Hashing

- Dictionaries
- Chained Hashing
- Universal Hashing
- Static Dictionaries and Perfect Hashing

Philip Bille

Hashing

- Dictionaries
- Chained Hashing
- Universal Hashing
- Static Dictionaries and Perfect Hashing

Dictionaries

- Dictionary problem. Maintain a set $S \subseteq U = \{0, ..., u-1\}$ supporting
 - lookup(x): return true if $x \in S$ and false otherwise.
 - insert(x): set $S = S \cup \{x\}$
 - delete(x): set S = S {x}
- Think universe size $u=2^{64}$ or 2^{32} and $|S|\ll u.$
- Satellite information. We may also have associated satellite information for each key.
- Goal. A compact data structure (linear space) with fast operations (constant time).

Dictionaries

- Applications.
 - Maintain a dictionary (!)
 - Key component in many data structures and algorithms. (Examples in exercises and later lectures).

Dictionaries

- Which solutions do we know?
 - Direct addressing (bitvector)
 - Linked lists.
 - Binary search trees (balanced)
 - Chained hashing

Hashing

- Dictionaries
- Chained Hashing
- Universal Hashing
- Static Dictionaries and Perfect Hashing

- Simplifying assumption. $|S| \le N$ at all times and we can use space O(N).
- Chained hashing [Dumey 1956].
 - Pick some crazy, chaotic, random function h (the hash function) mapping U to {0, ..., N-1}.
 - Initialize an array A[0, ..., N-1].
 - A[i] stores a linked list containing the keys in S whose hash value is i.

- Example.
 - $U = \{0, ..., 99\}$
 - S = {1, 16, 41, 54, 66, 96}
 - h(x) = x mod 10

- Operations. How can we support lookup, insert, and delete?
 - Lookup(x): Compute h(x). Scan through list for h(x). Return true if x is in list and false otherwise.
 - Insert(x): Compute h(x). Scan through list for h(x). If x is in list do nothing.
 Otherwise, add x to the front of list.
 - Delete(x): Compute h(x). Scan through list for h(x). If x is in list remove it. Otherwise, do nothing.
- Time. O(1 + length of linked list for h(x))

- Hash functions. A crazy, chaotic hash function (like h(x) = x mod 10) sounds good, but there is a big problem.
 - For any fixed choice of h, we can find a set whose elements all map to the same slot.
 - \Rightarrow We end up with a single linked list.
 - How can we overcome this?
- Use randomness.
 - Assume the input set is random.
 - Choose the hash function at random.

- · Chained hashing for random hash functions.
 - Assumption 1. h: U → {0, ..., N-1} is chosen uniformly at random from the set of all functions from U to {0, ..., N-1}.
 - Assumption 2. h can be evaluated in constant time.
- What is the expected time for an operation OP(x), where OP = {lookup, insert, delete}?

Time for OP(x) = O(1 + E [length of linked list for <math>h(x)]) $= O(1 + E[|\{y \in S \mid h(y) = h(x)\}|])$ $= O\left(1 + E\left|\sum_{y \in S} \begin{cases} 1 & \text{if } h(y) = h(x) \\ 0 & \text{if } h(y) \neq h(x) \end{cases}\right)\right)$ $= O\left(1 + \sum_{y \in S} E\left[\begin{cases} 1 & \text{if } h(y) = h(x) \\ 0 & \text{if } h(y) \neq h(x) \end{cases}\right]\right)$ $= O(1 + \sum \Pr[h(x) = h(y)])$ $u \in S$ $= O(1 + 1 + \sum_{x \in A} \Pr[h(x) = h(y)])$ $= O(1+1+\sum_{y\in S\setminus\{x\}} 1/N)$ $\sum_{y\in S\setminus\{x\}} 1/N)$ N² choices for pair (h(x), h(y)), N of which cause collision N of which cause collision = O(1 + 1 + N(1/N)) = O(1)

- Theorem. With a random hash function (under assumptions 1 + 2) we can solve the dictionary problem in
 - O(N) space.
 - O(1) expected time per operation (lookup, insert, delete).
- Expectation is over the choice of hash function.
- Independent of the input set.

Random Hash Functions

- Random hash functions. Can we efficiently compute and store a random function?
 - We need u log N bits to store an arbitrary function from {0,..., u-1} to {0,..., N-1} (specify for each element x in U the value h(x)).
 - We need a lot of random bits to generate the function.
 - We need a lot of time to generate the function.

Random Hash Functions

- Do we need a truly random hash function?
- When did we use the fact that h was random in our analysis?

$$\begin{aligned} \text{Time for OP}(x) &= O\left(1 + E\left[\text{length of linked list for } h(x)\right]\right) \\ &= O\left(1 + E\left[\left|\left\{y \in S \mid h(y) = h(x)\right\}\right|\right]\right) \\ &= O\left(1 + E\left[\sum_{y \in S} \left\{\begin{array}{ll}1 & \text{if } h(y) = h(x)\\0 & \text{if } h(y) \neq h(x)\end{array}\right]\right) \\ &= O\left(1 + \sum_{y \in S} E\left[\left\{\begin{array}{ll}1 & \text{if } h(y) = h(x)\\0 & \text{if } h(y) \neq h(x)\end{array}\right]\right) \\ &= O(1 + \sum_{y \in S} \Pr[h(x) = h(y)]) \\ &= O(1 + 1 + \sum_{y \in S \setminus \{x\}} \Pr[h(x) = h(y)]) \\ &= O(1 + 1 + \sum_{y \in S \setminus \{x\}} 1/N) \quad \text{ For all } x \neq y, \ \Pr[h(x) = h(y)] \leq 1/N \\ &= O(1 + 1 + N(1/N)) = O(1) \end{aligned}$$

Random Hash Functions

- We do not need a truly random hash function!
- We only need: For all $x \neq y$, $Pr[h(x) = h(y)] \le 1/N$
- Captured in definition of universal hashing.

Hashing

- Dictionaries
- Chained Hashing
- Universal Hashing
- Static Dictionaries and Perfect Hashing

- Universel hashing [Carter and Wegman 1979].
 - Let H be a set of functions mapping U to {0, ..., N-1}.
 - H is universal if for any $x \neq y$ in U and h chosen uniformly at random in H,

 $\Pr[h(x) = h(y)] \le 1/N$

- Universal hashing and chaining.
 - · If we can find family of universal hash functions such that
 - we can store it in small space
 - we can evaluate it in constant time
 - \Rightarrow efficient chained hashing without special assumptions.

- Positional number systems. For integers x and p, the base-p representation of x is x written in base p.
- Example.
 - $(10)_{10} = (1010)_2 (1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0)$
 - $(107)_{10} = (212)_7 (2 \cdot 7^2 + 1 \cdot 7^1 + 2 \cdot 7^0)$

• Hash function. Given a prime $N and <math>a = (a_1a_2...a_r)_p$, define

$$h_a(x = (x_1x_2...x_r)_p) = a_1x_1 + a_2x_2 + ... + a_rx_r \mod p$$

- Example.
 - p = 7
 - $a = (107)_{10} = (212)_7$
 - $x = (214)_{10} = (424)_7$
 - $h_a(x) = 2 \cdot 4 + 1 \cdot 2 + 2 \cdot 4 \mod 7 = 18 \mod 7 = 4$
- Universal family.
 - $H = \{h_a \mid a = (a_1a_2...a_r)_p \in \{0, ..., p-1\}^r\}$
 - Choose random hash function from H ~ choose random a.
 - H is universal (next slides).
 - O(1) time evaluation.
 - O(1) space.
 - Fast construction (find suitable prime).

- Lemma. Let p be a prime. For any $a \in \{1, ..., p-1\}$ there exists a unique inverse a^{-1} such that $a^{-1} \cdot a \equiv 1 \mod p$. (Z_p is a field)
- Example. p = 7

а	1	2	3	4	5	6
a-1						

а	1	2	3	4	5	6
a-1	1	4	5	2	3	6

- Goal. For random $a = (a_1a_2...a_r)_p$, show that if $x = (x_1x_2...x_r)_p \neq y = (y_1y_2...y_r)_p$ then $Pr[h_a(x) = h_a(y)] \leq 1/N$
- $(x_1x_2...x_r)_p \neq y = (y_1y_2...y_r)_p \Longrightarrow x_i \neq y_i$ for some i. Assume wlog. that $x_r \neq y_r$.

$$\Pr[h_a((x_1 \dots x_r)_p) = h_a((y_1 \dots y_r)_p)] = \Pr[a_1 x_1 + \dots + a_r x_r \equiv a_1 y_1 + \dots + a_r y_r \mod p]$$

$$= \Pr[a_r x_r - a_r y_r \equiv a_1 y_1 - a_1 x_1 + \dots + a_{r-1} y_{r-1} - a_{r-1} x_{r-1} \mod p]$$

$$= \Pr[a_r (x_r - y_r) \equiv a_1 (y_1 - x_1) + \dots + a_{r-1} (y_{r-1} - x_{r-1}) \mod p]$$

$$= \Pr[a_r (x_r - y_r) (x_r - y_r)^{-1} \equiv (a_1 (y_1 - x_1) + \dots + a_{r-1} (y_{r-1} - x_{r-1})) (x_r - y_r)^{-1} \mod p]$$

$$= \Pr[a_r \equiv (a_1 (y_1 - x_1) + \dots + a_{r-1} (y_{r-1} - x_{r-1})) (x_r - y_r)^{-1} \mod p]$$

p choices for a_r, exactly one causes a collision by uniqueness of inverses.

- Lemma. H is universal with O(1) time evaluation and O(1) space.
- Theorem. We can solve the dictionary problem (without special assumptions) in:
 - O(N) space.
 - O(1) expected time per operation (lookup, insert, delete).

Other Universal Families

• For prime $p>0,\,a\in\{1,\,..,\,p\text{-}1\},\,b\in\{0,\,...,\,p\text{-}1\}$

$$h_{a,b}(x) = (ax + b \mod p) \mod N$$
$$H = \{h_{a,b} \mid a \in \{1, \dots, p-1\}, b \in \{0, \dots, p-1\}\}$$

• Hash function from k-bit numbers to I-bit numbers. a is an odd k-bit integer.

I most significant bits of the k least significant bits of ax

$$h_a(x) = (ax \mod 2^k) \gg (k-l)$$

$$H = \{h_a \mid a \text{ is an odd integer in } \{1, \dots, 2^k - 1\}\}$$

Hashing

- Dictionaries
- Chained Hashing
- Universal Hashing
- Static Dictionaries and Perfect Hashing

- Static dictionary problem. Given a set S ⊆ U = {0,..,u-1} of size N for preprocessing support the following operation
 - lookup(x): return true if $x \in S$ and false otherwise.
- As the dictionary problem with no updates (insert and deletes).
- Set given in advance.

- Dynamic solution. Use chained hashing with a universal hash function as before \Rightarrow solution with O(N) space and O(1) expected time per lookup.
 - Can we do better?
- Perfect Hashing. A perfect hash function for S is a collision-free hash function on S.
 - Perfect hash function in O(N) space and O(1) evaluation time ⇒ solution with O(N) space and O(1) worst-case lookup time. (Why?)
 - Do perfect hash functions with O(N) space and O(1) evaluation time exist for any set S?

- Goal. Perfect hashing in linear space and constant worst-case time.
- Solution in 3 steps.
 - Solution 1. Collision-free but with too much space.
 - Solution 2. Many collisions but linear space.
 - Solution 3: FKS scheme [Fredman, Komlós, Szemerédi 1984]. Two-level solution. Combines solution 1 and 2.
 - At level 1 use solution with lots of collisions and linear space.
 - Resolve collisions at level 1 with collision-free solution at level 2.
 - lookup(x): look-up in level 1 to find the correct level 2 dictionary. Lookup in level 2 dictionary.

- Solution 1. Collision-free but with too much space.
- Use a universal hash function to map into an array of size N². What is the expected total number of collisions in the array?

- With probability 1/2 we get perfect hashing function. If not perfect try again.
- \Rightarrow Expected number of trials before we get a perfect hash function is O(1).
- \Rightarrow For a static set S we can support lookups in O(1) worst-case time using O(N²) space.

- Solution 2. Many collisions but linear space.
- As solution 1 but with array of size N. What is the expected total number of collisions in the array?

$$E[\#\text{collisions}] = E \left[\sum_{x,y \in S, x \neq y} \begin{cases} 1 & \text{if } h(y) = h(x) \\ 0 & \text{if } h(y) \neq h(x) \end{cases} \right]$$
$$= \sum_{x,y \in S, x \neq y} E \left[\begin{cases} 1 & \text{if } h(y) = h(x) \\ 0 & \text{if } h(y) \neq h(x) \end{cases} \right]$$
$$= \sum_{x,y \in S, x \neq y} \Pr[h(x) = h(y)] = \binom{N}{2} \frac{1}{N} \leq \frac{N^2}{2} \cdot \frac{1}{N} = 1/2N$$

- Solution 3. Two-level solution.
 - At level 1 use solution with lots of collisions and linear space.
 - Resolve each collisions at level 1 with collision-free solution at level 2.
 - lookup(x): look-up in level 1 to find the correct level 2 dictionary. Lookup in level 2 dictionary.
- Example.
 - S = {1, 16, 41, 54, 66, 96}
 - Level 1 collision sets:
 - $S_1 = \{1, 41\},\$
 - $S_4 = \{54\},\$
 - $S_6 = \{16, 66, 96\}$
 - Level 2 hash info stored with subtable. 6
 - (size of table, multiplier a, prime p)
- Time. O(1)
- Space?

• Space. What is the total size of level 1 and level 2 hash tables?

space =
$$O\left(N + \sum_{i} |S_i|^2\right) = O\left(N + \sum_{i} \left(|S_i| + 2\binom{|S_i|}{2}\right)\right)$$

= $O\left(N + \sum_{i} |S_i| + 2\sum_{i} \binom{|S_i|}{2}\right) = O(N + N + 2N) = O(N)$

• FKS scheme.

- O(N) space and O(N) expected preprocessing time.
- Lookups with two evaluations of a universal hash function.
- Theorem. We can solve the static dictionary problem for a set S of size N in:
 - O(N) space and O(N) expected preprocessing time.
 - O(1) worst-case time per lookup.
- Multilevel data structures.
 - FKS is example of multilevel data structure technique. Combine different solutions for same problem to get an improved solution.

Hashing

- Dictionaries
- Chained Hashing
- Universal Hashing
- Static Dictionaries and Perfect Hashing