Mandatory Exercise: External Memory

Philip Bille

1 Tree Layout in External Memory Let T be a complete binary tree with N = 2" — 1 nodes. The leaves of
T stores a set S of numbers sorted in increasing order from left-to-right in T. Each internal node in T stores the
maximum and minimum number stored in its descendant leaves. A top-down search for a number x traverses T
from the root to a leaf £ and returns /£ if ¢ stores x and otherwise reports that x is not in S. A layout of T maps
each node in T to a location on disk. We want to design layouts of T that supports I/O efficient top-down searches
of T. Solve the following exercises.

1.1 Suppose we layout T according to an inorder traversal of T. Specifically, we store T in an array A of length
N using [N /B] blocks. The root is stored in the center of A and the left and right subtrees of T are stored
recursively in the left and right half of A. Analyse the number of I/Os needed for a top-down search of T in
the I/O model.

1.2 Show how to layout T efficiently in the I/O model. The number of I/Os should be asymptotically smaller
than the previous exercise. Hint: Partition the tree.

1.3 Suppose we layout T according to the following recursive layout.

e If N =0(1), layout the nodes in T according to a inorder traversal of T in an array of size N.

e Otherwise, partition T into a top tree Ty, consisting of all nodes of depth at most h/2 and a number of
bottom trees Ty, ..., T\ defined as the connected subtrees obtained by removing the top tree. Recursive
layout T, in an array A, and Ty, ..., Ty in arrays A,, ..., Ay, respectively. The layout for T is the array
Agop A1 - Ay - -+ Ay, where - denotes concatenation.

Analyse the number of I/Os needed for a top-down search of T with this layout in the cache-oblivious model.



