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Encoding and decoding

• Lossless: input message = output message.

• Lossy: input message ≈ output message.
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How much can we compress?

One lossless compression scheme can not compress all messages.

• Consider all messages of length 2n.

• Suppose all messages are encoded to n− 1 or fewer bits.

• From n− 1 bits, the decoder can distinguish at most 2n−1 messages.

If one message is compressed, others must expand.
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Quality

Quality of compression usually measured by:

• Time used to compress/decompress

• Size of encoded message

• Generality of the technique

• Lossy compression: also quality of reconstructed approximation
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Warm-up

Think of a compression scheme that compresses the string

aaaaaabbbbccccc

Run-length encoding:

(a, 6)(b, 4)(c, 5)

How does run-length encoding perform on english text?
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Burrows-Wheeler Transform (BWT)

• Idea: Group characters according to their context.

• The letter “t” often occurs followed by “he” in english.

• The BWT is reversible!

Algorithm

• Sort all cyclic rotations of S.

• Store the last character of each cyclic rotation.
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BWT example

S = bananas

Cyclic rotations Sorted
bananas ananasb
ananasb anasban
nanasba asbanan
anasban bananas
nasbana nanasba
asbanan nasbana
sbanana sbanana

BWT (S) = bnnsaaa
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Efficient computation of the BWT
• Append special character ($) to S.
• Sort the suffixes by constructing a suffix tree or suffix array.

Suffixes Sorted Sorted order
bananas$ ananas$ 2
ananas$ anas$ 4
nanas$ as$ 6
anas$ bananas$ 1
nas$ nanas$ 3
as$ nas$ 5
s$ s$ 7
$ $ 8

• Let s1s2 . . . sn be the sorted order of suffixes.
• BWT (S) = S[s1 − 1]S[s2 − 1] . . . S[sn − 1]
• O(n) time and space.
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LZ77

• Encode substrings as references to previously seen substrings.

S' S'a b
i j

S:
k

• The LZ77 parse of a string S is a sequence of triplets
(p1, n1, c1)(p2, n2, c2) . . . (pz, nz, cz) where

• pk is a position in S,
• nk is the length,
• and ck is a single character.

• For any 1 ≤ k ≤ z: pk + nk ≤ k − 1 +
∑k−1

i=1 ni.
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LZ77 encoding algorithm

• p = 1

• While p ≤ n

• Let S[i..j] be the longest substring of S[1..p− 1] s.t.
S[i..j] = S[p..p + (j − i)]

• If S[i..j] 6= ε then output (i, j − i, S[p + (j − i) + 1]) otherwise output
(−,−, S[p + (j − i) + 1])

• Set p = p + (j − i) + 2

Efficient implementation
• Use suffix tree for step 1.

• O(n) time and space.
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LZ78

• The LZ78 parse of a string S is a sequence of pairs (phrases)
(r1, c1)(r2, c2) . . . (rz, cz) where

• rk is a pointer to an earlier phrase,
• and ck is a single character.

• Differ from LZ77 in the way it finds matches.
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LZ78 encoding algorithm

The algorithm uses a trie to represent the pairs. Nodes are labelled by
phrase numbers and edges by characters.

• Let T be the LZ78 trie, initially having just one node.

• p = 1

• k = 1

• While p ≤ n

• Let S[p..j] be the longest prefix of S[p..n] that is also a string in T
• Update T to contain S[p..j + 1]. Insert new node with label k and label its
ingoing edge S[j + 1]

• Set p = j + 2
• Set k = k + 1

Algorithm runs in O(n) time and O(z) space.
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Summary of LZ77 and LZ78

• Used in gzip, png, rar, zip, and gif.

• Many variants:
• Encode phrases.
• Sliding window.
• Non-greedy.
• Self-referential.

• Greedy LZ77 parse is optimal w.r.t. number of phrases but not w.r.t. total
number of bits required to encoded phrases.
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Grammar compression

Straight Line Program (SLP)
• Context-free grammar in Chomsky normal form:

• All production rules have the form X = Y Z or X = c.

• Generates one string only.

• In compression: redundancies are replaced by production rules.
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Grammar-compression example

abaababaabaababaababaabaab

X1 = ab

X1aX1X1aX1aX1X1aX1X1aX1aX1 X2 = X1a

X2X1X2X2X1X2X1X2X2X1 X3 = X2X1

X3X2X3X3X2X3 X4 = X3X2

X4X3X4X3 X5 = X4X3

X5X5 X6 = X5X5

X6

• Original data: 26 characters. Compressed data: 6 rules.
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Representation and decompression
S = abaababaabaab

X7 = X6X5

X6 = X5X4

X5 = X4X3

X4 = X3X1

X3 = X1X2

X2 = b
X1 = a

a b

X1 X2

X4 X3

X6 X5

X7

a b a a b a b a a b a a b

X1 X2

X1 X1 X2 X1 X2

X1

X1 X2

X1 X1 X2

X3

X4 X3 X3 X3

X5 X4 X4 X3

X6 X5

X7

(Left) the grammar,
(center) Directed acyclic graph (DAG) representation,

(right) the parse tree.
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Straight Line Programs

Straight Line Programs are mainly of theoretical interest.

• Efficient computation: Smallest grammar problem is NP-hard.

• We can convert an LZ77 parse of size z to an SLP of size O(z log N/z).

• We can convert an LZ78 parse of size z to an SLP of size O(z) (exercise).

• A data structure for an SLP is also a data structure an LZ77 or LZ78 compressed
string (with some overhead).

Be sure you understand Straight Line Programs – next time we design data
structures for them!
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