Mandatory Exercise: External Memory

Philip Bille

1 Tree Layout in External Memory Let T be a complete binary tree with $N=2^{h}-1$ nodes. The leaves of T stores a set S of numbers sorted in increasing order from left-to-right in T. Each internal node in T stores the maximum and minimum number stored in its descendant leaves. A top-down search for a number x traverses T from the root to a leaf ℓ and returns ℓ if ℓ stores x and otherwise reports that x is not in S. A layout of T maps each node in T to a location on disk. We want to design layouts of T that supports I/O efficient top-down searches of T. Solve the following exercises.
1.1 Suppose we layout T according to an inorder traversal of T. Specifically, we store T in an array A of length N using $\lceil N / B\rceil$ blocks. The root is stored in the center of A and the left and right subtrees of T are stored recursively in the left and right half of A. Analyse the number of I/Os needed for a top-down search of T in the I/O model.
1.2 Show how to layout T efficiently in the I/O model. The number of I/Os should be asymptotically smaller than the previous exercise. Hint: Partition the tree.
1.3 Suppose we layout T according to the following recursive layout.

- If $N=O(1)$, layout the nodes in T according to a inorder traversal of T in an array of size N.
- Otherwise, partition T into a top tree $T_{\text {top }}$ consisting of all nodes of depth at most $h / 2$ and a number of bottom trees T_{1}, \ldots, T_{k} defined as the connected subtrees obtained by removing the top tree. Recursive layout $T_{\text {top }}$ in an array $A_{\text {top }}$, and T_{1}, \ldots, T_{k} in arrays A_{1}, \ldots, A_{k}, respectively. The layout for T is the array $A_{\text {top }} \cdot A_{1} \cdot A_{2} \cdots A_{k}$, where \cdot denotes concatenation.
Analyse the number of I/Os needed for a top-down search of T with this layout in the cache-oblivious model.

