
Weekplan: Suffix Trees

Philip Bille

References and Reading

[1] Linear work suffix array construction, J. Kärkkäinen, P. Sanders, S. Burkhardt, J. ACM, 2006.

[2] Scribe notes from MIT.

[3] Algorithms on Strings, Trees, and Sequences, Chap. 5-9, D. Gusfield

[4] On the sorting-complexity of suffix tree construction, M. Farach-Colton, P. Ferragina, S. Muthukrishnan, J.
ACM, 2000

We recommend reading [1] and [2] in detail. [3] provide an extensive list of applications of suffix trees and [4] is
the first suffix-tree construction algorithm matching the sorting time bound.

Exercises

1 Suffix Trees for Multiple Strings The suffix tree for a set of strings S1, . . . , Sk of total length n over alphabet
Σ is the compact trie of all suffixes of the strings S1$1, S2$2, . . . , Sk$k. Each $i is a special character not in Σ. The
label of each leaf is a set of pairs. Each pair consists of a string index i and position j indicating that the path
corresponds to suffix j in string Si . Show how to construct the suffix tree for a set of strings. Hint: Concatenate
and use the suffix tree construction algorithm for a single string.

2 Common Substrings and Repeats Solve the following exercises.

2.1 A repeat in a string S is a substring R that occurs at least twice in S. Show how to efficiently compute the
length of a longest substring of S that is a repeat.

2.2 Given strings S1 and S2 a longest common substring is a substring of both S1 and S2 of maximal length. Show
how to efficiently compute the length of a longest common substring of S1 and S2.

3 Suffix Tree Construction Bounds Solve the following exercises.

3.1 Show that any algorithm for suffix tree construction of a string of length n over an alphabet Σ must use
Ω(sort(n, |Σ|)) worst-case time. Hint: Show that an algorithm using o(sort(n, |Σ|) time would lead to a con-
tradiction.

3.2 Suppose that we drop the requirement that sibling edges are sorted from left-to-right. Show how construct
such a suffix tree in O(n) expected time. Hint: hash.

4 Restricted Suffix Search Let S be a string of length n over alphabet Σ. Give an efficient data structure for S
that supports the following query:

• rsearch(P, i, j): report the starting positions of occurrences of string P in S[i, j].

1

5 LSD and MSD Radix Sort Radix sort that process digits in right-to-left order is called LSD radix sort. If we
instead process digits in left-to-right order we call the algorithm MSD radix sort. Solve the following exercises.

5.1 Show that LSD radix sort correctly sorts any input.

5.2 Explain why each step in LSD radix sort must use a stable sorting algorithm.

5.3 Show that MSD radix sort does not correctly sort any input.

5.4 Explain how to modify MSD radix sort to sort correctly.

6 Odd-Even Sampling Suppose we modify the sampling of suffixes in the DC3 algorithm such that the sampled
and non-sampled suffixes are those starting at even and odd positions, respectively. Determine if the algorithm
still works, i.e., show that it still works or explain where it fails.

7 Suffix Arrays Let S be a string of length n. The suffix array is the array SA of length n + 1 containing the
left-to-right sequence of labels of leaves in the suffix tree. Given the SA and S show how to support search(P) for
a string P of length m in time O(m log n+ occ).

8 Approximate String Matching with Hamming Distance The Hamming distance between two equal length
strings S1 and S2 is the number of positions i such that S1[i] 6= S2[i]. Let P and S be strings over alphabet Σ of
lengths m and n, respectively. Given a parameter k, show how to compute all ending positions of substrings in S
whose Hamming distance to P is at most k. Hint: Longest common extensions.

9 String Predecessors LetS = S1, . . . , Sk be a set of strings of total length n over alphabetΣ. We are interested
in a data structure for S that supports the following query.

• stringpred(P): report the lexicographical predecessor of string P.

Solve the following exercises.

9.1 Give a compact data structure that supports stringpred(P) efficiently.

9.2 Show that any data structure must use Ω(|P| + pred(k, |Σ|)) worst-case time for the stringpred(P) query,
where pred(k, |Σ|)) denotes the time for a predecessor query on a set of size k from a universe Σ. How does
this bound match your upper bound from above?

2

