Compression

DTU Compute

02282 Algorithms for Massive Data Sets

Patrick Hagge Cording

Outline

- Introduction to compression
- Burrows-Wheeler Transform
- Lempel-Ziv compression
- Grammar-compression

Encoding and decoding

- Lossless: input message = output message.
- Lossy: input message \approx output message.

One lossless compression scheme can not compress all messages.

- Consider all messages of length 2^n .
- Suppose all messages are encoded to n-1 or fewer bits.
- From n-1 bits, the decoder can distinguish at most 2^{n-1} messages.

If one message is compressed, others must expand.

Quality of compression usually measured by:

- Time used to compress/decompress
- Size of encoded message
- Generality of the technique
- Lossy compression: also quality of reconstructed approximation

Warm-up

Think of a compression scheme that compresses the string

aaaaaabbbbbccccc

Warm-up

Think of a compression scheme that compresses the string

aaaaaabbbbbccccc

Run-length encoding:

$$(\mathbf{a},6)(\mathbf{b},4)(\mathbf{c},5)$$

How does run-length encoding perform on english text?

- Idea: Group characters according to their *context*.
- The letter "t" often occurs followed by "he" in english.
- The BWT is reversible!

Algorithm

- Sort all cyclic rotations of S.
- Store the last character of each cyclic rotation.

BWT example

$S = {\tt bananas}$

Cyclic rotations	Sorted
bananas	ananas <mark>b</mark>
ananasb	anasba <mark>n</mark>
nanasba	asbana <mark>n</mark>
anasban	banana <mark>s</mark>
nasbana	nanasb <mark>a</mark>
asbanan	nasban <mark>a</mark>
sbanana	sbanan <mark>a</mark>

BWT(S) = bnnsaaa

Efficient computation of the BWT

- Append special character (\$) to S.
- Sort the suffixes by constructing a suffix tree or suffix array.

Suffixes	Sorted	Sorted order
bananas\$	ananas\$	2
ananas\$	anas\$	4
nanas\$	as\$	6
anas\$	bananas\$	1
nas\$	nanas\$	3
as\$	nas\$	5
s\$	s\$	7
\$	\$	8

- Let $s_1 s_2 \dots s_n$ be the sorted order of suffixes.
- $BWT(S) = S[s_1 1]S[s_2 1] \dots S[s_n 1]$
- O(n) time and space.
- 10 DTU Compute

• Encode substrings as references to previously seen substrings.

- The LZ77 parse of a string S is a sequence of triplets $(p_1,n_1,c_1)(p_2,n_2,c_2)\dots(p_z,n_z,c_z)$ where
 - p_k is a position in S,
 - n_k is the length,
 - and c_k is a single character.

• For any
$$1 \le k \le z$$
: $p_k + n_k \le k - 1 + \sum_{i=1}^{k-1} n_i$.

LZ77 encoding algorithm

•
$$p = 1$$

- \bullet While $p \leq n$
 - Let S[i..j] be the longest substring of S[1..p-1] s.t. S[i..j] = S[p..p + (j-i)]
 - If $S[i..j] \neq \varepsilon$ then output (i, j i, S[p + (j i) + 1]) otherwise output (-, -, S[p + (j i) + 1])

• Set
$$p = p + (j - i) + 2$$

Efficient implementation

- Use suffix tree for step 1.
- O(n) time and space.

- The LZ78 parse of a string S is a sequence of pairs (phrases) $(r_1,c_1)(r_2,c_2)\ldots(r_z,c_z)$ where
 - r_k is a pointer to an earlier phrase,
 - and c_k is a single character.
- Differ from LZ77 in the way it finds matches.

LZ78 encoding algorithm

The algorithm uses a trie to represent the pairs. Nodes are labelled by phrase numbers and edges by characters.

- Let T be the LZ78 trie, initially having just one node.
- p = 1
- k = 1
- $\bullet \text{ While } p \leq n$
 - \bullet Let S[p..j] be the longest prefix of S[p..n] that is also a string in T
 - Update T to contain S[p..j+1]. Insert new node with label k and label its ingoing edge S[j+1]
 - Set p = j + 2
 - Set k = k + 1

Algorithm runs in O(n) time and O(z) space.

Summary of LZ77 and LZ78

- Used in gzip, png, rar, zip, and gif.
- Many variants:
 - Encode phrases.
 - Sliding window.
 - Non-greedy.
 - Self-referential.
- Greedy LZ77 parse is optimal w.r.t. number of phrases but not w.r.t. total number of bits required to encoded phrases.

Straight Line Program (SLP)

- Context-free grammar in Chomsky normal form:
 - All production rules have the form X = YZ or X = c.
- Generates one string only.

• In compression: redundancies are replaced by production rules.

DTU

Grammar-compression example

abaabaabaabaabaabaabaabaab

 $\underline{ab}a\underline{abab}a\underline{abab}a\underline{abab}a\underline{abab}a\underline{aba}a\underline{ab}$

 $\underline{ab}a\underline{abab}a\underline{abab}a\underline{abab}a\underline{abab}a\underline{abab}a\underline{ab}a\underline{ab}$

 $X_1 \mathtt{a} X_1 X_1 \mathtt{a} X_1 \mathtt{a} X_1 X_1 \mathtt{a} X_1 X_1 \mathtt{a} X_1 \mathtt{a} X_1$

$\underline{ab}a\underline{abab}a\underline{abab}a\underline{abab}a\underline{abab}a\underline{abab}a\underline{ab}a\underline{ab}$

$$\underline{X_{1}} \mathbf{a} X_1 \underline{X_{1}} \mathbf{a} X_1 \underline{x}_1 \mathbf{a} X_1 \underline{X_{1}} \mathbf{a} X_1 \underline{X_{1}} \mathbf{a} X_1 \mathbf{a$$

$\begin{array}{ll} \mathbf{a}\mathbf{b}\mathbf{a}\mathbf{a}\mathbf{b}\mathbf{a}\mathbf{a}\mathbf{b}\mathbf{a}\mathbf{a}\mathbf{b}\mathbf{a}\mathbf{a}\mathbf{b}\mathbf{a}\mathbf{a}\mathbf{b}\mathbf{a}\mathbf{a}\mathbf{b}\\ \underline{X}_1 = \mathbf{a}\mathbf{b}\\ \underline{X}_1 \mathbf{a}X_1 \underline{X}_1 \mathbf{a}X_1 \mathbf{a$

abaababaabaabaabaabaabaab	$X_1 = \mathtt{a}\mathtt{b}$
$\underline{X_{1}} \mathbf{a} X_1 \underline{X_{1}} \mathbf{a} X_1 \mathbf{a} X_1 \underline{X_{1}} \mathbf{a} X_1 \underline{X_{1}} \mathbf{a} X_1 \mathbf{a} X_1 \mathbf{a} X_1$	$X_2 = X_1 \mathtt{a}$
$\underline{X_2X_1}X_2\underline{X_2X_1}X_2\underline{X_1}X_2\underline{X_2}X_1$	$X_3 = X_2 X_1$
$\underline{X_3X_2}X_3\underline{X_3X_2}X_3$	$X_4 = X_3 X_2$

abaababaabaabaabaabaabaab	$X_1 = \mathtt{a}\mathtt{b}$
$\underline{X_{1}} \mathbf{a} X_1 \underline{X_{1}} \mathbf{a} X_1 \mathbf{a} X_1 \underline{X_{1}} \mathbf{a} X_1 \underline{X_{1}} \mathbf{a} X_1 \mathbf{a} X_1 \mathbf{a} X_1$	$X_2 = X_1 \mathtt{a}$
$\underline{X_2X_1}X_2\underline{X_2X_1}X_2\underline{X_1}X_2\underline{X_2}X_1$	$X_3 = X_2 X_1$
$\underline{X_3X_2}X_3\underline{X_3X_2}X_3$	$X_4 = X_3 X_2$

 $X_4 X_3 X_4 X_3$

abaababaabaabaabaabaabaab	$X_1 = \mathtt{a}\mathtt{b}$
$\underline{X_{1}} \mathbf{a} X_1 \underline{X_{1}} \mathbf{a} X_1 \mathbf{a} X_1 \underline{X_{1}} \mathbf{a} X_1 \underline{X_{1}} \mathbf{a} X_1 \mathbf{a} X_1 \mathbf{a} X_1$	$X_2 = X_1 \mathtt{a}$
$\underline{X_2X_1}X_2\underline{X_2X_1}X_2\underline{X_1}X_2\underline{X_2}X_1$	$X_3 = X_2 X_1$
$\underline{X_3X_2}X_3\underline{X_3X_2}X_3$	$X_4 = X_3 X_2$
$\underline{X_4X_3X_4X_3}$	$X_5 = X_4 X_3$

abaabaabaabaabaabaabaabaab	$X_1 = \mathtt{a}\mathtt{b}$
$\underline{X_{1}}\underline{a}X_{1}\underline{X_{1}}\underline{a}X_{1}\underline{a}X_{1}\underline{X_{1}}\underline{a}X_{1}\underline{X_{1}}\underline{a}X_{1}\underline{a}X_{1}\underline{a}X_{1}$	$X_2 = X_1 \mathtt{a}$
$\underline{X_2X_1}X_2\underline{X_2X_1}X_2\underline{X_1}X_2\underline{X_2}X_1$	$X_3 = X_2 X_1$
$\underline{X_3X_2}X_3\underline{X_3X_2}X_3$	$X_4 = X_3 X_2$
$\underline{X_4X_3X_4X_3}$	$X_5 = X_4 X_3$
$X_{5}X_{5}$	

abaababaabaabaabaabaabaab	$X_1 = \mathtt{a}\mathtt{b}$
$\underline{X_{1}} \mathbf{a} X_1 \underline{X_{1}} \mathbf{a} X_1 \mathbf{a} X_1 \underline{X_{1}} \mathbf{a} X_1 \underline{X_{1}} \mathbf{a} X_1 \mathbf{a} X_1 \mathbf{a} X_1$	$X_2 = X_1 \mathtt{a}$
$\underline{X_2X_1}X_2\underline{X_2X_1}X_2\underline{X_1}X_2\underline{X_2}X_1$	$X_3 = X_2 X_1$
$\underline{X_3X_2}X_3\underline{X_3X_2}X_3$	$X_4 = X_3 X_2$
$\underline{X_4 X_3 X_4 X_3}$	$X_5 = X_4 X_3$
$\underline{X_5X_5}$	$X_6 = X_5 X_5$

<u>abaabab</u> a <u>ababaabab</u> a <u>abaab</u> a	$X_1 = \mathtt{a}\mathtt{b}$
$\underline{X_{1}} \mathbf{a} X_1 \underline{X_{1}} \mathbf{a} X_1 \mathbf{a} X_1 \underline{X_{1}} \mathbf{a} X_1 \underline{X_{1}} \mathbf{a} X_1 \mathbf{a} X_1 \mathbf{a} X_1$	$X_2 = X_1 \mathtt{a}$
$\underline{X_2X_1}X_2\underline{X_2X_1}X_2\underline{X_1}X_2\underline{X_2}X_1$	$X_3 = X_2 X_1$
$\underline{X_3X_2}X_3\underline{X_3X_2}X_3$	$X_4 = X_3 X_2$
$X_4 X_3 X_4 X_3$	$X_5 = X_4 X_3$
$\underline{X_5X_5}$	$X_6 = X_5 X_5$
X_6	

abaababaabaabaabaabaabaab	$X_1 = \mathtt{a}\mathtt{b}$
$\underline{X_{1}} \mathbf{a} X_1 \underline{X_{1}} \mathbf{a} X_1 \mathbf{a} X_1 \underline{X_{1}} \mathbf{a} X_1 \underline{X_{1}} \mathbf{a} X_1 \mathbf{a} X_1 \mathbf{a} X_1$	$X_2 = X_1 \mathtt{a}$
$\underline{X_2X_1}X_2\underline{X_2X_1}X_2\underline{X_1}X_2\underline{X_2}X_1$	$X_3 = X_2 X_1$
$\underline{X_3X_2}X_3\underline{X_3X_2}X_3$	$X_4 = X_3 X_2$
$\underline{X_4 X_3 X_4 X_3}$	$X_5 = X_4 X_3$
$\underline{X_5X_5}$	$X_6 = X_5 X_5$
X_6	

• Original data: 26 characters. Compressed data: 6 rules.

Representation and decompression

 $S = {\tt abaabaabaab}$

(Left) the grammar, (center) Directed acyclic graph (DAG) representation, (right) the parse tree. Straight Line Programs are mainly of theoretical interest.

- Efficient computation: Smallest grammar problem is NP-hard.
- We can convert an LZ77 parse of size z to an SLP of size $O(z \log N/z)$.
- We can convert an LZ78 parse of size z to an SLP of size O(z) (exercise).
- A data structure for an SLP is also a data structure an LZ77 or LZ78 compressed string (with some overhead).

Be sure you understand Straight Line Programs – next time we design data structures for them!