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• Statistical compression. 

• Huffman, arithmetic encoding,...


• Dictionary compression.

• Lempel-Ziv, ...


• Grammar compression.

• Repair, sequitur, greedy, bisection, …


• Kolmogorov complexity.

Grammar Compression



• Grammar compression. Encode string S as an grammar 
G that generates S.


• Straight-line program. Assume G is a straight-line 
program.

• G is acyclic.

• Each production in G is either Xi ➞ XjXk or Xi ➞ τ.


• Encoding. Re-pair, bisection, greedy, …

• Decoding. Unfold productions top-down. 

Grammar Compression
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• Re-pair compression [Larsson and Moffat 2000]. 

• Start with string S.

• Replace a most frequent pair ab by new character Xi. Add  production Xi ➞ ab.

• Repeat until string is a single character. 
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• Grammar compression properties.

• Many dictionary schemes can be viewed as grammar compressors.

• Smallest grammar is NP-hard.

• LZ77 is lower bound on the smallest grammar.

• LZ77 can be converted to grammar with blowup by logarithmic factor.

• Grammar very useful for compressed computation.

Grammar Compression



• Random Access Problem. Represent grammar G of size n generating string S of 
length N to support 

• access(i): return S[i]

Random Access
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• Applications.

• Most basic computational task on compressed data. 

• Component in most algorithms and data structures that work directly on 

compressed data (compressed computing).

• Interesting selection of elegant and useful data structural techniques. 

Random Access



• Goal. Random access with O(n) space O(log N) query time.

• Solution in 4 steps.


• Top-down search. Slow but only linear space.

• Heavy-path decompositions. Almost fast but too much space.

• Heavy-path redundancy. Almost fast with linear space.

• Interval-biased search. Fast and linear space.

Random Access
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• Data structure. Store size of string generated by each node.

• Access(x): Top-down search for x.

• Time. O(h) = O(n)

• Space. O(n) 
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• Heavy-path decomposition.

• Start at root. Choose a child of maximum size repeatedly until we reach leaf.

• Repeat for subtrees hanging off tree. 


• Lemma. O(log N) heavy paths on any root-to-leaf path.

• Proof: Size decrease by at least half on each light edge.
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• Data structure. For each heavy path store list of values + char at end of heavy path.

• Access(x): Predecessor search on each heavy-path on root-to-leaf path.

• Time. O(log log N log N)

• Space. O(n2) 
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• Idea. Exploit overlaps in heavy-paths to get compact 
representation.


• Heavy-path suffix forest. 

• Tree of all suffixes of heavy-paths.

• v is a parent of u iff u is heavy child of v.

• Only n nodes.
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• Predecessor on heavy path.

• Weighted ancestor problem on heavy path suffix forest.

• Weigh each edge with size of off-path subtree. 

• Keep left and right edge weights separate.

• Search for x to the left = closest ancestor of distance ≥ x. 

• Similar for search to the right.
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• Lemma. For a tree with n nodes and edge weights from universe [0…N] we can solve 
the weighted ancestor problem in O(n) space and O(log log N) time.


• Access(x): Weighted ancestor query on each heavy-path on root-to-leaf path.

• Time. O(log log N log N)

• Space. O(n)
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• Lemma. For a tree with n nodes and edge weights from universe [0…N] we can solve 
the weighted ancestor problem in O(n) space and O(log (N/S)) time, where S is size of 
subtree hanging off path.


• Access(x): Weighted ancestor query on each heavy path on root to leaf path.

• Time. log (N/S1) + log (S1/S2) + log (S2/S3) + log (S3/S4) + ... + O(1)

• = log N - log S1 + log S1 - log S2 + log S2 - log S3 + log S3 + ... + O(1)

• = O(log N)



Random Access

Space Time

Top down search O(n) O(h) = O(n)

Heavy path 
decomposition O(n2) O(log N log log N)

Heavy path redundancy O(n) O(log N log log N)

Interval biased search O(n) O(log N)

Lower bound n logO(1) N Ω(log1-ε N) 
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