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1 Compression Schemes

These notes will introduce the compression schemes known as the Straight Line Program (SLP), LZ77 [24], and
LZ78 [25]. The latter are named after its inventors Lempel and Ziv in the years 1977 and 1978. These three
compression schemes are closely related. For instance, an LZ77 compressed file can be converted to an SLP with
logarithmic overhead and an LZ78 file can be converted with only constant overhead. The conversion can be
done in time nearly linear in the compressed size of the files. Consequently, if we design a data structure for an
SLP of size n we also have a data structure for LZ77 of size O(n log N

n
) and a data structure for LZ78 of size O(n).

An overview of algorithms to convert between files from different compression schemes is given in [11].

1.1 Straight Line Programs

The SLP is a widely studied compression scheme because of its simplicity and it is known to model many other
compression schemes. An SLP is a context-free grammar in Chomsky normal form that generates one string only.
A production rule either has two other rules on its righthand side if it is non-terminal or a single character if it is
terminal. Rules are unambiguous and non-recursive.

For convenience we assume that the SLP is represented as a directed acyclic graph (DAG). Nodes in the DAG
are labeled with the names of production rules. Non-terminals have out-degree 2 and a terminal has one outgoing
edge to a node labelled by one character. An example of an SLP is shown in Figure 1.

X7 = X6X5

X6 = X5X4

X5 = X4X3

X4 = X3X1

X3 = X1X2

X2 = b

X1 = a

a b

X1 X2

X4 X3

X6 X5

X7

a b a a b a b a a b a a b

X1 X2

X1 X1 X2 X1 X2

X1

X1 X2

X1 X1 X2

X3

X4 X3 X3 X3

X5 X4 X4 X3

X6 X5

X7

Figure 1: An SLP compressing the string abaababaabaab, its corresponding DAG, and its parse tree.

Let S denote an SLP with n nodes compressing a string S of size N . The size of the SLP will lie in the
range log N ≤ n ≤ N . To decompress a string we start a top-down left-to-right traversal starting from the node
representing the start rule of the grammar. The tree emerging from this is the parse tree of the SLP and the leaves
on the tree (read from left to right) is the uncompressed string. The height h of S is the longest path from its
root to a leaf in the parse tree of S .

If we want to support decompression of substrings without having to decompress the entire string, then we
need to add auxiliary data to the SLP. The simplest approach requires O(n) space and supports decompression
of an arbitrary substring of length l in O(h+ l) time. Using a much more elaborate data structure, this can be
improved to O(log N + l) time while retaining O(n) space [4]. Using non-linear space, decompression can be
done in O(log N/ log log N + l) time [3]. In some cases, the “kick-off” time can be avoided. We may decompress

1



the prefix or suffix of length l of a string generated by some node in O(l) time, provided that we have already
found said node [10].

Finding the smallest SLP representing a string is NP-hard [5]. However, several approximation algorithms
exist [20, 5, 13, 14] and efficient practical algorithms have been developed [19, 16].

1.2 LZ77

The LZ77 factorization of a string S of size N is a sequence of factors f1, . . . , fz such that these generate S when
expanding them left to right. A factor has the form fk = (i, j,α), where the string S[i, j] is a substring of the string
obtained from expanding f1, . . . , fk−1 and α is a character. Some factors may expand to just α and will then have
null values instead of i and j. The LZ77 factorization defined here is not self-referential. In the self-referential
version of LZ77, a factor fk is allowed to refer to a substring that is a concatenation of a suffix of f1, . . . , fk−1 and a
prefix of itself. Since we at most double the size of the string for every factor we add, the achievable compression
for LZ77 is log N ≤ z ≤ N . The following is an example of an LZ77 factorization of a string.

(−,−,a)(−,−,b)(1,1,a)(2,3,b)(3,6,a)(−,−,b)

Figure 2: The LZ77 factorization of the string abaababaabaab.

To decompress a string we process the factors from f1 to fz . When processing fk = (i, j,α) we append S[i, j]
to the string that we have already decompressed from f1, . . . , fk−1 and then append α.

The greedy LZ77 parse maximizes the substring of f1, . . . , fk−1 referred to from fk, and is known to produce the
optimal LZ77 factorization [7, 6, 21] when measuring the number of factors produced1. The optimal factorization
may be found in O(N) time given the suffix tree/array2 of S.

Given the LZ77 factorization of S we may build an SLP of size O(z log N
z
) for S [20]. Hence, a data structure

using f (n) space for SLPs is also a data structure using O( f (z log N
z
)) space for an LZ77 compressed file of size z.

If we want to convert an SLP to the LZ77 factorization, this can be done in O(poly(n)) time [11].
Unlike the SLP, LZ77 is used widely in data compression software in practice (often combined with other

methods and/or in derivative variants). For example, it is the basis of the gzip, png, rar, and zip file formats.

1.3 LZ78

Much like LZ77, the LZ78 factorization is a sequence of factors f1, . . . , fz that generate S when expanded left
to right. However, in this scheme a factor has the form fk = ( fi ,α), where 1 ≤ i < k and α is a character.
As with LZ77, factors can have a null value instead of fi and in this case only expand to one character. With
LZ78 compression we may achieve a compression in the range

p
N ≤ z ≤ N . The following shows the LZ78

factorization of a string.

(−,a)(−,b)(1,a)(2,a)(4,a)(5,b)

Figure 3: The LZ78 factorization of the string abaababaabaab.

LZ78 can be seen as a restricted version of LZ77 where the strings that are referred to from factors are
restricted to start and end in substrings that correspond to the expansion of a single preceding factor. Contrary to
LZ77, the LZ78 parse may be seen as a grammar, and it converts to an SLP with less overhead. For each unique
character we create a terminal node with an edge to that character. For each factor fk = ( fi ,α) we create a node
vk with vi as its left child and the terminal node representing α as its right child. Finally, we build a binary tree
with the sequence v1, . . . , vz as leaves. The resulting SLP has size O(z). Recent advances also show that we can
convert a string compressed by an SLP into its LZ78 factorization in almost linear time [2, 1].

LZ78 is used in e.g. the gif file format among others.

1The greedy parsing strategy is no longer optimal when measuring the output in number of bits required [9].
2It is assumed for this chapter that the reader is familiar with the suffix tree or array. Otherwise, see [18, 22, 23, 8, 12] or [17, 15].
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