
Mandatory Exercise: External Memory

Philip Bille

1 Tree Layout in External Memory Let T be a complete binary tree with N = 2h − 1 nodes. The leaves of
T stores a set S of numbers sorted in increasing order from left-to-right in T . Each internal node in T stores the
maximum and minimum number stored in its descendant leaves. A top-down search for a number x traverses T
from the root to a leaf ` and returns ` if ` stores x and otherwise reports that x is not in S. A layout of T maps
each node in T to a location on disk. We want to design layouts of T that supports I/O efficient top-down searches
of T . Solve the following exercises.

1.1 Suppose we layout T according to an inorder traversal of T . Specifically, we store T in an array A of length
N using dN/Be blocks. The root is stored in the center of A and the left and right subtrees of T are stored
recursively in the left and right half of A. Analyse the number of I/Os needed for a top-down search of T in
the I/O model.

1.2 Show how to layout T efficiently in the I/O model. The number of I/Os should be asymptotically smaller
than the previous exercise. Hint: Partition the tree.

1.3 Suppose we layout T according to the following recursive layout.

• If N = O(1), layout the nodes in T according to a inorder traversal of T in an array of size N .

• Otherwise, partition T into a top tree Ttop consisting of all nodes of depth at most h/2 and a number of
bottom trees T1, . . . , Tk defined as the connected subtrees obtained by removing the top tree. Recursive
layout Ttop in an array Atop, and T1, . . . , Tk in arrays A1, . . . , Ak, respectively. The layout for T is the array
Atop · A1 · A2 · · ·Ak, where · denotes concatenation.

Analyse the number of I/Os needed for a top-down search of T with this layout in the cache-oblivious model.

1


