
Approximation Algorithms

• Fast. Cheap. Reliable. Choose two.

• NP-hard problems: choose 2 of

• optimal

• polynomial time

• all instances

!

• Approximation algorithms. Trade-off between time and quality.

!

• Let A(I) denote the value returned by algorithm A on instance I. Algorithm A is an α-
approximation algorithm if for any instance I of the optimization problem:

• A runs in polynomial time

• A returns a valid solution

• A(I) ≤ α ∙ OPT, where α ≥ 1, for minimization problems

• A(I) ≥ α ∙ OPT, where α ≤ 1, for maximization problems

Approximation algorithms

Scheduling
• n jobs

• Each job j has: processing time pj, release date rj, due date dj.

• Once a job has begun processing it must be completed.

• Schedule starts at time 0.

• Lateness of job j completed at time Cj: Lj = Cj - dj.

• Goal. Schedule all jobs so as to minimize the maximum lateness:

Scheduling jobs on a single machine

r4

r1

r2

r3

 minimize Lmax = maxi=1…n Lj

0 10

Scheduling jobs on a single machine

r4

r1

r2

r3

Lateness = 6
0

• n jobs

• Each job j has: processing time pj, release date rj, due date dj.

• Once a job has begun processing it must be completed.

• Schedule starts at time 0.

• Lateness of job j completed at time Cj: Lj = Cj - dj.

• Goal. Schedule all jobs so as to minimize the maximum lateness:

 minimize Lmax = maxi=1…n Lj

10

• NP-hard even to decide if all jobs can be completed by their due date.

• Problem: Assume optimal value is 0 then

• α-approximation algorithm must find a solution of value at most α ∙ 0 = 0

• no such algorithm exists unless P=NP.

• Solution: Assume all due dates are negative (optimal value always positive).

Scheduling jobs on a single machine

• Earliest due date rule (EDD). When machine idle: start processing an available job
with earliest due date.

Earliest Due Date Rule

r4

r1

r2

r3

0 Lateness = 15

OPT =?

10

• Earliest due date rule (EDD). When machine idle: start processing an available job
with earliest due date.

• EDD is a 2-approximation algorithm:

• polynomial time

• valid solution

• factor 2

Earliest Due Date Rule

r4

r1

r2

r3

0 Lateness = 15

✓

✓

OPT =?

10

• Let S be a subset of jobs

• r(S) = minj∈S rj

• p(S) = ∑∈S pj

• d(S) = maxj∈S dj

• L* optimal value

!

• Claim. For any subset S of jobs: L* ≥ r(S) + p(S) - d(S).

• Proof.

• Look at optimal schedule restricted to S.

• No job can be processed before r(S).

• Needed processing time p(S).

• Latest job i to be processed cannot complete earlier than r(S) + p(S).

• di ≤ d(S) => lateness of i at least r(S) + p(S) - d(S).

• L* ≥ Li.

Lower bound

• j: job with maximum lateness (Lmax = Lj = Cj - dj).

• t: earliest time before Cj that machine idle (not idle in [t,Cj)).

• S: jobs processed in [t,Cj).

• We have:

• r(S) = t and p(S) = Cj - t.

• Cj = p(S) + t = p(S) + r(S).

• Use Claim:

• L* ≥ r(S) + p(S) - d(S) ≥ r(S) + p(S) = Cj.

• L* ≥ rj + pj - dj ≥ - dj.

• Lmax = Cj - dj ≤ 2L*.

EDD: Approximation factor

0
j

t

S = { , , }

• n jobs to be scheduled on m identical machines.

• Each job has a processing time pj.

• Once a job has begun processing it must be completed.

• Schedule starts at time 0.

• Completion time of job j = Cj.

• Goal. Schedule all jobs so as to minimize the maximum completion time (makespan):

Scheduling on identical parallel machines

 minimize Cmax = maxi=1…n Cj

• Start with any schedule

• Consider job that finishes last:

• If reassigning it to another machine can make it complete earlier, reassign it to
the one that makes it finish earliest.

• Repeat until last finishing job cannot be transferred.

!

• The local search algorithm above is a 2-approximation algorithm:

• polynomial time

• valid solution

• factor 2

Local search

✓

• Each job must be processed:

• There is a machine that is assigned at least average load:

• i: job finishes last.

• All other machines busy until start time s of i. (s = Ci - pi)

• Partition schedule into before and after s.

• After ≤ C*.

• Before:

• All machines busy => total amount of work = m⋅s.

• m⋅s ≤ ∑i=1…n pi => s ≤ ∑i=1…n pi/m ≤ C*.

• Length of schedule ≤ 2C*.

Approximation factor

 C* ≥ maxi=1…n pj

 C* ≥ ∑i=1…n pj/m

i

• Polynomial time. Does it terminate?

• Minimum completion time of machines Cmin never decreases.

• Remains same => number of machines with minimum completion time decreases.

• No job transferred more than once:

• Proof by contradiction. Assume j transferred twice.

• Then Cmin> Cmin’ , but Cmin does not decrease ↯

Running time

j

Cmin

Cmin’

• Longest processing time rule (LPT). Sort jobs in non-increasing order. Assign next
job on list to machine as soon as it becomes idle.

Longest processing time rule

• Longest processing time rule (LPT). Sort jobs in non-increasing order. Assign next
job on list to machine as soon as it becomes idle.

• LPT is a is a 4/3-approximation algorithm:

• polynomial time

• valid solution

• factor 4/3

Longest processing time rule

✓

✓

• Longest processing time rule (LPT). Sort jobs in non-increasing order. Assign next
job on list to machine as soon as it becomes idle.

• Assume p1 ≥ …. ≥ pn.

• Assume wlog that smallest job finishes last.

• If pn ≤ C*/3 then Cmax ≤ 4/3 C*.

• If pn > C*/3 then each machine can process at most 2 jobs.

• Lemma. For any input where the processing time of each job is more than a third of

the optimal makespan, LPT computes an optimal schedule.

Longest processing time rule

k-center

• Input. An integer k and a complete, undirected graph G=(V,E), with distance d(i,j)
between each pair of vertices i,j ∈ V.

• d is a metric:

• d(i,i) = 0

• d(i,j) = d(j,i)

• d(i,l) ≤ d(i,j) + d(j,l)

• Goal. Choose a set S ⊆ V , |S| = k, of k centers so as to minimize the maximum
distance of a vertex to its closest center.

!
!

• Covering radius. Maximum distance of a vertex to its closest center.

The k-center problem

S = argminS⊆V,|S|=k maxi∈V d(i,S)

2 3
7

4
1

5 4

10
6

8

5

5
4

7
6 2

5

3

• Greedy algorithm.

• Pick arbitrary i V.

• Set S = {i}

• while |S| < k do

• Find vertex j farthest away from any cluster center in S

• Add j to S

!
!

!
!
!

• Greedy is a 2-approximation algorithm:

• polynomial time

• valid solution

• factor 2

k-center: Greedy algorithm

2 3
7

4
1

5 4

10
6

8

5

5
4

7
6 2

5

3

✓

✓

• r* optimal radius.

• Show all vertices within distance 2r* from a center.

• Consider optimal clusters. 2 cases.

• Algorithm picked one center in each optimal
cluster

• distance from any vertex to its closest center
≤ 2r* (triangle inequality)

• Some optimal cluster does not have a center.

• Some cluster have more than one center.

• distance between these two centers ≤ 2r*.

• when second center in same cluster picked it

was the vertex farthest away from any center.

• distance from any vertex to its closest center

at most 2r*.

k-center: analysis

≤r*
≤r*

≤2r*

≤r*

≤r*
≤2r*

≤2r*

k-center

2 3
7

4
1

5 4

10
6

8

5

5
4

7
6 2

5

3

• There is no α-approximation algorithm for the k-center problem for α < 2 unless
P=NP.

• Proof. Reduction from dominating set.

• Dominating set: Given G=(V,E) and k. Is there a (dominating) set S ⊆ V of size k, such

that each vertex is either in S or adjacent to a vertex in S.

• Given instance of the dominating set problem construct instance of k-center

problem:

• Complete graph G’ on V.

• All edges from E has weight 1, all new edges have weight 2.

• Radius in k-center instance 1 or 2.

• G has an dominating set of size k <=> opt solution to the k-center problem has

radius 1.

• Use α-approximation algorithm A:

• opt = 1 => A returns solution with radius at most α < 2.

• opt = 2 => A returns solution with radius 2.

• Can use A to distinguish between the 2 cases.

k-center: Inapproximability

