
Weekplan:
Nearest Common Ancestors and Range Minimum Queries

Hjalte Wedel Vildhøj

References and Reading

[1] The LCA problem revisited, M. A. Bender, M. Farach-Colton, Latin American Symposium 2000.

[2] Scribe notes from MIT.

[3] Fast Algorithms for Finding Nearest Common Ancestors, D. Harel and R. E. Tarjan, SIAM J. Comput., 13(2),
338–355.

We recommend reading [1] and [2] in detail.

Exercises

1 [w] Range X Queries We saw how to support range minimum queries on an array A of n elements in linear
space and constant time. Try to support the following similar queries on A:

• Range Maximum Queries

• Range Sum Queries

• Range Median Queries

Let S be a set and c be a constant, and consider a function f : S 7→ [nc]. Formulate a general and sufficient condition
for supporting range f queries in linear space and constant time. Such a query takes indicies 1 ≤ i ≤ j ≤ n and
returns f ({A[i], A[i + 1], . . . , A[j]}).

2 2D Range Emptiness Queries Let P = {(x1, y1), . . . , (xn, yn)} ⊂ [1, n]2 be a set n points of an n× n grid.
Let 1≤ xmin ≤ xmax ≤ n and 1≤ ymax ≤ n. A 3-sided range emptiness query on P is defined as follows:

• Empty(xmin, xmax, ymax): Returns YES if ([xmin, xmax]× [1, ymax])∩ P = ; and NO otherwise.

Give a data structure for P that supports efficient 3-sided range emptiness queries.

3 Distance Queries in Trees Let T be a unrooted tree in which each edge has an integer weight. The distance
between two nodes u and v is the sum of edge weights on the path between u and v. Give a linear-space data
structure for T that can report the distance between any pair of nodes in constant time.

4 Rank Queries Let x = (x1, x2, . . . , xn) ∈ {0,1}n be a bit vector. A rank query on x takes an index 1 ≤ i ≤ n
and returns the number of 1-bits among first i bits in x, i.e., rank(i) =

∑i
j=1 x i .

• [w] Suppose we have a data structure supporting rank queries on x. Provided we care about the value and
not the index, show how to support RMQ on x, using no additional space.

• Assume a word size of log n bits. Give a data structure for x that supports constant-time rank queries using

– O(n log n) bits of space, i.e., O(n) words.

– O(n) bits of space.

– (**) O(n log log n/ log n) bits of space (assuming a read-only copy of x is stored on the side).

1

5 Longest Common Prefixes Let S be a set of strings and n=
∑

x∈S |x | be their total length. Give an O(n)-space
data structure that supports the following query in constant time:

• LCP(i, j): Return the length of the longest common prefix of the two strings x i , x j ∈ S.

E.g., if x i = algorithms and x j = alcohol then LCP(i, j) = |al|= 2.

6 The Longest Common Extension Problem The Longest Common Extension Problem is to preprocess a string
x of length n to support the following query:

• LCE(i, j): returns the length of the longest common prefix of the suffixes of x starting at positions i and j.

Give a reduction from the RMQ problem on bit strings (where we care about the index) to the LCE problem. Try
to do it using no more than O(1) additional space.

7 Cartesian Trees Give an efficient algorithm for constructing the Cartesian tree of an array with n elements.

2

