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Outline

Random access
• O(h)-time solution (solution to mandatory exercise)

• O(log N log log N)-time solution

Compressed pattern matching
• Classic algorithm

• A more space efficient algorithm
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SLP Notation

• n is the size of the SLP

• N is the size of the string compressed by the SLP

• h is the height of the SLP

• S(Xi) is the substring produced by node Xi

• |Xi| = |S(Xi)| is the length of the substring produced by node Xi
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Random access
Problem definition

Random access:
Given an SLP compressing a string S. Build a data structure that supports
Access(i) queries, where Access(i) = S[i].

4 DTU Compute Compression 19.4.2015



Random access
Simple solution

Data structure
• Store |Xi| for each node

Access(i)
• Let Xk = XlXr be the current node

• p = 0

• While current node is not a leaf
• If i− p ≤ |Xl| then continue from Xl

• Else set p = p + |Xl| and continue from Xr
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Random access
Advanced algorithm – overview

O(log N log log N) time and O(n2) space
• Heavy-path decomposition

• Predecessor data structure

O(log N log log N) time and O(n) space
• Heavy-tree decomposition

• Weighted ancestor data structure
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Random access
Advanced algorithm – heavy-path decomposition

• Lemma: on any root to leaf path there are at most log N light edges
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Random access
Advanced algorithm – O(n2)-space data structure (1/3)

• Make heavy-path decomposition of parse tree
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• Storing paths: O(n2) space
• A path has length ≤ n
• At most one heavy path can start in each uniquely labelled node
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Random access
Advanced algorithm – O(n2)-space data structure (2/3)

• Store the relative index of the leaf at the end of the heavy path

• Store the accumulated sums of leaves in left and right hanging subtrees for each
heavy path
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• O(n2) space
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Random access
Advanced algorithm – O(n2)-space data structure (3/3)
Query
• Check relative index of path

• Predecessor on left or right values
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• Predecessor query on at most log N paths

•⇒ O(log N log log N) time
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Random access
Advanced algorithm – weighted ancestor problem

Input:
A tree of size t with integer weights (in the range 1 to N) on its edges.

Weighted ancestors query:
Given a node v and an integer d, return the highest node that is an
ancestor and has depth at least d.

• O(t) space and O(log log N) query time
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Random access
Advanced algorithm – O(n)-space data structure (1/2)

• Observation: Heavy paths share suffixes
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• Store paths as trees: heavy-tree decomposition

• A node occurs exactly once in the heavy forest ⇒ O(n) space
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Random access
Advanced algorithm – O(n)-space data structure (2/2)

• For each node Xi = XlXr

• If Xi → Xl is a heavy edge then set Left(Xi → Xl) = 0 and
Right(Xi → Xl) = |Xr|

• If Xi → Xr is a heavy edge then set Left(Xi → Xr) = |Xl| and
Right(Xi → Xr) = 0

• Build weighted ancestor data structure over both set of values
• Store relative index of each heavy path
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Space? Query?
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Compressed pattern matching
Problem definition

• Fully-compressed pattern matching

• Semi-compressed pattern matching

Semi-compressed pattern matching, decision variant:
Given an SLP of size n compressing a string S of length N and an
uncompressed pattern P of size M , return YES if P occurs as a substring
in S and NO otherwise.
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Compressed pattern matching
Overview

• Reduction to uncompressed pattern matching
• Relevant substrings

• O(nM) time and space algorithm

• O(nM) time and O(n + M) space algorithm
• Left-tree decomposition
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Compressed pattern matching
Relevant substrings
• The relevant substring of Xi w.r.t. P is

RM (Xi) = S(Xl)[|Xl| −M, |Xl|]S(Xr)[1, M − 1]

Xi

Xl Xr

S(Xi)

S(Xl) S(Xr)

RM (Xi)
2(M − 1)

• Relevant substring Lemma: P occurs in S iff P occurs in RM (Xi) for some
1 ≤ i ≤ n.
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Compressed pattern matching
Reduction to uncompressed pattern matching

• Compute the relevant substrings

• Search for P in the relevant substrings using an algorithm for (uncompressed)
string pattern matching, e.g., the Knuth-Morris-Prath algorithm
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Compressed pattern matching
O(nM) time and space algorithm (1/2)

• To compute RM (Xi) we need S(Xl)[|Xl| −M + 1, |Xl|] and S(Xr)[1, M − 1]

Pref(Xi) =


a if Xi = a

Pref(Xl) if |Xl| ≥M − 1
S(Xl)Pref(Xl)[1, M − |Xl| − 1] otherwise

Suf(Xi) =


a if Xi = a

Suf(Xr) if |Xr| ≥M − 1
Suf(Xl)[|Xr|+ 1, M ]S(Xr) otherwise

• Tables require O(nm) time and space
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Compressed pattern matching
O(nM) time and space algorithm (2/2)

• Compute Pref and Suf tables for all Xi in the SLP

• Let RM (Xi) = Suf(Xl)Pref(Xr) for each Xi = XlXr in the SLP

• Run uncompressed string pattern matching algorithm for each RM (Xi)

• Pref and Suf tables require O(nM) time and space

• Since |RM (Xi)| ≤ 2(M − 1) = O(M) the sum of lengths of relevant substrings
is O(nM)

• Using KMP ⇒ O(nM) time and space for matching
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Compressed pattern matching
Advanced algorithm – idea

• Throw away relevant substring after matching

• What is needed? Fast decompression of prefixes and suffixes of substrings
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Compressed pattern matching
Advanced algorithm – levelled ancestor problem

Input:
A rooted tree of size t.

Levelled ancestors query:
Given a node v and an integer d, return the ancestor v with depth d.

• O(t) space and O(1) query time
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Compressed pattern matching
Advanced algorithm – left-path decomposition

• As with heavy-paths, we store the leftmost paths in trees
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Compressed pattern matching
Advanced algorithm – data structure

• Make a left-tree decomposition of the SLP

• Store a pointer from each node to its corresponding node in the left-forest

• Build a levelled ancestor data structure for each left-tree

• Store a pointer from each node in the SLP to its leftmost leaf

• O(n) space
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Compressed pattern matching
Advanced algorithm – prefix decompression

PrefixDecompress(Xi, k)
• Jump to leftmost leaf Xj and output character

• d = 1

• While Xj 6= Xi and d < min{k, |Xi|}
• Use levelled ancestor data structure to find parent Xp of Xj on left-path
• Let Xr be the right child of Xp

• PrefixDecompress(Xr, k − d)
• d = d + |Xr|
• Set Xj to be Xp

• O(k) time

• Suffix decompression is symmetric
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Compressed pattern matching
Advanced algorithm

• Let
RM (Xi) =SuffixDecompress(Xl, M − 1)PrefixDecompress(Xr, M − 1)
for each Xi = XlXr in the SLP

• Run uncompressed string pattern matching algorithm for each RM (Xi)

• O(nM) time and O(n + M) space
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