Introduction 02282

Inge Li Gørtz

Approximation Algorithms

Approximation algorithms

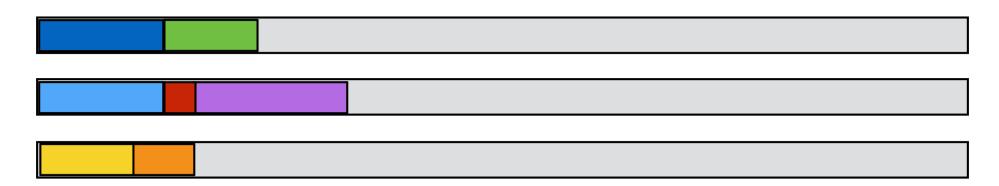
- Fast. Cheap. Reliable. Choose two.
- NP-hard problems: choose 2 of
 - optimal
 - polynomial time
 - all instances
- Approximation algorithms. Trade-off between time and quality.
- Let A(I) denote the value returned by algorithm A on instance I. Algorithm A is an *a-approximation algorithm* if for any instance I of the optimization problem:
 - A runs in polynomial time
 - · A returns a valid solution
 - A(I) $\leq \alpha \cdot \text{OPT}$, where $\alpha \geq 1$, for minimization problems
 - $A(I) \ge \alpha \cdot OPT$, where $\alpha \le 1$, for maximization problems

Load balancing

Simple greedy (list scheduling)

- Simple greedy. Process jobs in any order. Assign next job on list to machine with smallest current load.
- The local search algorithm above is a 2-approximation algorithm:
 - polynomial time \checkmark
 - valid solution \checkmark
 - factor 2

Approximation factor



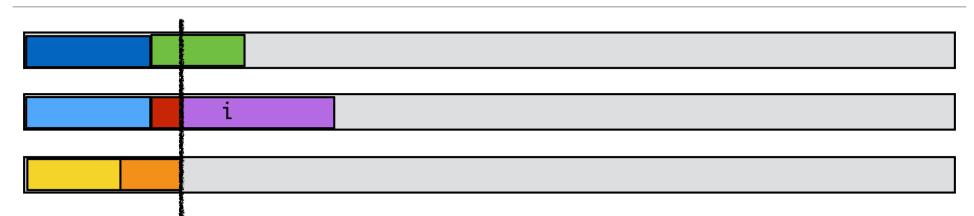
- Lower bounds:
 - Each job must be processed:

$$T^* \ge \max_j t_j$$

• There is a machine that is assigned at least average load:

$$T^* \ge \frac{1}{m} \sum_j t_j$$

Approximation factor



- i: job finishes last.
- All other machines busy until start time s of i. (s = $T_i t_i$)
- Partition schedule into before and after s.
- After $\leq T^*$.
- Before:
 - All machines busy = total amount of work $= m \cdot s$:

$$m \cdot s \le \sum_{i} t_i \quad \Rightarrow \quad s \le \frac{1}{m} \sum_{i} t_i \le T^*$$

• Length of schedule $\leq 2T^*$.

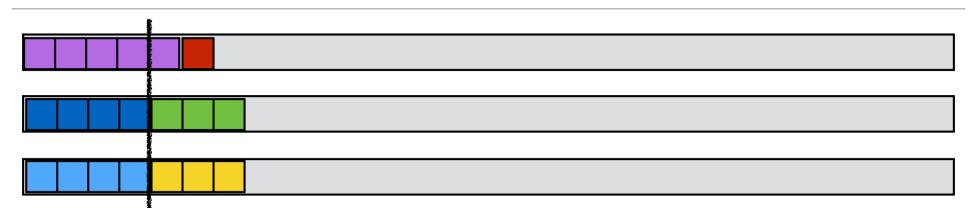
Longest processing time rule

• Longest processing time rule (LPT). Sort jobs in non-increasing order. Assign next job on list to machine as soon as it becomes idle.

Longest processing time rule

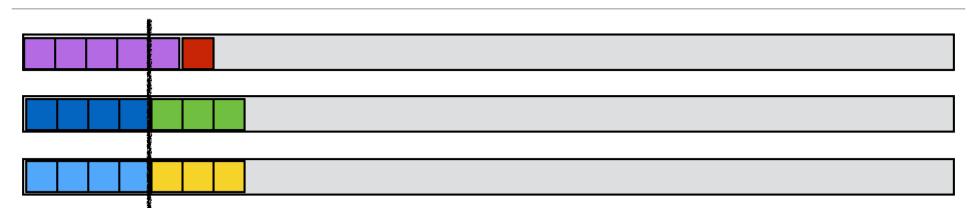
- Longest processing time rule (LPT). Sort jobs in non-increasing order. Assign next job on list to machine as soon as it becomes idle.
- LPT is a is a 3/2-approximation algorithm:
 - polynomial time \checkmark
 - valid solution \checkmark
 - factor 3/2

Longest processing time rule: factor 3/2



- Longest processing time rule (LPT). Sort jobs in non-increasing order. Assign next job on list to machine as soon as it becomes idle.
- Assume $t_1 \ge \ldots \ge t_n$.
- Lower bound: If n > m then $T^* \ge 2t_{m+1}$.
- Factor 3/2:
 - If $m \le n$ then optimal.
 - Before $\leq T^*$
 - After: i job that finishes last.
 - $t_i \le t_{m+1} \le T^*/2$.
 - $T \le T^* + T^*/2 \le 3/2 T^*$.
- Tight?

Longest processing time rule: factor 4/3



- Longest processing time rule (LPT). Sort jobs in non-increasing order. Assign next job on list to machine as soon as it becomes idle.
- Assume $t_1 \ge \ldots \ge t_n$.
- Assume wlog that smallest job finishes last.
- If $p_n \le T^*/3$ then $T \le 4/3 T^*$.
- If $p_n > T^*/3$ then each machine can process at most 2 jobs in OPT.
- Lemma. For any input where the processing time of each job is more than a third of the optimal makespan, LPT computes an optimal schedule.
- Theorem. LPT is a 4/3-approximation algorithm.