6 ➞ X5X5

X5 ➞ X4X3

X4 ➞ X1X2

X3 ➞ c

X2 ➞ b

X1 ➞ a

abcabcababacababc

• Re-pair compression [Larsson and Moffat 2000].

• Start with string S.

• Replace a most frequent pair ab by new character Xi. Add production Xi ➞ ab.

• Repeat until string is a single character.

Grammar Compression

abcabcababacababc
X1cX1cX1X1acX1X1c

X2X2X1X1acX1X2

X3X1X1acX1X2

X9

X1 ➞ ab
X2 ➞ X1c
X3 ➞ X2X2

X4 ➞ X1X1

X3X4acX1X2 X5 ➞ ac
X3X4X5X1X2 X6 ➞ X1X2

X3X4X5X6 X7 ➞ X4X5

X3X7X6 X8 ➞ X3X7

X8X6 X9 ➞ X8X6

• Grammar compression properties.

• Many dictionary schemes can be viewed as grammar compressors.

• Smallest grammar is NP-hard.

• LZ77 is lower bound on the smallest grammar.

• LZ77 can be converted to grammar with blowup by logarithmic factor.

• Grammar very useful for compressed computation.

Grammar Compression

• Random Access Problem. Represent grammar G of size n generating string S of
length N to support

• access(i): return S[i]

Random Access

X12 ➞ X11X9

X11 ➞ X6X10

X10 ➞ X7X8

X9 ➞ X4X5

X8 ➞ X1X3

X6 ➞ X5X5

X5 ➞ X4X3

X4 ➞ X1X2

X3 ➞ c

X2 ➞ b

X1 ➞ a

abcabcababacababc

• Applications.

• Most basic computational task on compressed data.

• Component in most algorithms and data structures that work directly on

compressed data (compressed computing).

• Interesting selection of elegant and useful data structural techniques.

Random Access

• Goal. Random access with O(n) space O(log N) query time.

• Solution in 4 steps.

• Top-down search. Slow but only linear space.

• Heavy-path decompositions. Almost fast but too much space.

• Heavy-path redundancy. Almost fast with linear space.

• Interval-biased search. Fast and linear space.

Random Access

a b c a b c a b a b a c a b a b c

X1 X2

X3X4

X5

X1 X2

X3X4

X5

X1 X2

X3X4

X5

X1 X2

X4

X1 X2

X4 X1 X3

X8X7

X6

X1 X2

X4

X9

X11

X12

X10

Solution 1: Top Down Search

17
12

6
3

1 1

1

1 1

1

1 1 1 1

1 1

1 1 1 1

122
2

2222

3 4
6 5

3

• Data structure. Store size of string generated by each node.

• Access(x): Top-down search for x.

• Time. O(h) = O(n)

• Space. O(n)

a b c a b c a b a b a c a b a b c

X1 X2

X3X4

X5

X1 X2

X3X4

X5

X1 X2

X3X4

X5

X1 X2

X4

X1 X2

X4 X1 X3

X8X7

X6

X1 X2

X4

X9

X11

X12

X10

Solution 2: Heavy Path Decomposition

17
12

6
3

1 1

1

1 1

1

1 1 1 1

1 1

1 1 1 1

122
2

2222

3 4
6 5

3

• Heavy-path decomposition.

• Start at root. Choose a child of maximum size repeatedly until we reach leaf.

• Repeat for subtrees hanging off tree.

• Lemma. O(log N) heavy paths on any root-to-leaf path.

• Proof: Size decrease by at least half on each light edge.

b

X1 X2

X4 X4

X8X7

X6 X9

X11

X12

X10

Solution 2: Heavy Path Decomposition

17
12

6

1 1

2

22

4
6 5

6 7 8 10 12 17

• Data structure. For each heavy path store list of values + char at end of heavy path.

• Access(x): Predecessor search on each heavy-path on root-to-leaf path.

• Time. O(log log N log N)

• Space. O(n2)

a b c a b c a b a b a c a b a b c

X1 X2

X3X4

X5

X1 X2

X3X4

X5

X1 X2

X3X4

X5

X1 X2

X4

X1 X2

X4 X1 X3

X8X7

X6

X1 X2

X4

X9

X11

X12

X10

Solution 3: Heavy-Path Redundancy

17
12

6
3

1 1

1

1 1

1

1 1 1 1

1 1

1 1 1 1

122
2

2222

3 4
6 5

3

• Idea. Exploit overlaps in heavy-paths to get compact
representation.

• Heavy-path suffix forest.

• Tree of all suffixes of heavy-paths.

• v is a parent of u iff u is heavy child of v.

• Only n nodes.

a

X8

X1

b

X4

X2

X7

X10

X11

X12

X9

X5

X6

c

X3

b

X1 X2

X4 X4

X8X7

X6 X9

X11

X12

X10

Solution 3: Heavy-Path Redundancy

17
12

6

1 1

2

22

4
6 5

• Predecessor on heavy path.

• Weighted ancestor problem on heavy path suffix forest.

• Weigh each edge with size of off-path subtree.

• Keep left and right edge weights separate.

• Search for x to the left = closest ancestor of distance ≥ x.

• Similar for search to the right.

a

X8

X1

b

X4

X2

X7

X10

X11

X12

X9

X5

X6

c

X3

5

2

2

6

1

b

X1 X2

X4 X4

X8X7

X6 X9

X11

X12

X10

Solution 3: Heavy-Path Redundancy

17
12

6

1 1

2

22

4
6 5

• Lemma. For a tree with n nodes and edge weights from universe [0…N] we can solve
the weighted ancestor problem in O(n) space and O(log log N) time.

• Access(x): Weighted ancestor query on each heavy-path on root-to-leaf path.

• Time. O(log log N log N)

• Space. O(n)

b

X1 X2

X4 X4

X8X7

X6 X9

X11

X12

X10

Solution 4: Interval Biased Search

17
12

6

1 1

2

22

4
6 5

• Lemma. For a tree with n nodes and edge weights from universe [0…N] we can solve
the weighted ancestor problem in O(n) space and O(log (N/S)) time, where S is size of
subtree hanging off path.

• Access(x): Weighted ancestor query on each heavy path on root to leaf path.

• Time. log (N/S1) + log (S1/S2) + log (S2/S3) + log (S3/S4) + ... + O(1)

• = log N - log S1 + log S1 - log S2 + log S2 - log S3 + log S3 + ... + O(1)

• = O(log N)

Random Access

Space Time

Top down search O(n) O(h) = O(n)

Heavy path
decomposition O(n2) O(log N log log N)

Heavy path redundancy O(n) O(log N log log N)

Interval biased search O(n) O(log N)

Lower bound n logO(1) N Ω(log1-ε N)

Grammar Compression and Random
access

• Grammar Compression

• Random Access

