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• Dictionary problem. Maintain a set S ⊆ U = {0, ..., u-1} supporting

• lookup(x): return true if x ∈ S and false otherwise.

• insert(x): set S = S ∪ {x}

• delete(x): set S = S - {x}


• Think universe size u = 264  or 232 and |S| ≪ u.


• Satellite information. We may also have associated satellite information for each key.


• Goal. A compact data structure (linear space) with fast operations (constant time). 

Dictionaries
• Applications.


• Maintain a dictionary (!)

• Key component in many data structures and algorithms. (Examples in exercises 

and later lectures).

Dictionaries



• Which solutions do we know?

• Direct addressing (bitvector)

• Linked lists.

• Binary search trees (balanced)

• Chained hashing

Dictionaries
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• Simplifying assumption. |S| ≤ N at all times and we can use space O(N).  

• Chained hashing [Dumey 1956]. 


• Pick some crazy, chaotic, random function h (the hash function) mapping U to {0, 
..., N-1}.


• Initialize an array A[0, ..., N-1].

• A[i] stores a linked list containing the keys in S whose hash value is i. 

Chained Hashing
• Example.


• U = {0, ..., 99}

• S = {1, 16, 41, 54, 66, 96}

• h(x) = x mod 10
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• Operations. How can we support lookup, insert, and delete?

• Lookup(x): Compute h(x). Scan through list for h(x). Return true if x is in list and 

false otherwise.

• Insert(x): Compute h(x). Scan through list for h(x). If x is in list do nothing. 

Otherwise, add x to the front of list.

• Delete(x): Compute h(x). Scan through list for h(x). If x is in list remove it. 

Otherwise, do nothing.


• Time. O(1 + length of linked list for h(x))

Chained Hashing
• Hash functions. A crazy, chaotic hash function (like h(x) = x mod 10) sounds good, 

but there is a big problem.

• For any fixed choice of h, we can find a set whose elements all map to the same 

slot. 

• ⇒ We end up with a single linked list.


• How can we overcome this? 


• Use randomness.

• Assume the input set is random.

• Choose the hash function at random. 

Chained Hashing

• Chained hashing for random hash functions. 

• Assumption 1. h: U → {0, ..., N-1} is chosen uniformly at random from the set of 

all functions from U to {0, ..., N-1}. 

• Assumption 2. h can be evaluated in constant time.


• What is the expected time for an operation OP(x), where OP = {lookup, insert, 
delete}?

Chained Hashing Chained Hashing
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• Theorem. With a random hash function (under assumptions 1 + 2) we can solve the 
dictionary problem in

• O(N) space.

• O(1) expected time per operation (lookup, insert, delete). 


• Expectation is over the choice of hash function.

• Independent of the input set.

Chained Hashing
• Random hash functions. Can we efficiently compute and store a random function?


• We need u log N bits to store an arbitrary function from {0,..., u-1} to {0,..., N-1} 
(specify for each element x in U the value h(x)).


• We need a lot of random bits to generate the function.

• We need a lot of time to generate the function. 

Random Hash Functions

• Do we need a truly random hash function? 

• When did we use the fact that h was random in our analysis?

Random Hash Functions

For all x 6= y, Pr[h(x) = h(y)]  1/N
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• We do not need a truly random hash function! 

• We only need: For all x ≠ y, Pr[h(x) = h(y)] ≤ 1/N 

• Captured in definition of universal hashing.

Random Hash Functions
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• Universel hashing [Carter and Wegman 1979].

• Let H be a set of functions mapping U to {0, ..., N-1}. 

• H is universal if for any x≠y in U and h chosen uniformly at random in H, 

• Pr[h(x) = h(y)] ≤ 1/N


• Universal hashing and chaining.

• If we can find family of universal hash functions such that 


• we can store it in small space

• we can evaluate it in constant time


• ⇒ efficient chained hashing without special assumptions.

Universal Hashing

• Positional number systems. For integers x and p, the base-p representation of x is x 
written in base p. 


• Example. 

• (10)10 = (1010)2  (1⋅23 + 0⋅22 + 1⋅21 + 0⋅20 )

• (107)10 = (212)7  (2⋅72 + 1⋅71 + 2⋅70)

Universal Hashing
• Hash function. Given a prime N < p < 2N and a = (a1a2…ar)p , define 


ha(x = (x1x2…xr)p) = a1x1 + a2x2 + ... + arxr mod p

• Example. 


• p = 7

• a = (107)10 = (212)7    


• x = (214)10 = (424)7

• ha(x) = 2⋅4 + 1⋅2 + 2⋅4 mod 7 = 18 mod 7 = 4


• Universal family. 

• H = {ha | a = (a1a2…ar)p ∈ {0, ..., p-1}r}

• Choose random hash function from H ~ choose random a.

• H is universal (next slides).

• O(1) time evaluation. 

• O(1) space. 

• Fast construction (find suitable prime).

Universal Hashing



• Lemma. Let p be a prime. For any a ∈ {1, ..., p-1} there exists a unique inverse a-1 
such that a-1 ⋅ a ≡ 1  mod p. (Zp is a field)


• Example. p = 7

Universal Hashing
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a-1
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• Goal. For random a = (a1a2…ar)p, show that if x = (x1x2…xr)p ≠ y = (y1y2…yr)p then 
Pr[ha(x) = ha(y)] ≤ 1/N 


• (x1x2…xr)p ≠ y = (y1y2…yr)p ⟹ xi ≠ yi for some i. Assume wlog. that xr ≠ yr. 

Universal Hashing

p choices for ar, exactly one causes a collision by uniqueness of inverses.

existence of inverses
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• Lemma. H is universal with O(1) time evaluation and O(1) space. 


• Theorem. We can solve the dictionary problem (without special assumptions) in:

• O(N) space.

• O(1) expected time per operation (lookup, insert, delete). 

Universal Hashing
• For prime p > 0, a ∈ {1, .., p-1}, b ∈ {0, ..., p-1} 


• Hash function from k-bit numbers to l-bit numbers. a is an odd k-bit integer.  

Other Universal Families 

ha,b(x) = (ax + b mod p) mod N

H = {ha,b | a 2 {1, . . . , p� 1}, b 2 {0, . . . , p� 1}}

ha(x) = (ax mod 2

k
)� (k � l)

H = {ha | a is an odd integer in {1, . . . , 2k � 1}}

l most significant bits of the k least significant bits of ax 
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• Static dictionary problem. Given a set S ⊆ U = {0,..,u-1} of size N for preprocessing 
support the following operation 

• lookup(x): return true if x ∈ S and false otherwise.


• As the dictionary problem with no updates (insert and deletes). 

• Set given in advance.

Static Dictionaries and Perfect Hashing

• Dynamic solution. Use chained hashing with a universal hash function as before ⟹ 
solution with O(N) space and O(1) expected time per lookup.

• Can we do better?


• Perfect Hashing. A perfect hash function for S is a collision-free hash function on S. 

• Perfect hash function in O(N) space and O(1) evaluation time ⟹ solution with 

O(N) space and O(1) worst-case lookup time. (Why?)

• Do perfect hash functions with O(N) space and O(1) evaluation time exist for any 

set S?

Static Dictionaries and Perfect Hashing
• Goal. Perfect hashing in linear space and constant worst-case time.

• Solution in 3 steps.


• Solution 1. Collision-free but with too much space.

• Solution 2. Many collisions but linear space.

• Solution 3: FKS scheme [Fredman, Komlós, Szemerédi 1984]. Two-level solution. 

Combines solution 1 and 2.

• At level 1 use solution with lots of collisions and linear space.

• Resolve collisions at level 1 with collision-free solution at level 2.

• lookup(x): look-up in level 1 to find the correct level 2 dictionary. Lookup in 

level 2 dictionary.

Static Dictionaries and Perfect Hashing



• Solution 1. Collision-free but with too much space.

• Use a universal hash function to map into an array of size N2. What is the expected 

total number of collisions in the array?

Static Dictionaries and Perfect Hashing
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• With probability 1/2 we get perfect hashing function. If not perfect try again.

• ⟹ Expected number of trials before we get a perfect hash function is O(1).

• ⟹ For a static set S we can support lookups in O(1) worst-case time using O(N2) 

space.

• Solution 2. Many collisions but linear space.

• As solution 1 but with array of size N. What is the expected total number of 

collisions in the array?

Static Dictionaries and Perfect Hashing
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• Solution 3. Two-level solution.

• At level 1 use solution with lots of collisions and linear space.

• Resolve each collisions at level 1 with collision-free solution at level 2.

• lookup(x): look-up in level 1 to find the correct level 2 dictionary. Lookup in level 

2 dictionary.

• Example.


• S = {1, 16, 41, 54, 66, 96}   

• Level 1 collision sets: 


• S1 = {1, 41}, 

• S4 = {54}, 

• S6 = {16, 66, 96}


• Level 2 hash info stored with subtable.

• (size of table, multiplier a, prime p)


• Time. O(1)

• Space?

Static Dictionaries and Perfect Hashing
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• Space. What is the the total size of level 1 and level 2 hash tables?

Static Dictionaries and Perfect Hashing
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• FKS scheme.

• O(N) space and O(N) expected preprocessing time.

• Lookups with two evaluations of a universal hash function.


• Theorem. We can solve the static dictionary problem for a set S of size N in:

• O(N) space and O(N) expected preprocessing time.

• O(1) worst-case time per lookup.


• Multilevel data structures.

• FKS is example of multilevel data structure technique. Combine different 

solutions for same problem to get an improved solution. 

Static Dictionaries and Perfect Hashing
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