Weekplan: Suffix Trees

Philip Bille

References and Reading

[1] Linear work suffix array construction, J. Kärkkäinen, P. Sanders, S. Burkhardt, J. ACM, 2006.
[2] Scribe notes from MIT.
[3] Algorithms on Strings, Trees, and Sequences, Chap. 5-9, D. Gusfield
[4] On the sorting-complexity of suffix tree construction, M. Farach-Colton, P. Ferragina, S. Muthukrishnan, J. ACM, 2000

We recommend reading [1] and [2] in detail. [3] provide an extensive list of applications of suffix trees and [4] is the first suffix-tree construction algorithm matching the sorting time bound.

Exercises

1 Suffix Trees for Multiple Strings The suffix tree for a set of strings S_{1}, \ldots, S_{k} of total length n over alphabet Σ is the compact trie of all suffixes of the strings $S_{1} \$_{1}, S_{2} \$_{2}, \ldots, S_{k} \$_{k}$. Each $\$_{i}$ is a special character not in Σ. The label of each leaf is a set of pairs. Each pair consists of a string index i and position j indicating that the path corresponds to suffix j in string S_{i}. Show how to construct the suffix tree for a set of strings. Hint: Concatenate and use the suffix tree construction algorithm for a single string.

2 Common Substrings and Repeats Solve the following exercises.
2.1 A repeat in a string S is a substring R that occurs at least twice in S. Show how to efficiently compute the length of a longest substring of S that is a repeat.
2.2 Given strings S_{1} and S_{2} a longest common substring is a substring of both S_{1} and S_{2} of maximal length. Show how to efficiently compute the length of a longest common substring of S_{1} and S_{2}.

3 Suffix Tree Construction Bounds Solve the following exercises.
3.1 Show that any algorithm for suffix tree construction of a string of length n over an alphabet Σ must use $\Omega(\operatorname{sort}(n,|\Sigma|))$ worst-case time. Hint: Show that an algorithm using $o(\operatorname{sort}(n,|\Sigma|)$ time would lead to a contradiction.
3.2 Suppose that we drop the requirement that sibling edges are sorted from left-to-right. Show how construct such a suffix tree in $O(n)$ expected time. Hint: hash.

4 Restricted Suffix Search Let S be a string of length n over alphabet Σ. Give an efficient data structure for S that supports the following query:

- rsearch (P, i, j) : report the starting positions of occurrences of string P in $S[i, j]$.

5 LSD and MSD Radix Sort Radix sort that process digits in right-to-left order is called LSD radix sort. If we instead process digits in left-to-right order we call the algorithm MSD radix sort. Solve the following exercises.
5.1 Show that LSD radix sort correctly sorts any input.
5.2 Explain why each step in LSD radix sort must use a stable sorting algorithm.
5.3 Show that MSD radix sort does not correctly sort any input.
5.4 Explain how to modify MSD radix sort to sort correctly.

6 Odd-Even Sampling Suppose we modify the sampling of suffixes in the DC3 algorithm such that the sampled and non-sampled suffixes are those starting at even and odd positions, respectively. Determine if the algorithm still works, i.e., show that it still works or explain where it fails.

7 Suffix Arrays Let S be a string of length n. The suffix array is the array $S A$ of length $n+1$ containing the left-to-right sequence of labels of leaves in the suffix tree. Given the $S A$ and S show how to support search (P) for a string P of length m in time $O(m \log n+o c c)$.

8 Approximate String Matching with Hamming Distance The Hamming distance between two equal length strings S_{1} and S_{2} is the number of positions i such that $S_{1}[i] \neq S_{2}[i]$. Let P and S be strings over alphabet Σ of lengths m and n, respectively. Given a parameter k, show how to compute all ending positions of substrings in S whose Hamming distance to P is at most k. Hint: Longest common extensions.

9 String Predecessors Let $\mathscr{S}=S_{1}, \ldots, S_{k}$ be a set of strings of total length n over alphabet Σ. We are interested in a data structure for \mathscr{S} that supports the following query.

- stringpred (P) : report the lexicographical predecessor of string P.

Solve the following exercises.
9.1 Give a compact data structure that supports stringpred (P) efficiently.
9.2 Show that any data structure must use $\Omega(|P|+\operatorname{pred}(k,|\Sigma|))$ worst-case time for the stringpred (P) query, where $\operatorname{pred}(k,|\Sigma|))$ denotes the time for a predecessor query on a set of size k from a universe Σ. How does this bound match your upper bound from above?

