(=]
=
=

>
>
>

Compressed Pattern Matching

02282 Algorithms for Massive Data Sets

Patrick Hagge Cording

b

f(x+Ax):§ (?TX%;“)(x) 8
i=0 "
DTU Compute

Department of Applied Mathematics and Computer Science




Outline

Random access
e O(h)-time solution (solution to mandatory exercise)

e O(log N loglog N)-time solution

Compressed pattern matching
e Classic algorithm

e A more space efficient algorithm

2 DTU Compute

Compression

=
—
=

M

19.4.2015



SLP Notation

® 1 is the size of the SLP

e N is the size of the string compressed by the SLP

e / is the height of the SLP

e S(X;) is the substring produced by node X;

o | X;| = |S(X;)| is the length of the substring produced by node X;

3 DTU Compute Compression

=
—
=

M

19.4.2015



=
—
=

M

Problem definition

Random access:
Given an SLP compressing a string S. Build a data structure that supports
AccEss(i) queries, where ACCESS(i) = STi.

4 DTU Compute Compression 19.4.2015



Simple solution

Data structure

e Store | X;| for each node

AccEss(i)

o Let X; = X; X, be the current node
ep=0

e While current node is not a leaf

o If i — p < |X;| then continue from X;
o Else set p = p + |X;| and continue from X,

5 DTU Compute

Compression

=
—
=

M

19.4.2015



Advanced algorithm — overview

O(log N loglog N) time and O(n?) space
e Heavy-path decomposition

e Predecessor data structure

O(log N loglog N) time and O(n) space
e Heavy-tree decomposition

e Weighted ancestor data structure

6 DTU Compute

Compression

=
—
=

M

19.4.2015



Advanced algorithm — heavy-path decomposition

e Lemma: on any root to leaf path there are at most log N light edges

7 DTU Compute Compression

=
—
=

M

19.4.2015



]
=

Advanced algorithm — O(n?)-space data structure (1/3)

M

e Make heavy-path decomposition of parse tree

X7, a a c
N\ ]
X3 X4 X1 X1 X5
\ /7 \ | | |
X2 X2 X6 X2 X2 X6
/ \ / \ / \ | |
X1 X1 X5 X3 X4
AR AREA |
aabaabacaa X7

e Storing paths: O(n?) space

e A path has length <n
o At most one heavy path can start in each uniquely labelled node

8 DTU Compute Compression 19.4.2015



=
—
=

Advanced algorithm — O(n?)-space data structure (2/3)

M

e Store the relative index of the leaf at the end of the heavy path

e Store the accumulated sums of leaves in left and right hanging subtrees for each
heavy path

/X7\ 2 a 5 a 1 c
X3 X4 -X|12 -X|15 -X|51
\ 7N\ | |
X2 X2 X6 - X23 X2 6 X6 2
/\ /\ /\ | |
X1 X1 X5 0 X3 X4 7
ANNAREA |
aabaabacaa 0 X7

e O(n?) space

9 DTU Compute Compression 19.4.2015



Advanced algorithm — O(n?)-space data structure (3/3)

Query
e Check relative index of path

e Predecessor on left or right values

/”\ ]

m\x

e Predecessor query on at most log N paths

e = O(log N loglog N) time

10 DTU Compute

5a 1c
x|15 -x|51
X|26 X|62
.
ox|7

Compression

=
—
=

M

19.4.2015



Advanced algorithm — weighted ancestor problem

Input:
A tree of size t with integer weights (in the range 1 to V) on its edges.

Weighted ancestors query:
Given a node v and an integer d, return the highest node that is an
ancestor and has depth at least d.

e O(t) space and O(loglog N) query time

=
—
=

M

11 DTU Compute Compression 19.4.2015



Advanced algorithm — O(n)-space data structure (1/2)

e Observation: Heavy paths share suffixes

e Store paths as trees: heavy-tree decomposition

a c
| |
X1 X5
o
/N
X3 X|4
X7

e A node occurs exactly once in the heavy forest = O(n) space

12 DTU Compute

Compression

=
—
=

M

19.4.2015



]
=

M

Advanced algorithm — O(n)-space data structure (2/2)

e For each node X; = X; X,

o If X; — X is a heavy edge then set Left(X; — X;) =0 and
Right(Xi — Xl) = |XT‘

o If X; — X, is a heavy edge then set Left(X; — X,) = |X;| and
Right(X; — X,) =0

e Build weighted ancestor data structure over both set of values

e Store relative index of each heavy path

X7 a .
/ \ o|1 o|1
X3 X1 X5

NEZN o o

X2 X2 X6 X2 3 X6

X/\ /\ /\ ey
1 X1 X5 X3 X4
ARWAREA 2 4]0
aabaabacaa X7
5

Space? Query?
13  DTU Compute Compression 19.4.2015



Problem definition

e Fully-compressed pattern matching

e Semi-compressed pattern matching

Semi-compressed pattern matching, decision variant:

Given an SLP of size n compressing a string S of length IV and an
uncompressed pattern P of size M, return YES if P occurs as a substring
in S and NO otherwise.

=
—
=

M

14 DTU Compute Compression 19.4.2015



Overview

e Reduction to uncompressed pattern matching

e Relevant substrings
e O(nM) time and space algorithm
e O(nM) time and O(n + M) space algorithm

o Left-tree decomposition

15 DTU Compute Compression

=
—
=

M

19.4.2015



Relevant substrings

e The relevant substring of X; w.r.t. P is
R (X3) = S(X)[IX] = M, [X[]S(X)[1, M — 1]

X;
/ \
X, X,

e Relevant substring Lemma: P occurs in S iff P occurs in Ry (X;) for some

1<i<n.
16 DTU Compute

=
—
=

M

19.4.2015



Reduction to uncompressed pattern matching

e Compute the relevant substrings

e Search for P in the relevant substrings using an algorithm for (uncompressed)
string pattern matching, e.g., the Knuth-Morris-Prath algorithm

17 DTU Compute

=
—
=

M

Compression 19.4.2015



O(nM) time and space algorithm (1/2)

e To compute Ry (X;) we need S(X;)[|X:| — M + 1,|X;|] and S(X,)[1, M — 1]

a if X; =a
Pref(X;) =< Pref(X)) if | X >M—1
S(Xi)Pref(X;)[1,M — |X;] — 1] otherwise

a if X; =a
Suf(X;) = ¢ Suf(X,) if | X|>M-—1
Suf(X)[|Xr| + 1, M]S(X,) otherwise

e Tables require O(nm) time and space

18 DTU Compute

=
—
=

M

Compression 19.4.2015



]
=

O(nM) time and space algorithm (2/2)

M

e Compute Pref and Suf tables for all X; in the SLP
o Let Ry (X;) = Suf(X;)Pref(X,) for each X; = X; X,. in the SLP

® Run uncompressed string pattern matching algorithm for each Ry (X;)

e Pref and Suf tables require O(nM) time and space

e Since |Rp(X;)| < 2(M — 1) = O(M) the sum of lengths of relevant substrings
is O(nM)

e Using KMP = O(nM) time and space for matching

19 DTU Compute Compression 19.4.2015



Advanced algorithm — idea

e Throw away relevant substring after matching

e What is needed? Fast decompression of prefixes and suffixes of substrings

20 DTU Compute Compression

=
—
=

M

19.4.2015



Advanced algorithm — levelled ancestor problem

Input:
A rooted tree of size t.

Levelled ancestors query:
Given a node v and an integer d, return the ancestor v with depth d.

e O(t) space and O(1) query time

21 DTU Compute Compression

=
—
=

M

19.4.2015



Advanced algorithm — left-path decomposition

e As with heavy-paths, we store the leftmost paths in trees

SN N
Xs\xz xz/X4\xs X|7 X\Z
x1/ \ x1/ \ X5/ \ X|4

a a,\b a a,\b a c,\a a

22 DTU Compute

Compression

=
—
=

M

19.4.2015



=
—
=

Advanced algorithm — data structure

M

e Make a left-tree decomposition of the SLP
e Store a pointer from each node to its corresponding node in the left-forest
e Build a levelled ancestor data structure for each left-tree

e Store a pointer from each node in the SLP to its leftmost leaf

e O(n) space

23 DTU Compute Compression 19.4.2015



=
—
=

M

Advanced algorithm — prefix decompression

PREFIXDECOMPRESS(X;, k)

e Jump to leftmost leaf X; and output character
ed=1

e While X; # X; and d < min{k, | X;|}

e Use levelled ancestor data structure to find parent X, of X; on left-path
e Let X, be the right child of X,

e PREFIXDECOMPRESS(X ., k — d)

ed=d+ |X,|

e Set X; to be X,

e O(k) time

e Suffix decompression is symmetric

24 DTU Compute Compression 19.4.2015



=
—
=

M

Advanced algorithm

o |et
Ry (X;) =SUFFIXDECOMPRESS(X;, M — 1)PREFIXDECOMPRESS(X,, M — 1)

for each X; = X; X, in the SLP

® Run uncompressed string pattern matching algorithm for each Ry, (X;)

e O(nM) time and O(n + M) space

25 DTU Compute Compression 19.4.2015



	Random access
	Compressed pattern matching

