Hashing

- Dictionaries
- Chained Hashing
- Universal Hashing
- Static Dictionaries and Perfect Hashing

Philip Bille

Hashing

- Dictionaries
- Chained Hashing
- Universal Hashing
- Static Dictionaries and Perfect Hashing

Dictionaries

- Dictionary problem. Maintain a set $\mathrm{S} \subseteq \mathrm{U}=\{0, \ldots, \mathrm{u}-1\}$ supporting
- lookup(x): return true if $x \in S$ and false otherwise.
- insert(x): set S = S $\cup\{x\}$
- delete(x): set S = S - \{x\}
- Think universe size $u=2^{64}$ or 2^{32} and $|S| \ll u$.
- Satellite information. We may also have associated satellite information for each key.
- Goal. A compact data structure (linear space) with fast operations (constant time).

Dictionaries

- Applications.
- Maintain a dictionary (!)
- Key component in many data structures and algorithms. (Examples in exercises and later lectures).

Dictionaries

- Which solutions do we know?
- Direct addressing (bitvector)
- Linked lists.
- Binary search trees (balanced)
- Chained hashing

Hashing

- Dictionaries
- Chained Hashing
- Universal Hashing
- Static Dictionaries and Perfect Hashing

Chained Hashing

- Simplifying assumption. $|\mathrm{S}| \leq \mathrm{N}$ at all times and we can use space $\mathrm{O}(\mathrm{N})$.
- Chained hashing [Dumey 1956].
- Pick some crazy, chaotic, random function h (the hash function) mapping U to $\{0$, ..., N-1\}.
- Initialize an array $A[0, \ldots, N-1]$.
- $A[i]$ stores a linked list containing the keys in S whose hash value is i.

Chained Hashing

- Example.
- $\mathrm{U}=\{0, \ldots, 99\}$
- $S=\{1,16,41,54,66,96\}$
- $\mathrm{h}(\mathrm{x})=\mathrm{x} \bmod 10$

Chained Hashing

- Operations. How can we support lookup, insert, and delete?
- Lookup(x): Compute $\mathrm{h}(\mathrm{x})$. Scan through list for $\mathrm{h}(\mathrm{x})$. Return true if x is in list and false otherwise.
- Insert(x): Compute $h(x)$. Scan through list for $h(x)$. If x is in list do nothing. Otherwise, add x to the front of list.
- Delete(x): Compute $\mathrm{h}(\mathrm{x})$. Scan through list for $\mathrm{h}(\mathrm{x})$. If x is in list remove it. Otherwise, do nothing.
- Time. $\mathrm{O}(1+$ length of linked list for $\mathrm{h}(\mathrm{x}))$

Chained Hashing

- Hash functions. A crazy, chaotic hash function (like $h(x)=x$ mod 10) sounds good, but there is a big problem.
- For any fixed choice of h, we can find a set whose elements all map to the same slot.
- \Rightarrow We end up with a single linked list.
- How can we overcome this?
- Use randomness.
- Assume the input set is random.
- Choose the hash function at random.

Chained Hashing

- Chained hashing for random hash functions.
- Assumption 1. h: $\mathrm{U} \rightarrow\{0, \ldots, \mathrm{~N}-1\}$ is chosen uniformly at random from the set of all functions from U to $\{0, \ldots, \mathrm{~N}-1\}$.
- Assumption 2. h can be evaluated in constant time.
- What is the expected time for an operation $\mathrm{OP}(\mathrm{x})$, where $\mathrm{OP}=\{$ lookup, insert, delete\}?

Chained Hashing

Time for $\mathrm{OP}(x)=O(1+E[$ length of linked list for $h(x)])$

$$
\begin{aligned}
& =O(1+E[|\{y \in S \mid h(y)=h(x)\}|]) \\
& =O\left(1+E\left[\sum_{y \in S}\left\{\begin{array}{ll}
1 & \text { if } h(y)=h(x) \\
0 & \text { if } h(y) \neq h(x)
\end{array}\right]\right)\right. \\
& =O\left(1+\sum_{y \in S} E\left[\left\{\begin{array}{ll}
1 & \text { if } h(y)=h(x) \\
0 & \text { if } h(y) \neq h(x)
\end{array}\right]\right)\right.
\end{aligned}
$$

$$
=O\left(1+\sum_{y \in S} \operatorname{Pr}[h(x)=h(y)]\right)
$$

$$
\begin{aligned}
& =O\left(1+1+\sum_{y \in S \backslash\{x\}} \operatorname{Pr}[h(x)=h(y)]\right) \\
& =O\left(1+1+\sum_{y \in S \backslash\{x\}} 1 / N\right) \quad \varliminf_{\substack{\mathrm{N}^{2} \text { choices for pair }(\mathrm{h}(\mathrm{x}), \mathrm{h}(\mathrm{y})), \mathrm{N} \text { of which cause collision }}}
\end{aligned}
$$

$$
=O(1+1+N(1 / N))=O(1)
$$

Chained Hashing

- Theorem. With a random hash function (under assumptions $1+2$) we can solve the dictionary problem in
- O(N) space.
- O(1) expected time per operation (lookup, insert, delete).
- Expectation is over the choice of hash function.
- Independent of the input set.

Random Hash Functions

- Random hash functions. Can we efficiently compute and store a random function?
- We need $u \log N$ bits to store an arbitrary function from $\{0, \ldots, u-1\}$ to $\{0, \ldots, N-1\}$ (specify for each element x in U the value $h(x)$).
- We need a lot of random bits to generate the function.
- We need a lot of time to generate the function.

Random Hash Functions

- Do we need a truly random hash function?
- When did we use the fact that h was random in our analysis?

Time for $\mathrm{OP}(x)=O(1+E[$ length of linked list for $h(x)])$

$$
\begin{aligned}
& =O(1+E[|\{y \in S \mid h(y)=h(x)\}|]) \\
& =O\left(1+E\left[\sum_{y \in S}\left\{\begin{array}{ll}
1 & \text { if } h(y)=h(x) \\
0 & \text { if } h(y) \neq h(x)
\end{array}\right]\right)\right. \\
& =O\left(1+\sum_{y \in S} E\left[\left\{\begin{array}{ll}
1 & \text { if } h(y)=h(x) \\
0 & \text { if } h(y) \neq h(x)
\end{array}\right]\right)\right. \\
& =O\left(1+\sum_{y \in S} \operatorname{Pr}[h(x)=h(y)]\right) \\
& =O\left(1+1+\sum_{y \in S \backslash\{x\}} \operatorname{Pr}[h(x)=h(y)]\right) \\
& =O(1+1+\underbrace{}_{y \in S \backslash\{x\}} 1 / N) \quad \text { For all } x \neq y, \operatorname{Pr}[h(x)=h(y)] \leq 1 / N \\
& =O(1+1+N(1 / N))=O(1)
\end{aligned}
$$

Random Hash Functions

- We do not need a truly random hash function!
- We only need: For all $x \neq y, \operatorname{Pr}[h(x)=h(y)] \leq 1 / N$
- Captured in definition of universal hashing.

Hashing

- Dictionaries
- Chained Hashing
- Universal Hashing
- Static Dictionaries and Perfect Hashing

Universal Hashing

- Universel hashing [Carter and Wegman 1979].
- Let H be a set of functions mapping U to $\{0, \ldots, \mathrm{~N}-1\}$.
- H is universal if for any $x \neq y$ in U and h chosen uniformly at random in H,

$$
\operatorname{Pr}[h(x)=h(y)] \leq 1 / N
$$

- Universal hashing and chaining.
- If we can find family of universal hash functions such that
- we can store it in small space
- we can evaluate it in constant time
- \Rightarrow efficient chained hashing without special assumptions.

Universal Hashing

- Positional number systems. For integers x and p, the base-p representation of x is x written in base p.
- Example.
- $(10)_{10}=(1010)_{2}\left(1 \cdot 2^{3}+0 \cdot 2^{2}+1 \cdot 2^{1}+0 \cdot 2^{0}\right)$
- $(107)_{10}=(212)_{7}\left(2 \cdot 7^{2}+1 \cdot 7^{1}+2 \cdot 7^{0}\right)$

Universal Hashing

- Hash function. Given a prime $N<p<2 N$ and $a=\left(a_{1} a_{2} \ldots a_{r}\right)_{p}$, define

$$
h_{a}\left(x=\left(x_{1} x_{2} \ldots x_{r}\right)_{p}\right)=a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{r} x_{r} \bmod p
$$

- Example.
- $\mathrm{p}=7$
- $\mathrm{a}=(107)_{10}=(212)_{7}$
- $x=(214)_{10}=(424)_{7}$
- $h_{a}(x)=2 \cdot 4+1 \cdot 2+2 \cdot 4 \bmod 7=18 \bmod 7=4$
- Universal family.
- $H=\left\{h_{a} \mid a=\left(a_{1} a_{2} \ldots a_{r}\right)_{p} \in\{0, \ldots, p-1\} r\right\}$
- Choose random hash function from H ~ choose random a.
- H is universal (next slides).
- O(1) time evaluation.
- O(1) space.
- Fast construction (find suitable prime).

Universal Hashing

- Lemma. Let p be a prime. For any $\mathrm{a} \in\{1, \ldots, \mathrm{p}-1\}$ there exists a unique inverse a^{-1} such that $a^{-1} \cdot a \equiv 1 \bmod p$. (Z_{p} is a field $)$
- Example. p = 7

a	1	2	3	4	5	6
a^{-1}						

a	1	2	3	4	5	6
a^{-1}	1	4	5	2	3	6

Universal Hashing

- Goal. For random $a=\left(a_{1} a_{2} \ldots a_{r}\right)_{p}$, show that if $x=\left(x_{1} x_{2} \ldots x_{r}\right)_{p} \neq y=\left(y_{1} y_{2} \ldots y_{r}\right)_{p}$ then $\operatorname{Pr}\left[h_{a}(x)=h_{a}(y)\right] \leq 1 / N$
- $\left(x_{1} x_{2} \ldots x_{r}\right)_{p} \neq y=\left(y_{1} y_{2} \ldots y_{r}\right)_{p} \Rightarrow x_{i} \neq y_{i}$ for some i. Assume wlog. that $x_{r} \neq y_{r}$.

$$
\begin{aligned}
& \operatorname{Pr}\left[h_{a}\left(\left(x_{1} \ldots x_{r}\right)_{p}\right)=h_{a}\left(\left(y_{1} \ldots, y_{r}\right)_{p}\right)\right] \\
& =\operatorname{Pr}\left[a_{1} x_{1}+\cdots+a_{r} x_{r} \equiv a_{1} y_{1}+\cdots+a_{r} y_{r} \bmod p\right] \\
& =\operatorname{Pr}\left[a_{r} x_{r}-a_{r} y_{r} \equiv a_{1} y_{1}-a_{1} x_{1}+\cdots+a_{r-1} y_{r-1}-a_{r-1} x_{r-1} \bmod p\right] \quad \text { existence of inverses } \\
& =\operatorname{Pr}\left[a_{r}\left(x_{r}-y_{r}\right) \equiv a_{1}\left(y_{1}-x_{1}\right)+\cdots+a_{r-1}\left(y_{r-1}-x_{r-1}\right) \bmod p\right] \\
& =\operatorname{Pr}\left[a_{r}\left(x_{r}-y_{r}\right)\left(x_{r}-y_{r}\right)^{-1} \equiv\left(a_{1}\left(y_{1}-x_{1}\right)+\cdots+a_{r-1}\left(y_{r-1}-x_{r-1}\right)\right)\left(x_{r}-y_{r}\right)^{-1} \bmod p\right] \\
& =\operatorname{Pr}\left[a_{r} \equiv\left(a_{1}\left(y_{1}-x_{1}\right)+\cdots+a_{r-1}\left(y_{r-1}-x_{r-1}\right)\right)\left(x_{r}-y_{r}\right)^{-1} \bmod p\right]=\frac{1}{p} \leq \frac{1}{N}
\end{aligned}
$$

Universal Hashing

- Lemma. H is universal with $\mathrm{O}(1)$ time evaluation and $\mathrm{O}(1)$ space.
- Theorem. We can solve the dictionary problem (without special assumptions) in:
- O(N) space.
- O(1) expected time per operation (lookup, insert, delete).

Other Universal Families

- For prime $p>0, a \in\{1, \ldots, p-1\}, b \in\{0, \ldots, p-1\}$

$$
\begin{gathered}
h_{a, b}(x)=(a x+b \bmod p) \bmod N \\
H=\left\{h_{a, b} \mid a \in\{1, \ldots, p-1\}, b \in\{0, \ldots, p-1\}\right\}
\end{gathered}
$$

- Hash function from k-bit numbers to l-bit numbers. a is an odd k -bit integer.

I most significant bits of the k least significant bits of ax

$$
h_{a}(x)=\left(a x \bmod 2^{k}\right) \gg(k-l)
$$

$$
H=\left\{h_{a} \mid a \text { is an odd integer in }\left\{1, \ldots, 2^{k}-1\right\}\right\}
$$

Hashing

- Dictionaries
- Chained Hashing
- Universal Hashing
- Static Dictionaries and Perfect Hashing

Static Dictionaries and Perfect Hashing

- Static dictionary problem. Given a set $S \subseteq U=\{0, . ., u-1\}$ of size N for preprocessing support the following operation
- lookup(x): return true if $x \in S$ and false otherwise.
- As the dictionary problem with no updates (insert and deletes).
- Set given in advance.

Static Dictionaries and Perfect Hashing

- Dynamic solution. Use chained hashing with a universal hash function as before \Rightarrow solution with $\mathrm{O}(\mathrm{N})$ space and $\mathrm{O}(1)$ expected time per lookup.
- Can we do better?
- Perfect Hashing. A perfect hash function for S is a collision-free hash function on S .
- Perfect hash function in $\mathrm{O}(\mathrm{N})$ space and $\mathrm{O}(1)$ evaluation time \Rightarrow solution with $\mathrm{O}(\mathrm{N})$ space and $\mathrm{O}(1)$ worst-case lookup time. (Why?)
- Do perfect hash functions with $\mathrm{O}(\mathrm{N})$ space and $\mathrm{O}(1)$ evaluation time exist for any set S?

Static Dictionaries and Perfect Hashing

- Goal. Perfect hashing in linear space and constant worst-case time.
- Solution in 3 steps.
- Solution 1. Collision-free but with too much space.
- Solution 2. Many collisions but linear space.
- Solution 3: FKS scheme [Fredman, Komlós, Szemerédi 1984]. Two-level solution. Combines solution 1 and 2.
- At level 1 use solution with lots of collisions and linear space.
- Resolve collisions at level 1 with collision-free solution at level 2.
- lookup(x): look-up in level 1 to find the correct level 2 dictionary. Lookup in level 2 dictionary.

Static Dictionaries and Perfect Hashing

- Solution 1. Collision-free but with too much space.
- Use a universal hash function to map into an array of size N^{2}. What is the expected total number of collisions in the array?

$$
\begin{aligned}
E[\# \text { collisions }] & =E\left[\sum_{x, y \in S, x \neq y}\left\{\begin{array}{ll}
1 & \text { if } h(y)=h(x) \\
0 & \text { if } h(y) \neq h(x)
\end{array}\right]\right. \\
& =\sum_{x, y \in S, x \neq y} E\left[\left\{\begin{array}{ll}
1 & \text { if } h(y)=h(x) \\
0 & \text { if } h(y) \neq h(x)
\end{array}\right]\right. \\
& =\sum_{x, y \in S, x \neq y} \operatorname{Pr}[h(x)=h(y)]=\binom{N}{2} \frac{1}{N^{2}} \leq \frac{N^{2}}{2} \cdot \frac{1}{N^{2}}=1 / 2
\end{aligned}
$$

- With probability $1 / 2$ we get perfect hashing function. If not perfect try again.
- Expected number of trials before we get a perfect hash function is $\mathrm{O}(1)$.
- \Rightarrow For a static set S we can support lookups in $\mathrm{O}(1)$ worst-case time using $\mathrm{O}\left(\mathrm{N}^{2}\right)$ space.

Static Dictionaries and Perfect Hashing

- Solution 2. Many collisions but linear space.
- As solution 1 but with array of size N . What is the expected total number of collisions in the array?

$$
\begin{aligned}
E[\# \text { collisions }] & =E\left[\sum_{x, y \in S, x \neq y}\left\{\begin{array}{ll}
1 & \text { if } h(y)=h(x) \\
0 & \text { if } h(y) \neq h(x)
\end{array}\right]\right. \\
& =\sum_{x, y \in S, x \neq y} E\left[\left\{\begin{array}{ll}
1 & \text { if } h(y)=h(x) \\
0 & \text { if } h(y) \neq h(x)
\end{array}\right]\right. \\
& =\sum_{x, y \in S, x \neq y} \operatorname{Pr}[h(x)=h(y)]=\binom{N}{2} \frac{1}{N} \leq \frac{N^{2}}{2} \cdot \frac{1}{N}=1 / 2 N
\end{aligned}
$$

Static Dictionaries and Perfect Hashing

- Solution 3. Two-level solution.
- At level 1 use solution with lots of collisions and linear space.
- Resolve each collisions at level 1 with collision-free solution at level 2.
- lookup(x): look-up in level 1 to find the correct level 2 dictionary. Lookup in level 2 dictionary.
- Example.
- $\mathrm{S}=\{1,16,41,54,66,96\}$
- Level 1 collision sets:
- $S_{1}=\{1,41\}$,
- $\mathrm{S}_{4}=\{54\}$,
- $\mathrm{S}_{6}=\{16,66,96\}$
- Level 2 hash info stored with subtable.
- (size of table, multiplier a, prime p)
- Time. O(1)
- Space?

Static Dictionaries and Perfect Hashing

- Space. What is the the total size of level 1 and level 2 hash tables?

$$
\begin{aligned}
\text { space } & =O\left(N+\sum_{i}\left|S_{i}\right|^{2}\right)=O\left(N+\sum_{i}^{\text {For any integer } a, a^{2}=a+2\left(2_{2}^{(}\right)}\left(\left|S_{i}\right|+2\binom{\left|S_{i}\right|}{2}\right)\right) \\
& =O\left(N+\sum_{i}\left|S_{i}\right|+2 \sum_{i}\binom{\left|S_{i}\right|}{2}\right)=O(N+N+2 N)=O(N)
\end{aligned}
$$

Static Dictionaries and Perfect Hashing

- FKS scheme.
- $\mathrm{O}(\mathrm{N})$ space and $\mathrm{O}(\mathrm{N})$ expected preprocessing time.
- Lookups with two evaluations of a universal hash function.
- Theorem. We can solve the static dictionary problem for a set S of size N in:
- $\mathrm{O}(\mathrm{N})$ space and $\mathrm{O}(\mathrm{N})$ expected preprocessing time.
- O(1) worst-case time per lookup.
- Multilevel data structures.
- FKS is example of multilevel data structure technique. Combine different solutions for same problem to get an improved solution.

Hashing

- Dictionaries
- Chained Hashing
- Universal Hashing
- Static Dictionaries and Perfect Hashing

