Hashing

* Dictionaries

+ Chained Hashing

* Universal Hashing

+ Static Dictionaries and Perfect Hashing

Philip Bille

Hashing

* Dictionaries

Dictionaries

+ Dictionary problem. Maintain a set S ¢ U = {0, ..., u-1} supporting
+ lookup(x): return true if x € S and false otherwise.
+ insert(x): set S =S u {x}
+ delete(x): set S =S - {x}

+ Think universe size u = 24 or 2%2and |S| « u.

+ Satellite information. We may also have associated satellite information for each key.

+ Goal. A compact data structure (linear space) with fast operations (constant time).

Dictionaries

* Applications.
+ Maintain a dictionary (!)

+ Key component in many data structures and algorithms. (Examples in exercises
and later lectures).

Dictionaries

+ Which solutions do we know?
» Direct addressing (bitvector)
+ Linked lists.
+ Binary search trees (balanced)
» Chained hashing

Hashing

+ Chained Hashing

Chained Hashing

- Simplifying assumption. |S| < N at all times and we can use space O(N).
+ Chained hashing [Dumey 1956].

+ Pick some crazy, chaotic, random function h (the hash function) mapping U to {0,
ey N-1}.

+ Initialize an array A[O, ..., N-1].
+ Ali] stores a linked list containing the keys in S whose hash value is i.

Chained Hashing

+ Example.
- U=1{0,.., 99
- S={1,16, 41, 54, 66, 96} A
- h(x) = x mod 10 of]

Satellite info

=]

I e EXN I o KNI

—[5]

o]

|

Chained Hashing

» Operations. How can we support lookup, insert, and delete?

» Lookup(x): Compute h(x). Scan through list for h(x). Return true if x is in list and
false otherwise.

+ Insert(x): Compute h(x). Scan through list for h(x). If x is in list do nothing.
Otherwise, add x to the front of list.

+ Delete(x): Compute h(x). Scan through list for h(x). If x is in list remove it.
Otherwise, do nothing.

+ Time. O(1 + length of linked list for h(x))

Chained Hashing

« Hash functions. A crazy, chaotic hash function (like h(x) = x mod 10) sounds good,
but there is a big problem.

« For any fixed choice of h, we can find a set whose elements all map to the same
slot.

» = We end up with a single linked list.

+ How can we overcome this?

+ Use randomness.
« Assume the input set is random.
« Choose the hash function at random.

Chained Hashing

+ Chained hashing for random hash functions.

+ Assumption 1. h: U = {0, ..., N-1} is chosen uniformly at random from the set of
all functions from U to {0, ..., N-1}.

» Assumption 2. h can be evaluated in constant time.

» What is the expected time for an operation OP(x), where OP = {lookup, insert,
delete}?

Chained Hashing

Time for OP(z) = O (1 + E [length of linked list for h(z)])
=01+ E[{y e 9| hy)=h(x)}])

1 if h(y) = h(z)
-0
(1 TR {o if h(y) # h(m)D

= 1 if h(y) = h(z)
=0 <1+;€;E {0 ifh(y);éh,(m)D
=01+ Z Pr[h(z) = h(y)])

yeS
=0(1+1+ Y Prlh(x) = h(y))

yes\{z} \
=0(1+1+ Z 1/N) N2 choices for pair (h(x), h(y),
yeS\{z} N of which cause collision

=0(1+14+N(1/N))=0(1)

Chained Hashing

» Theorem. With a random hash function (under assumptions 1 + 2) we can solve the
dictionary problem in
* O(N) space.
+ O(1) expected time per operation (lookup, insert, delete).

» Expectation is over the choice of hash function.
+ Independent of the input set.

Random Hash Functions

+ Random hash functions. Can we efficiently compute and store a random function?

» We need u log N bits to store an arbitrary function from {0,..., u-1} to {0,..., N-1}
(specify for each element x in U the value h(x)).

» We need a lot of random bits to generate the function.
» We need a lot of time to generate the function.

Random Hash Functions
+ Do we need a truly random hash function?
» When did we use the fact that h was random in our analysis?

Time for OP(z) = O (1 + E [length of linked list for h(x)])
=01+ E[{y eS| hy)=h)}])

_ 1 if h(y) = h(x)
O(”E[Z{o ifh(y)#h(z)D

yeS
1 if h(y) = h(z)
=0 E
(1 + yezs {0 if h(y) # h(I)D
=001+ Z Pr[h(z) = h(y)])
yeSsS
=0(1+1+ Z Pr[h(z) = h(y)])
ves\ () ~
—o(+1+ Y yn)y ForalleFy Pl =h) <1/
yeS\{z}

=O0(1+1+ N(1/N)) = 0(1)

Random Hash Functions

« We do not need a truly random hash function!
+ We only need: For all x # y, Pr[h(x) = h(y)] < 1/N
+ Captured in definition of universal hashing.

Hashing

* Universal Hashing

Universal Hashing

+ Universel hashing [Carter and Wegman 1979].
+ Let H be a set of functions mapping U to {0, ..., N-1}.
* His universal if for any xzy in U and h chosen uniformly at random in H,
Prlh(x) = h(y)] = 1/N

+ Universal hashing and chaining.
« If we can find family of universal hash functions such that
» we can store it in small space
* we can evaluate it in constant time
« = efficient chained hashing without special assumptions.

Universal Hashing

+ Positional number systems. For integers x and p, the base-p representation of x is x
written in base p.

+ Example.
+ (10)10=(1010)2 (1-28+0-22+1-21+0-2°)
c (107)10=(212)7 2-72+1-77+2-79

Universal Hashing

+ Hash function. Given a prime N < p < 2N and a = (a1az...ar)p, define
ha(X = (X1X2...Xr)p) = @1X1 + @2X2 + ... + aXr mod p
« Example.
cp=7
+a=(107)10=(212)7
*X= (214)10 = (424)7
*ha(x)=2-44+1-2+2-4mod7=18mod 7 =4

* Universal family.
* H={ha|a=(a1a@z2...a)p € {0, ..., p-1}7}
+ Choose random hash function from H ~ choose random a.
+ H is universal (next slides).
« O(1) time evaluation.
« O(1) space.
+ Fast construction (find suitable prime).

Universal Hashing

+ Lemma. Let p be a prime. For any a € {1, ..., p-1} there exists a unique inverse a™'
suchthata™ - a=1 mod p. (Z is a field)

* Example.p=7

a|1|2]|3|4|5]|6
a—‘l
a1
a'll 1

Universal Hashing

+ Goal. For random a = (a1az...ar)p, show that if x = (X1x2...Xr)p # Y = (Y1y2...yr)p then
Pr{ha(x) = ha(y)] < 1/N

* (X1X2...Xr)p # Y = (Y1y2...yr)p = Xi # yi for some i. Assume wlog. that xr # yr.

Priha((z1 .- 2r)p) = hal((y1- -, yr)p)]
Prlaiz1 + -+ apzr = ary1 + - - - + apy, mod p)
Pra,2, — apyr = 0191 — 0121 + -+ 4+ Gp1Yr—1 — @r_12Zr—1 MOd P gyisience of inverses
=Prla,(z, —yr) =ar(ys — 1) + -+ ar—1(yr—1 — 2,—1) mod p]
Pr[a (z, — y,)(@r —y,) 7' = (@1(yn — 1) + -+ + ar—1(yr—1 — 2r-1)) (@ — y,) " mod p]
P

r[ar = (a1(y1 — 1) + -+ + @r—1(Yr—1 — 2r—1))(@r — y,) "' mod p| =

p choices for ar, exactly one causes a collision by uniqueness of inverses.

Universal Hashing
» Lemma. H is universal with O(1) time evaluation and O(1) space.
» Theorem. We can solve the dictionary problem (without special assumptions) in:

» O(N) space.
+ O(1) expected time per operation (lookup, insert, delete).

Other Universal Families

« Forprimep>0,ae({l,.,p-1},be{0, ..., p-1}
hap(x) = (az + b mod p) mod N
H={hop|lac{l,....p—1}be{0,...,p—1}}
* Hash function from k-bit numbers to I-bit numbers. a is an odd k-bit integer.

| most significant bits of the k least significant bits of ax

ha(z) = (az mod 2%) > (k — 1) ~
H = {h, | a is an odd integer in {1,...,2¥ —1}}

Hashing

+ Static Dictionaries and Perfect Hashing

Static Dictionaries and Perfect Hashing

- Static dictionary problem. Given a set S ¢ U = {0,..,u-1} of size N for preprocessing
support the following operation

+ lookup(x): return true if x € S and false otherwise.

+ As the dictionary problem with no updates (insert and deletes).
+ Set given in advance.

Static Dictionaries and Perfect Hashing

+ Dynamic solution. Use chained hashing with a universal hash function as before =
solution with O(N) space and O(1) expected time per lookup.

» Can we do better?

» Perfect Hashing. A perfect hash function for S is a collision-free hash function on S.

+ Perfect hash function in O(N) space and O(1) evaluation time = solution with
O(N) space and O(1) worst-case lookup time. (Why?)

» Do perfect hash functions with O(N) space and O(1) evaluation time exist for any
set S?

Static Dictionaries and Perfect Hashing

« Goal. Perfect hashing in linear space and constant worst-case time.
+ Solution in 3 steps.

+ Solution 1. Collision-free but with too much space.

+ Solution 2. Many collisions but linear space.

+ Solution 3: FKS scheme [Fredman, Komlos, Szemerédi 1984]. Two-level solution.
Combines solution 1 and 2.

+ At level 1 use solution with lots of collisions and linear space.
» Resolve collisions at level 1 with collision-free solution at level 2.

+ lookup(x): look-up in level 1 to find the correct level 2 dictionary. Lookup in
level 2 dictionary.

Static Dictionaries and Perfect Hashing

+ Solution 1. Collision-free but with too much space.

+ Use a universal hash function to map into an array of size N2. What is the expected
total number of collisions in the array?

z,yES,xH#Y

: 1 if h(y) =h(z
E[#collisions] = E l: Z {0 if hg; #+ hEI;:|

= 1 if h(y) = h(z)
B JfayEXS:w#yE {0 if h(y) # h(w)}

#distinct pairs Universal hashing into N2 range

+ With probability 1/2 we get perfect hashing function. If not perfect try again.
+ = Expected number of trials before we get a perfect hash function is O(1).

+ = For a static set S we can support lookups in O(1) worst-case time using O(N?)
space.

Static Dictionaries and Perfect Hashing

+ Solution 2. Many collisions but linear space.

« As solution 1 but with array of size N. What is the expected total number of
collisions in the array?

El#collisions] = E

1 if h(y) = h(z
Z {0 if h(y) # h(x

h(z)
z,y€S,x#yY h(x)
= 1 if h(y) = h(z)
B z,yeis:,#yE {0 if h(y) # h(x)}
N\ 1 N2 1
- z,yg#ypr[}l(z) - h(ll/)] - <2>N = 7 ' N = 1/2]\7

Static Dictionaries and Perfect Hashing

+ Solution 3. Two-level solution.
+ At level 1 use solution with lots of collisions and linear space.
» Resolve each collisions at level 1 with collision-free solution at level 2.

+ lookup(x): look-up in level 1 to find the correct level 2 dictionary. Lookup in level
2 dictionary.

» Example. —

- S={1,16, 41, 54, 66, 96} T T)

+ Level 1 collision sets: —

+ S1={1, 41}, o |
+ S4 = {54}, 4 ~—>
- S¢ = {16, 66, 96} s| |
+ Level 2 hash info stored with subtable. s —Hl [16 I I 96 I I I 66 I I

* (size of table, multiplier a, prime p) 7
« Time. O(1) 8
» Space? L]

Static Dictionaries and Perfect Hashing

« Space. What is the the total size of level 1 and level 2 hash tables?

0

space = O (N + Z |512) ;7—>
! 3
.

i€{0,..,N—1} L
#collisions = O(N) :_,
5
6
i —{_[16] Jes[[Tfes[[]
#collisions = » Z (“il‘) '
i€{0,...,N—1} R
I
For any integer a, a® = a + 2(%)
— —_—

sl) oo ()

:O<N+Z\Si\+22<|zil>> — O(N + N +2N) = O(N)

Static Dictionaries and Perfect Hashing

* FKS scheme.
» O(N) space and O(N) expected preprocessing time.
» Lookups with two evaluations of a universal hash function.

» Theorem. We can solve the static dictionary problem for a set S of size N in:
» O(N) space and O(N) expected preprocessing time.
» O(1) worst-case time per lookup.

+ Multilevel data structures.

» FKS is example of multilevel data structure technique. Combine different
solutions for same problem to get an improved solution.

Hashing

+ Dictionaries

+ Chained Hashing

+ Universal Hashing

« Static Dictionaries and Perfect Hashing

