
Weekplan: Level Ancestor

Philip Bille

References and Reading

[1] The Level Ancestor Problem Simplified, M. A. Bender, M. Farach-Colton, Theoret. Comp. Sci., 2003.

[2] Scribe notes from MIT.

[3] Finding level-ancestors in dynamic trees, P. F. Dietz, WADS 1991.

[4] Finding level-ancestors in trees, O. Berkman, U. Vishkin, J. Comput. System Sci., 1994

We recommend reading [1] and [2] in detail.

Exercises

1 Ancestor Data Structures Let T be a rooted tree with n nodes. We are interested in a data structure suppor-
ting the following operation on T .

• ancestor(v, w): return yes if v is an ancestor of w and no otherwise.

Give a simple and compact data structure that supports fast ancestor queries (without using a level ancestor data
structure).

2 Long Path Decomposition Bounds Prove tight bounds for the number of long paths in a root-to-leaf path.

2.1 Find a tree with n nodes such that the maximum number of long paths on a root-to-leaf path is Ω(
p

n).

2.2 [∗] Show that any tree with n nodes has O(
p

n) long paths on a root-to-leaf path.

3 Level Ancestor on Shallow Binary Trees Let T be a rooted, binary tree with n nodes of height O(log n).
Give a simple and compact data structure that supports fast level ancestor queries (without using a level ancestor
data structure). Hint: A path in T can be encoded in a single word of memory.

4 Ladders Let T be a tree of height h with n nodes. Solve the following exercises.

4.1 Show that any root-to-leaf path can be covered by at most O(log h) = O(log n) ladders.

4.2 Ladders are obtained by doubling the long paths. Suppose we instead extend long paths by a factor k > 2.
What is the effect?

5 Few Leafs Suppose that your input tree has no more than n/ log n leaves. Suggest a (slightly) simplified
solution to the level ancestor problem with linear space and constant query time.

1



6 Heavy Paths Let T be a tree with n nodes. Define size(v) to be the number of descendant of v. Consider the
following decomposition rule.

• First find a root-to-leaf path as follows. Start at the root. At each node continue to a child of maximum size,
until we reach a leaf. Remove the resulting path and recursively apply the rule to the remaining subtrees.

The resulting paths are called the heavy paths and the edges not on a heavy path are light edges. Solve the following
exercises.

6.1 [w] Draw a not to small example of the heavy path in a tree.

6.2 Give an upper bound on the number of heavy paths on any root-to-leaf path in T .

7 Weighted Level Ancestor Let T be tree with n nodes. Each edge is assigned a weight from {0, . . . , u − 1},
and the weight of a node v is the sum of the weight of the edges on the path from the root to v. We want a data
structure that supports the following operation on T . Given a leaf ` and an integer x define

• WLA(`, x): return the deepest ancestor of ` of weight ≤ x .

7.1 [w] Give a simple data structure that supports WLA queries in O(n2) space and O(log log u) time.

7.2 Give a data structure that supports WLA queries in O(n) space and O(log n) time.

7.3 Consider the predecessor problem on n elements from a universe of size u. Any solution that uses O(n) space
requires at least Ω(log log u) query time. Can we hope to solve the weighted level ancestor problem in O(n)
space and O(1) time?

7.4 [∗] Give a data structure that supports WLA queries O(n) space and O(log log u) time. Hint: Use heavy path
decomposition.

2


