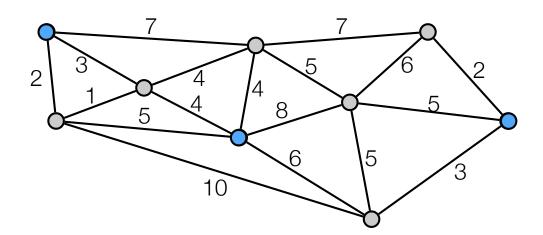
k-center

The k-center problem

- Input. An integer k and a complete, undirected graph G=(V,E), with distance d(i,j) between each pair of vertices i,j ∈ V.
- · d is a metric:
 - dist(i,i) = 0
 - dist(i,j) = dist(j,i)
 - $dist(i,l) \leq dist(i,j) + dist(j,l)$
- Goal. Choose a set $S \subseteq V$, |S| = k, of k centers so as to minimize the maximum distance of a vertex to its closest center.

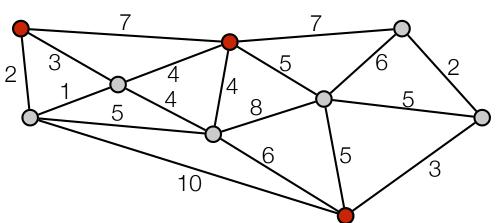
$$S = \operatorname{argmin}_{S \subseteq V, |S| = k} \operatorname{max}_{i \in V} \operatorname{dist}(i, S)$$

Covering radius. Maximum distance of a vertex to its closest center.



k-center: Greedy algorithm

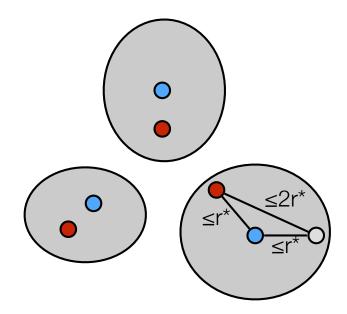
- · Greedy algorithm.
 - Pick arbitrary i in V.
 - Set $S = \{i\}$
 - while |S| < k do
 - Find vertex j farthest away from any cluster center in S
 - Add j to S



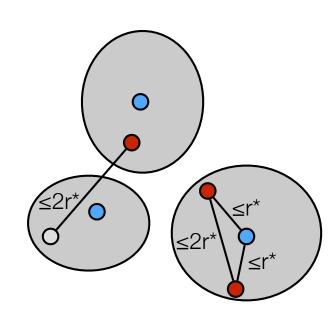
- Greedy is a 2-approximation algorithm:
 - polynomial time ✓
 - valid solution
 - factor 2

k-center: analysis greedy algorithm

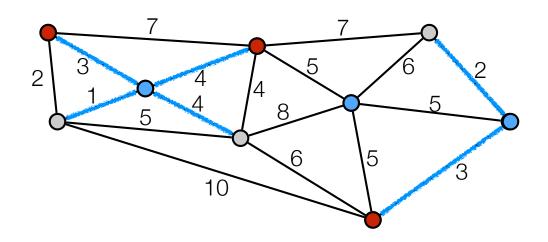
- r* optimal radius.
- Show all vertices within distance 2r* from a center.
- Consider optimal clusters. 2 cases.
 - Algorithm picked one center in each optimal cluster
 - distance from any vertex to its closest center
 ≤ 2r* (triangle inequality)



- Some optimal cluster does not have a center.
 - Some cluster have more than one center.
 - distance between these two centers ≤ 2r*.
 - when second center in same cluster picked it was the vertex farthest away from any center.
 - distance from any vertex to its closest center at most 2r*.

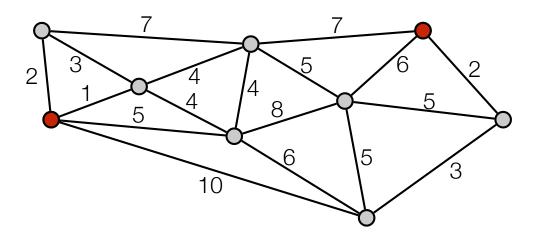


k-center



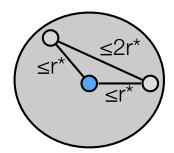
Bottleneck algorithm

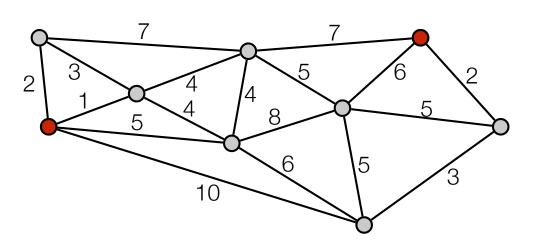
- Assume we know the optimum covering radius r.
- Example: k = 3. r = 4.



Bottleneck algorithm

- Assume we know the optimum covering radius r.
- Example: k = 3. r = 4.
- Analysis.
 - Covering radius is at most 2.
 - Algorithm picks more than k centers => the optimum covering radius is > r.
 - If algorithm pick more than k centers then it picked more than one in some OPT cluster.
 - If $r^* \le r$ we can pick at most one in each optimum cluster.
- Can "guess" optimal covering radius (only a polynomial number of possible values).





k-center: Inapproximability

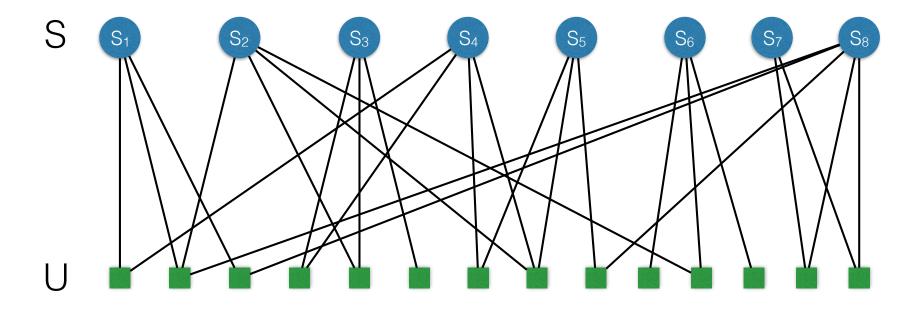
- There is no α -approximation algorithm for the k-center problem for $\alpha < 2$ unless P=NP.
- Proof. Reduction from dominating set.
- Dominating set. Given G=(V,E) and k. Is there a (dominating) set S ⊆ V of size k, such that each vertex is either in S or adjacent to a vertex in S?
- Given instance of the dominating set problem construct instance of k-center problem:
 - Complete graph G' on V.
 - All edges from E has weight 1, all new edges have weight 2.
 - Radius in k-center instance 1 or 2.
 - G has an dominating set of size k <=> opt solution to the k-center problem has radius 1.
 - Use α-approximation algorithm A:
 - opt = 1 => A returns solution with radius at most α < 2.
 - opt = 2 => A returns solution with radius 2.
 - Can use A to distinguish between the 2 cases.

Set cover

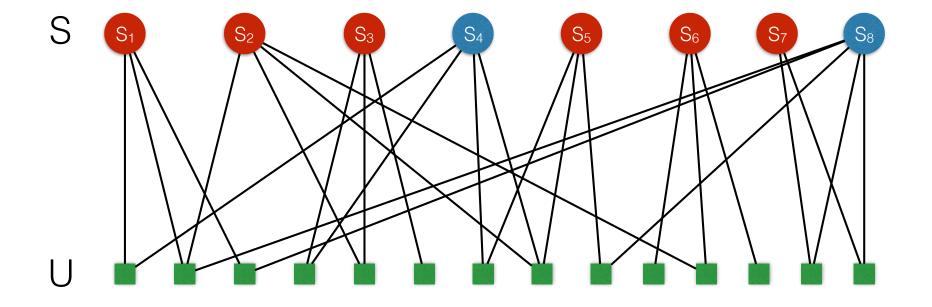
Set cover problem

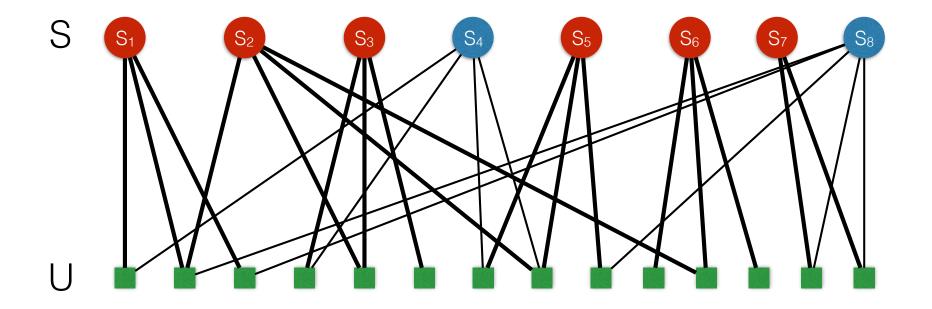
- Set U of n elements.
- Subsets of U: S₁,...,S_m.
- Each set S_i has a weight $w_i \ge 0$.
- Set cover. A collection of subsets C whose union is equal to U.
- Goal. find set cover of minimum weight.

Set Cover

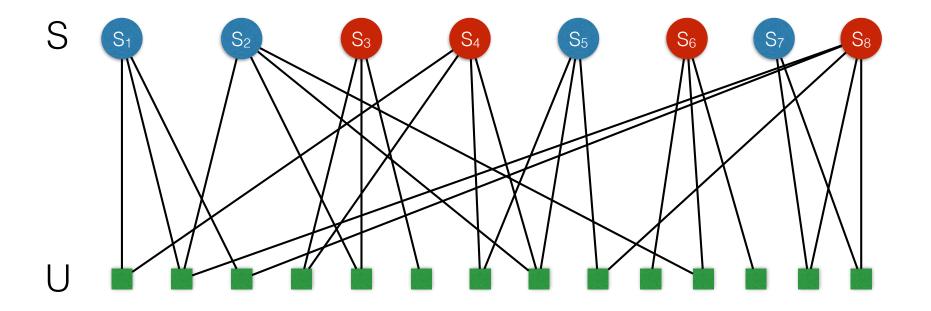


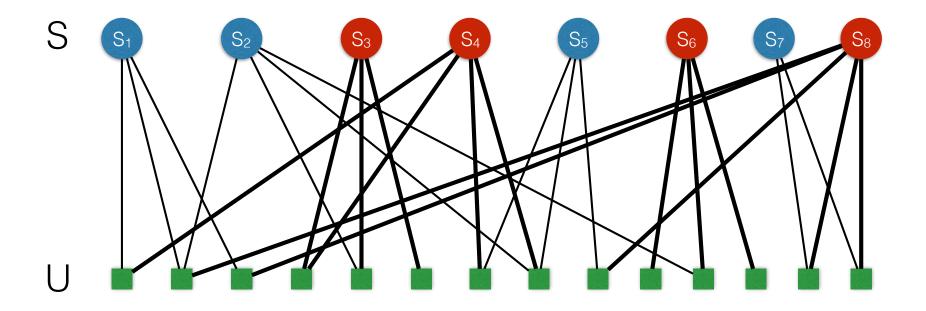
Set Cover

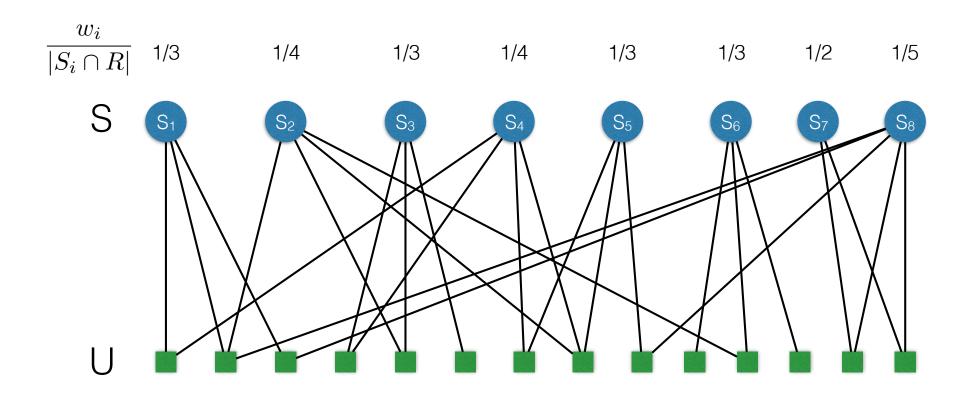


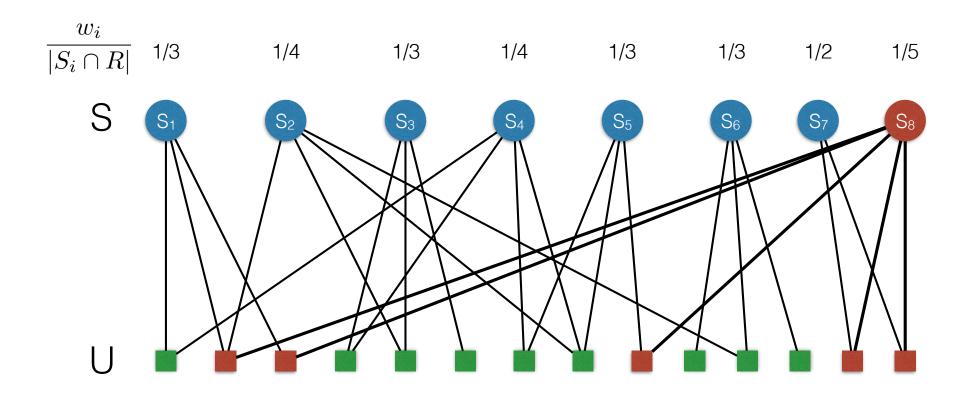


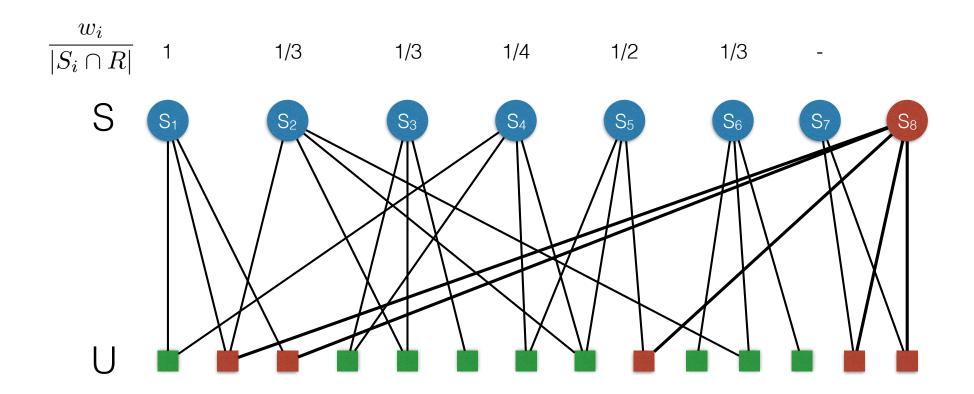
Set Cover

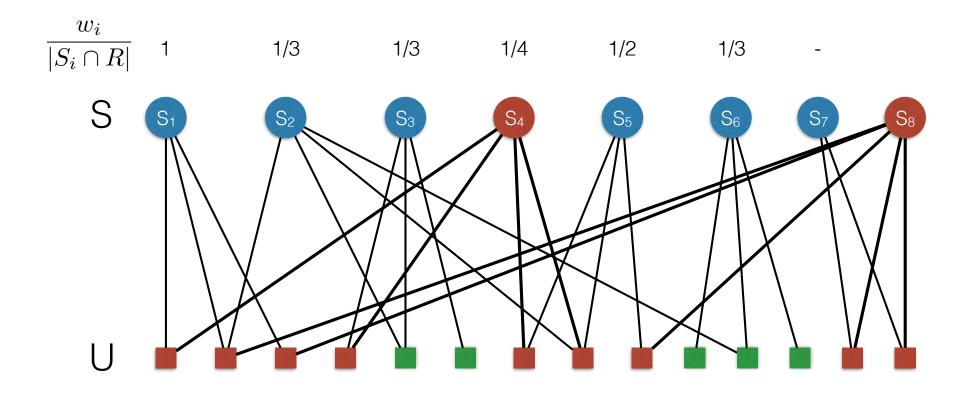


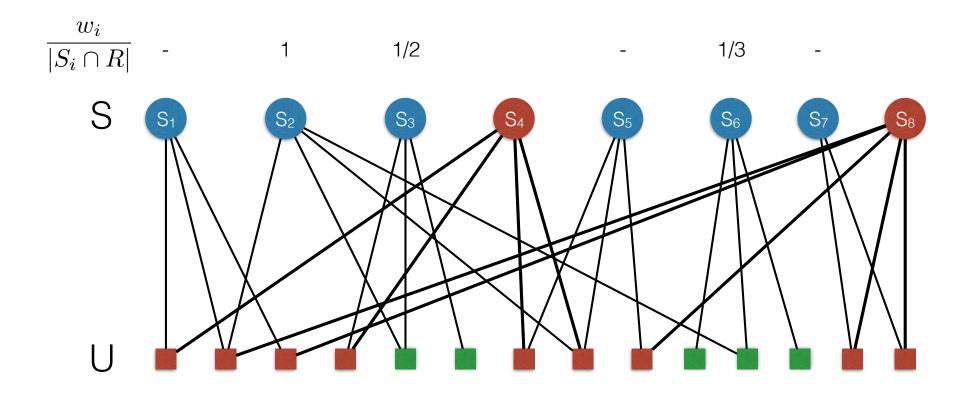


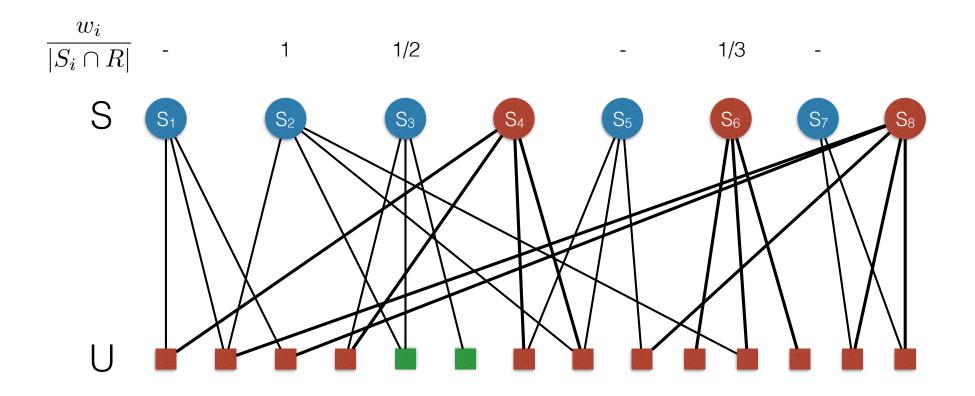


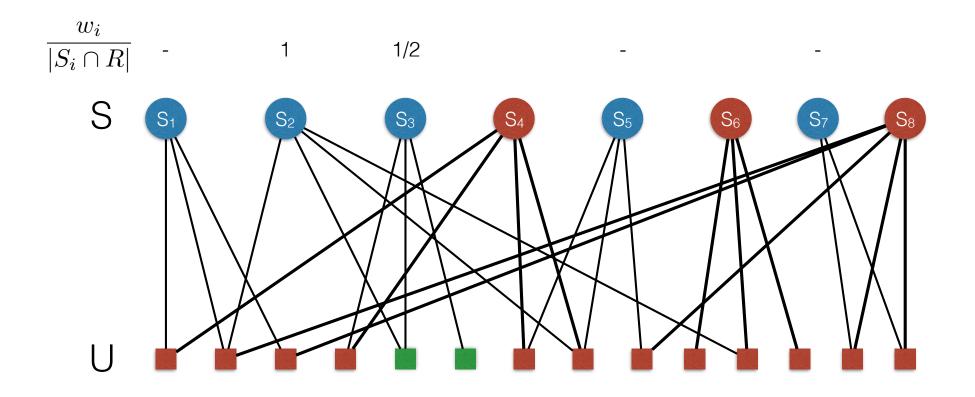


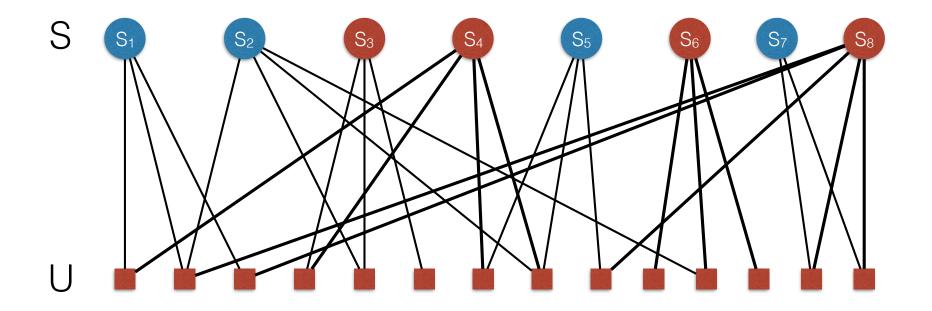












Greedy-set-cover

Set R := U and $C := \emptyset$

while $R \neq \emptyset$

Select the set S_i minimizing $\frac{w_i}{|S_i \cap R|}$

Delete the elements from S_i from R.

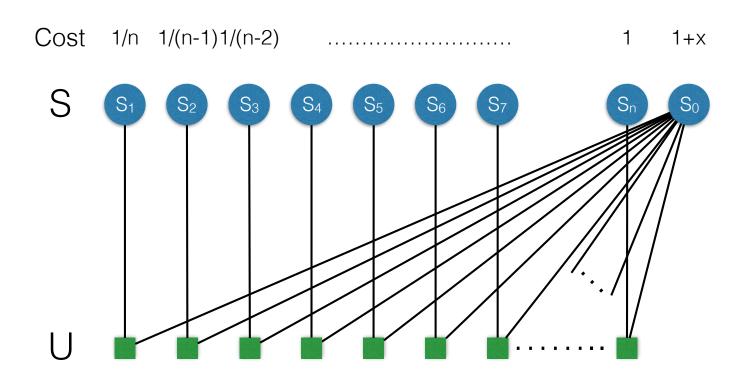
Add S_i to C.

endwhile

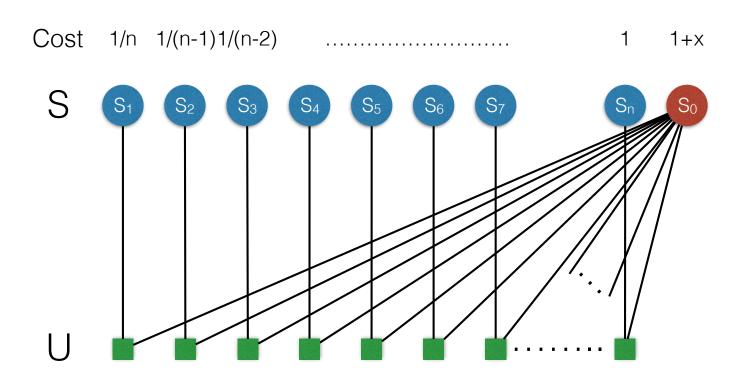
Return C.

- Greedy-set-cover is a n O(log n)-approximation algorithm:
 - polynomial time
 - valid solution
 - factor O(log n)

Set Cover: Greedy algorithm - tight example

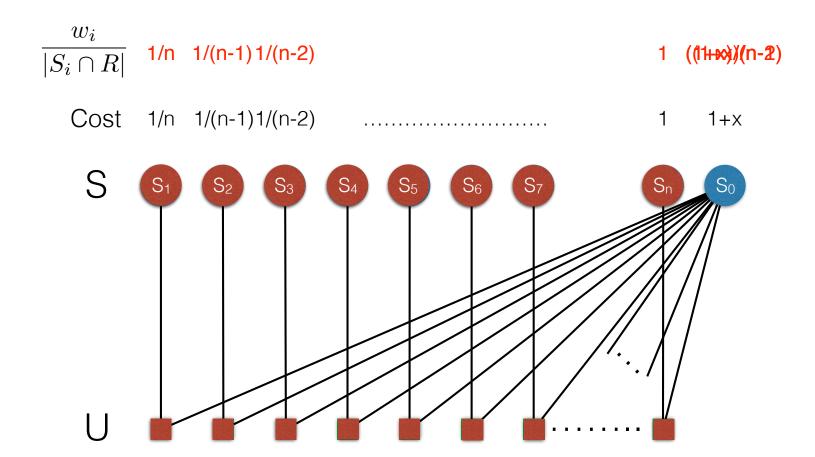


Set Cover: Greedy algorithm - tight example



$$OPT = 1+x$$

Set Cover: Greedy algorithm - tight example



OPT =
$$1+x$$

Greedy = $1/n + 1/(n-1) + 1/(n-2) \dots = H_n$