
Introduction 02282
Inge Li Gørtz

Approximation Algorithms

• Fast. Cheap. Reliable. Choose two.

• NP-hard problems: choose 2 of

• optimal

• polynomial time

• all instances

• Approximation algorithms. Trade-off between time and quality.

• Let A(I) denote the value returned by algorithm A on instance I. Algorithm A is an α-
approximation algorithm if for any instance I of the optimization problem:

• A runs in polynomial time

• A returns a valid solution

• A(I) ≤ α ∙ OPT, where α ≥ 1, for minimization problems

• A(I) ≥ α ∙ OPT, where α ≤ 1, for maximization problems

Approximation algorithms

Load balancing

• Simple greedy. Process jobs in any order. Assign next job on list to machine with
smallest current load.

• The local search algorithm above is a 2-approximation algorithm:

• polynomial time

• valid solution

• factor 2

Simple greedy (list scheduling)

✓

✓

• Lower bounds:

• Each job must be processed:

• There is a machine that is assigned at least average load:

Approximation factor

T ⇤ � max

j
tj

T ⇤ � 1

m

X

j

tj

• i: job finishes last.

• All other machines busy until start time s of i. (s = Ti - ti)

• Partition schedule into before and after s.

• After ≤ T*.

• Before:

• All machines busy => total amount of work = m⋅s:

• Length of schedule ≤ 2T*.

Approximation factor

i

m · s
X

i

ti) s 1

m

X

i

ti T ⇤

• Longest processing time rule (LPT). Sort jobs in non-increasing order. Assign next
job on list to machine as soon as it becomes idle.

Longest processing time rule

• Longest processing time rule (LPT). Sort jobs in non-increasing order. Assign next
job on list to machine as soon as it becomes idle.

• LPT is a is a 3/2-approximation algorithm:

• polynomial time

• valid solution

• factor 3/2

Longest processing time rule

✓

✓

• Longest processing time rule (LPT). Sort jobs in non-increasing order. Assign next
job on list to machine as soon as it becomes idle.

• Assume t1 ≥ …. ≥ tn.

• Lower bound: If n > m then T* ≥ 2tm+1.

• Factor 3/2:

• If m ≤ n then optimal.

• Before ≤ T*

• After: i job that finishes last.

• ti ≤ tm+1 ≤ T*/2.

• T ≤ T* + T*/2 ≤ 3/2 T*.

• Tight?

Longest processing time rule: factor 3/2

• Longest processing time rule (LPT). Sort jobs in non-increasing order. Assign next
job on list to machine as soon as it becomes idle.

• Assume t1 ≥ …. ≥ tn.

• Assume wlog that smallest job finishes last.

• If pn ≤ T*/3 then T ≤ 4/3 T*.

• If pn > T*/3 then each machine can process at most 2 jobs in OPT.

• Lemma. For any input where the processing time of each job is more than a third of

the optimal makespan, LPT computes an optimal schedule.

• Theorem. LPT is a 4/3-approximation algorithm.

Longest processing time rule: factor 4/3

