Predecessor

- Predecessor Problem
- van Emde Boas
- Tries

Predecessors

- Predecessor problem. Maintain a set $S \subseteq U=\{0, \ldots, u-1\}$ supporting
- predecessor (x) : return the largest element in S that is $\leq x$.
- sucessor(x): return the smallest element in S that is $\geq \mathrm{x}$.
- insert(x): set $\mathrm{S}=\mathrm{S} \cup\{\mathrm{x}\}$
- delete(x): set S = S - \{x\}

Predecessor

- Predecessor Problem
- van Emde Boas
- Tries

Predecessors

- Applications.
- Simplest version of nearest neighbor problem.
- Several applications in other algorithms and data structures.
- Probably most practically solved problem in the world: Out all computational resources globally a huge fraction is used to solve the predecessor problem!

Predecessors

- Routing IP-Packets
-Where should we forward the packet to?
- To address matching the longest prefix of 192.110.144.123.
- Equivalent to predecessor problem.
- Best practical solutions based on advanced predecessor data structures [Degermark, Brodnik, Carlsson, Pink 1997]

\square

Predecessor

- Predecessor Problem
- van Emde Boas
- Tries

Predecessors

- Which solutions do we know?
- Linked list
- Balanced binary search trees
- Bitvectors

van Emde Boas

- Goal. Static predecessor with O(log $\log u)$ query time

- Solution in 5 steps.
- Bitvector. Very slow
- Two-level bitvector. Slow.
- van Emde Boas [Boas 1975]. Fast.

Solution 1: Bitvector

- Data structure. Bitvector.
- Predecessor(x): Walk left
- Time. O(u)

Solution 3: Two-Level Bitvector with less Walking

- Data structure. Solution 2 with min and max for each bottom structure.
- Predecessor(x):
- If hi((x) in top and $\operatorname{lo}(x) \geq \min$ in bottom[lo(x)] walk left in bottom.
- if hi(x) in top and lo(x) < min or hi(x) not in top walk left in top. Return max at first non-empty position in top.
- We either walk in bottom or top
- Time. O(u $\left.\mathrm{u}^{1 / 2}\right)$
- Observation
- Query is walking left in one vector of size $u^{1 / 2}+O(1)$ extra work.
- Why not walk using a predecessor data structure?

Solution 2: Two-Level Bitvector

- Data structure. Top bitvector $+\mathrm{u}^{1 / 2}$ bottom bitvectors.
- Predecessor(x): Walk left in bottom + walk left in top + walk left bottom
- Time. $\mathrm{O}\left(\mathrm{u}^{1 / 2}+\mathrm{u}^{1 / 2}+\mathrm{u}^{1 / 2}\right)=\mathrm{O}\left(\mathrm{u}^{1 / 2}\right)$
- To find indices in top and bottom write $x=h i(x) \cdot u^{1 / 2}+l o(w)$
- Index in top is hi(x) and index in bottom is lo(x).

Solution 4: Two-Level Bitvector within Top and Bottom

- Data structure. Apply solution 3 to top and bottom structures of solution 3.
- Walking left in vector of size $u^{1 / 2}$ now takes $O\left(\left(u^{1 / 2}\right)^{1 / 2}\right)=O\left(u^{1 / 4}\right)$ time.
- Each level adds O(1) extra work
- Time. O($\left.\mathrm{u}^{1 / 4}\right)$
- Why not do this recursively?

Solution 5: van Emde Boas

- Data structure. Apply recursively until size of vectors is constant.
- Time. $T(u)=T\left(u^{1 / 2}\right)+O(1)=O(\log \log u)$
- Space. O(u)
- Combined with perfect hashing we can reduce it to $\mathrm{O}(\mathrm{n})$ [Mehlhorn and Näher 1990].

van Emde Boas

- Theorem. We can solve the static predecessor problem in
- $\mathrm{O}(\mathrm{n})$ space.
- O(log log u) time
- Can also be made dynamic.

Tries

- Goal. Static predecessor with $O(n)$ space and $O(\log \log u)$ query time.
- Equivalent to van Emde Boas but different perspective. Simpler?
- Solution in 3 steps.
- Trie. Slow and too much space.
- X-fast trie. Fast but too much space.
- Y-fast trie. Fast and little space.

Tries

$$
S=\{0,2,8,11,14\}=\left\{0000_{2}, 0010_{2}, 1000_{2}, 1011_{2}, 1110_{2}\right\}
$$

- Trie. Tree T of prefixes of binary representation of keys in S .
- Depth of T is $\log u$
- Number of nodes in T is $\mathrm{O}(\mathrm{n} \log \mathrm{u})$.

Solution 2: X-Fast Trie

- Data structure.
- For each level store a dictionary of prefixes of keys + solution 1 .
- Example. $d_{1}=\{0,1\}, d_{2}=\{00,10,11\}, d_{3}=\{000,001,100,101,111\}, d_{4}=S$
- Space. $\mathrm{O}(\mathrm{n} \log \mathrm{u})$

Solution 1: Top-down Traversal

$S=\{0,2,8,11,14\}=\left\{0000_{2}, 0010_{2}, 1000_{2}, 1011_{2}, 1110_{2}\right\}$

- Data structure.
- T as binary tree with min and max for each node + keys ordered in a linked list.
- Predecessor(x): Top-down traversal to find the longest common prefix of x with T .
- x branches of T to right \Rightarrow Predecessor (x) is max of sibling branch.
- x branches of T to left \Rightarrow Successor (x) is min of sibling branch. Use linked list to get predecessor(x)
- Time. O(log u)
- Space. O(n log u)

Solution 2: X-Fast Trie

$$
S=\{0,2,8,11,14\}=\left\{0000_{2}, 0010_{2}, 1000_{2}, 1011_{2}, 1110_{2}\right\}
$$

- Predecessor(x): Binary search over levels to find longest matching prefix with x .
- Example. Predecessor($9=1001_{2}$)
- 10_{2} in d_{2} exists \Rightarrow continue in bottom $1 / 2$ of tree.
- 1002 in d_{3} exists \Rightarrow continue in bottom $1 / 4$ of tree.
- 1001_{2} in d_{4} does not exist $\Rightarrow 1002$ is longest prefix.
- Time. O(log $\log \mathrm{u})$

Solution 2: X-Fast Trie

- Theorem. We can solve the static predecessor problem in
- O(log $\log u)$ time
$O(n \log u)$ space
- How do we get linear space?

Solution 3: Y-Fast Trie

- Bucketing.
- Partition S into $O(n / \log u)$ groups of log u consecutive keys.
- Compute $S^{\prime}=$ set of split keys between groups. $\left|S^{\prime}\right|=O(n / \log u)$
- Data structure. x-fast trie over S' + balanced binary search trees for each group.
- Space.
- x-fast trie: $O\left(\left|S^{\prime}\right| \log u\right)=O(n / \log u \cdot \log u)=O(n)$.
- Balanced binary search trees: $O(n)$
- $\Rightarrow \mathrm{O}(\mathrm{n})$ in total.

Solution 3: Y-Fast Trie

$S=\{0,2,8,11,14\}=\left\{0000_{2}, 0010_{2}, 1000_{2}, 1011_{2}, 1110_{2}\right\}$

- Theorem. We can solve the static predecessor problem in
- O(log log u) time
- O(n) space.

Y-Fast Tries

- Theorem. We can solve the static predecessor problem in
- $\mathrm{O}(\mathrm{n})$ space.
- O(log $\log u)$ time.
- What about updates?
- Theorem. We can solve the dynamic predecessor problem in
- O(n) space
- $\mathrm{O}(\log \log u)$ expected time for predecessor and updates.

From dynamic hashing

Predecessor

- Predecessor Problem
- van Emde Boas
- Tries

