Mandatory Exercise: Hashing

Philip Bille

1 Set Intersection Let $\mathscr{S}=S_{1}, \ldots, S_{k}$ be non-empty sets of integers, $S_{i} \subseteq U=\{0, \ldots, u-1\}, 1 \leq i \leq k$. The total size of the sets is n. We want a data structure for \mathscr{S} that supports the following operation:

- intersect (i, j) : Return yes if $S_{i} \cap S_{j} \neq \emptyset$ and no otherwise.

Solve the following exercises.
1.1 Give a data structure that uses $O\left(k^{2}\right)$ space and supports fast intersect queries. The query time for an intersect query should be $o(n)$, i.e., asymptotically faster than n.
1.2 Give a data structure that uses $O(n)$ space and supports fast queries. Hint: A good solution has a query time that depends on the size of one of the input sets to the intersect query.
$1.3[*]$ (Bonus exercise, not part of the assesment) Give a data structure with $O(\sqrt{n})$ query time and as little space as you can achieve.

In each of the exercises only consider space and query time. Ignore preprocessing time.

