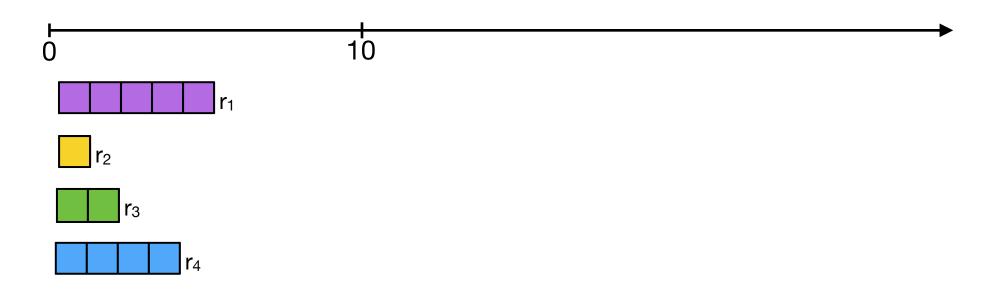
Approximation Algorithms

Approximation algorithms

- Fast. Cheap. Reliable. Choose two.
- NP-hard problems: choose 2 of
 - optimal
 - polynomial time
 - all instances
- Approximation algorithms. Trade-off between time and quality.
- Let A(I) denote the value returned by algorithm A on instance I. Algorithm A is an αapproximation algorithm if for any instance I of the optimization problem:
 - A runs in polynomial time
 - A returns a valid solution
 - A(I) $\leq \alpha \cdot OPT$, where $\alpha \geq 1$, for minimization problems
 - $A(I) \ge \alpha \cdot OPT$, where $\alpha \le 1$, for maximization problems

Scheduling

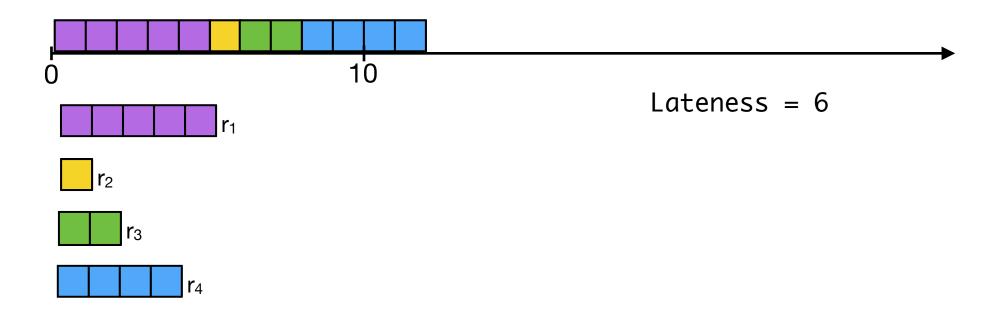
Scheduling jobs on a single machine



- n jobs
- Each job j has: processing time p_j, release date r_j, due date d_j.
- Once a job has begun processing it must be completed.
- Schedule starts at time 0.
- Lateness of job j completed at time C_j: L_j = C_j d_j.
- Goal. Schedule all jobs so as to minimize the maximum lateness:

$$minimize \ L_{max} = max_{i=1...n} \ L_{j}$$

Scheduling jobs on a single machine



- n jobs
- Each job j has: processing time p_j, release date r_j, due date d_j.
- Once a job has begun processing it must be completed.
- Schedule starts at time 0.
- Lateness of job j completed at time C_j : $L_j = C_j d_j$.
- Goal. Schedule all jobs so as to minimize the maximum lateness:

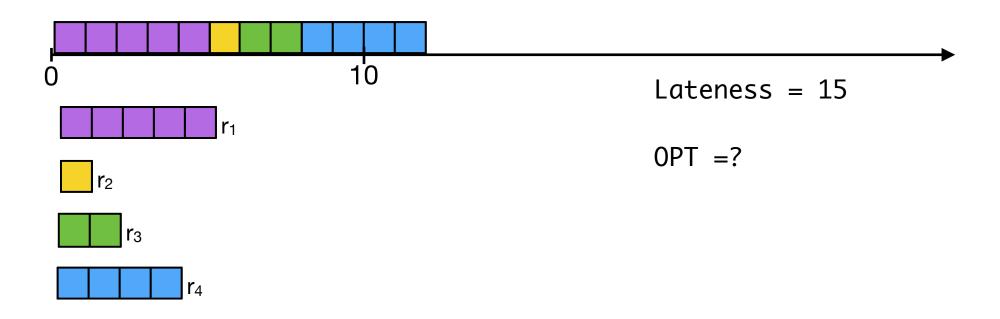
minimize
$$L_{max} = max_{i=1...n} L_i$$

Scheduling jobs on a single machine

- NP-hard even to decide if all jobs can be completed by their due date.
- Problem: Assume optimal value is 0 then
 - α -approximation algorithm must find a solution of value at most $\alpha \cdot 0 = 0$
 - no such algorithm exists unless P=NP.
 - Solution: Assume all due dates are negative (optimal value always positive).

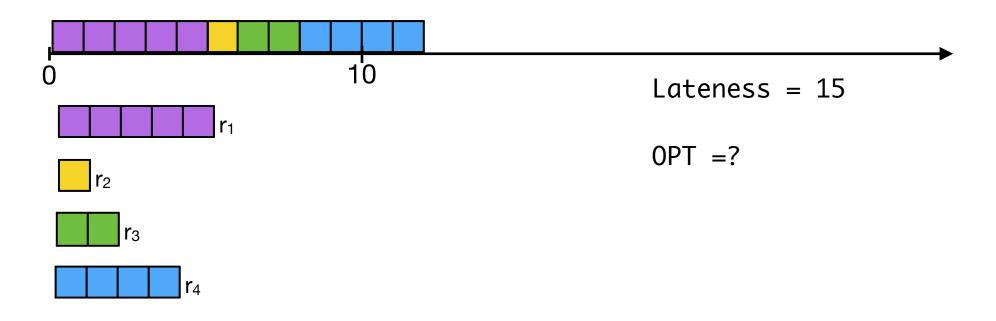
Earliest Due Date Rule

• Earliest due date rule (EDD). When machine idle: start processing an available job with earliest due date.



Earliest Due Date Rule

• Earliest due date rule (EDD). When machine idle: start processing an available job with earliest due date.

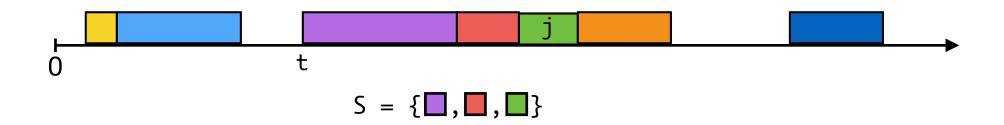


- EDD is a 2-approximation algorithm:
 - polynomial time ✓
 - valid solution
 - factor 2

Lower bound

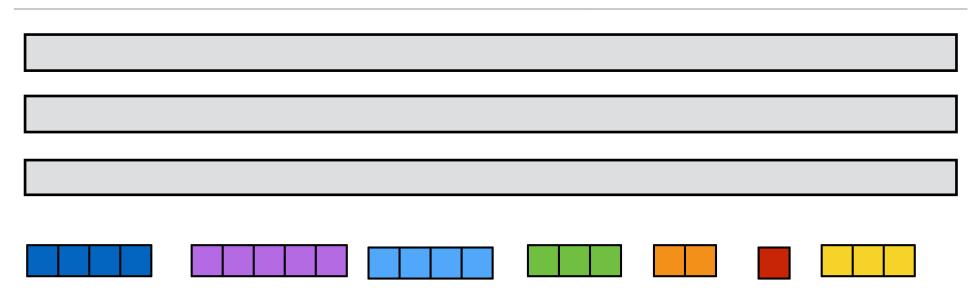
- Let S be a subset of jobs
 - $r(S) = min_{j \in S} r_j$
 - $p(S) = \sum_{e \in S} p_j$
 - $d(S) = \max_{j \in S} d_j$
 - L* optimal value
- Claim. For any subset S of jobs: L* ≥ r(S) + p(S) d(S).
- Proof.
 - Look at optimal schedule restricted to S.
 - No job can be processed before r(S).
 - Needed processing time p(S).
 - Latest job i to be processed cannot complete earlier than r(S) + p(S).
 - $d_i \le d(S) => lateness of i at least r(S) + p(S) d(S)$.
 - $L^* \geq L_i$.

EDD: Approximation factor



- j: job with maximum lateness ($L_{max} = L_j = C_j d_j$).
- t: earliest time before C_j that machine idle (not idle in [t,C_j)).
- S: jobs processed in [t,Ci).
- · We have:
 - $r(S) = t \text{ and } p(S) = C_i t.$
 - $C_i = p(S) + t = p(S) + r(S)$.
- · Use Claim:
 - $L^* \ge r(S) + p(S) d(S) \ge r(S) + p(S) = C_j$.
 - $L^* \ge r_i + p_i d_i \ge d_i$.
- $L_{max} = C_i d_i \le 2L^*$.

Scheduling on identical parallel machines



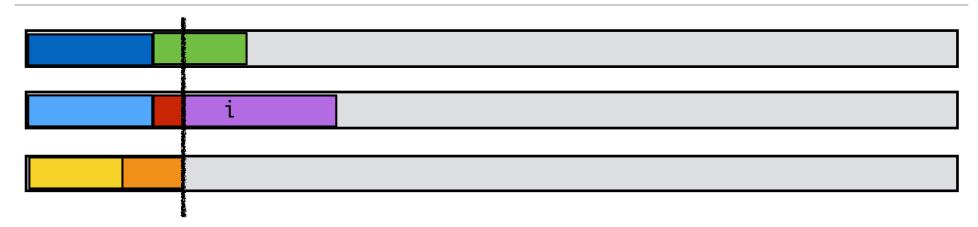
- n jobs to be scheduled on m identical machines.
- Each job has a processing time p_j.
- Once a job has begun processing it must be completed.
- Schedule starts at time 0.
- Completion time of job $j = C_j$.
- Goal. Schedule all jobs so as to minimize the maximum completion time (makespan):

minimize
$$C_{max} = max_{i=1...n} C_j$$

Local search

- Start with any schedule
- Consider job that finishes last:
 - If reassigning it to another machine can make it complete earlier, reassign it to the one that makes it finish earliest.
- Repeat until last finishing job cannot be transferred.
- The local search algorithm above is a 2-approximation algorithm:
 - polynomial time
 - valid solution ✓
 - factor 2

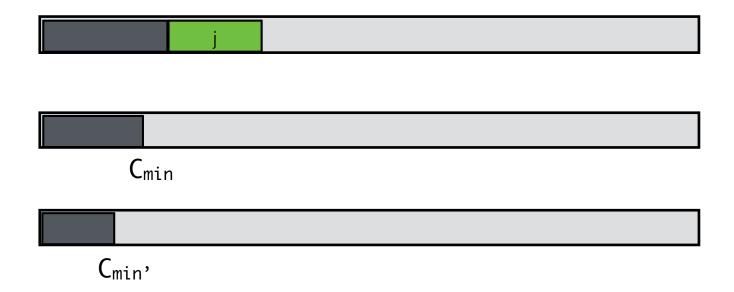
Approximation factor



- Each job must be processed: C* ≥ max_{i=1...n} p_j
- There is a machine that is assigned at least average load: $C^* \ge \sum_{i=1...n} p_i/m$
- i: job finishes last.
- All other machines busy until start time s of i. (s = C_i p_i)
- Partition schedule into before and after s.
- After $\leq C^*$.
- · Before:
 - All machines busy => total amount of work = m·s.
 - $m \cdot s \le \sum_{i=1...n} p_i$ => $s \le \sum_{i=1...n} p_i/m \le C^*$.
- Length of schedule ≤ 2C*.

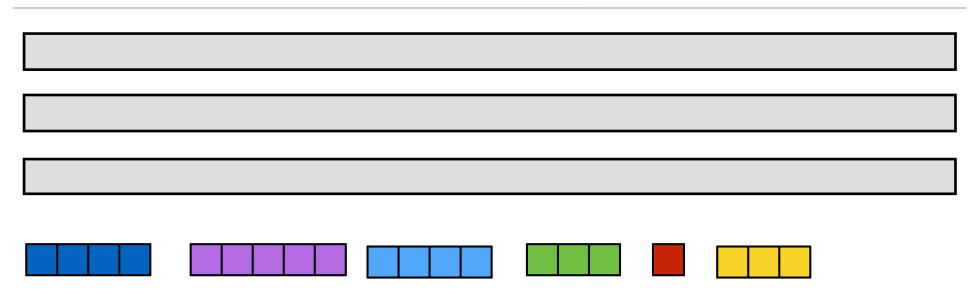
Running time

- Polynomial time. Does it terminate?
- Minimum completion time of machines C_{min} never decreases.
- Remains same => number of machines with minimum completion time decreases.
- No job transferred more than once:
 - Proof by contradiction. Assume j transferred twice.



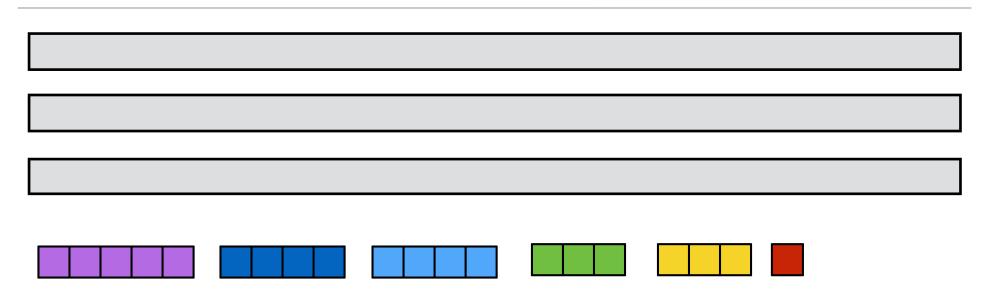
• Then $C_{min} > C_{min}$, but C_{min} does not decrease \$\pi\$

Longest processing time rule



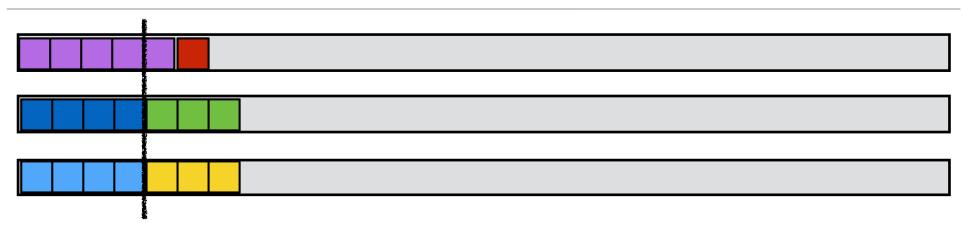
• Longest processing time rule (LPT). Sort jobs in non-increasing order. Assign next job on list to machine as soon as it becomes idle.

Longest processing time rule



- Longest processing time rule (LPT). Sort jobs in non-increasing order. Assign next job on list to machine as soon as it becomes idle.
- LPT is a is a 4/3-approximation algorithm:
 - polynomial time ✓
 - valid solution
 - factor 4/3

Longest processing time rule



- Longest processing time rule (LPT). Sort jobs in non-increasing order. Assign next job on list to machine as soon as it becomes idle.
- Assume $p_1 \ge \ge p_n$.
- Assume wlog that smallest job finishes last.
- If $p_n \le C^*/3$ then $C_{max} \le 4/3 C^*$.
- If $p_n > C^*/3$ then each machine can process at most 2 jobs.
- Lemma. For any input where the processing time of each job is more than a third of the optimal makespan, LPT computes an optimal schedule.

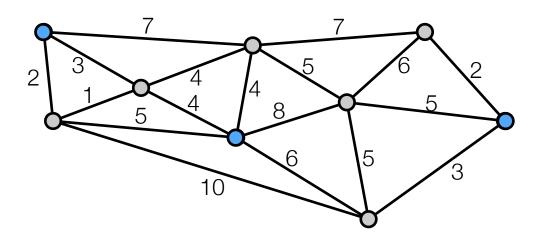
k-center

The k-center problem

- Input. An integer k and a complete, undirected graph G=(V,E), with distance d(i,j) between each pair of vertices i,j ∈ V.
- · d is a metric:
 - d(i,i) = 0
 - d(i,j) = d(j,i)
 - $d(i,l) \le d(i,j) + d(j,l)$
- Goal. Choose a set $S \subseteq V$, |S| = k, of k centers so as to minimize the maximum distance of a vertex to its closest center.

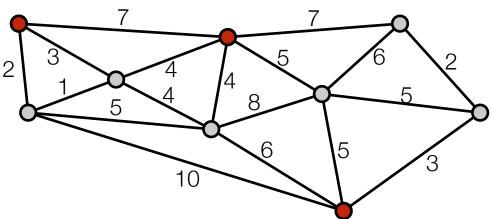
$$S = \operatorname{argmin}_{S \subseteq V, |S| = k} \operatorname{max}_{i \in V} d(i, S)$$

Covering radius. Maximum distance of a vertex to its closest center.



k-center: Greedy algorithm

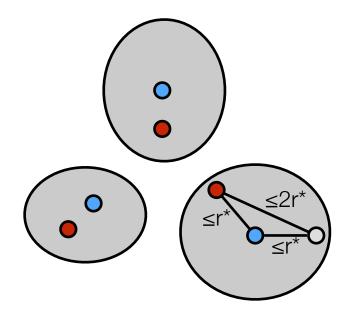
- · Greedy algorithm.
 - Pick arbitrary i V.
 - Set $S = \{i\}$
 - while |S| < k do
 - Find vertex j farthest away from any cluster center in S
 - Add j to S



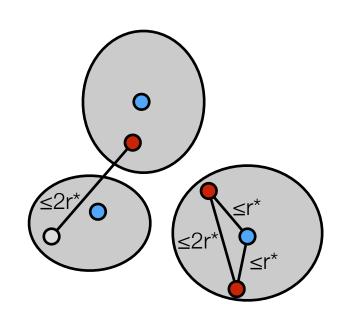
- Greedy is a 2-approximation algorithm:
 - polynomial time ✓
 - valid solution
 - factor 2

k-center: analysis

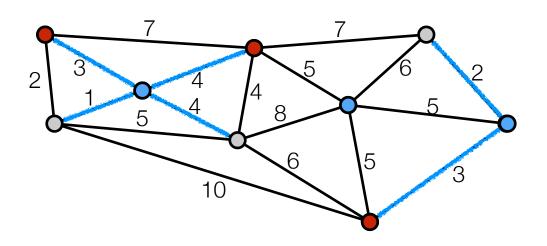
- r* optimal radius.
- Show all vertices within distance 2r* from a center.
- Consider optimal clusters. 2 cases.
 - Algorithm picked one center in each optimal cluster
 - distance from any vertex to its closest center
 ≤ 2r* (triangle inequality)



- Some optimal cluster does not have a center.
 - Some cluster have more than one center.
 - distance between these two centers ≤ 2r*.
 - when second center in same cluster picked it was the vertex farthest away from any center.
 - distance from any vertex to its closest center at most 2r*.



k-center



k-center: Inapproximability

- There is no α -approximation algorithm for the k-center problem for $\alpha < 2$ unless P=NP.
- Proof. Reduction from dominating set.
- Dominating set: Given G=(V,E) and k. Is there a (dominating) set S ⊆ V of size k, such
 that each vertex is either in S or adjacent to a vertex in S.
- Given instance of the dominating set problem construct instance of k-center problem:
 - · Complete graph G' on V.
 - All edges from E has weight 1, all new edges have weight 2.
 - Radius in k-center instance 1 or 2.
 - G has an dominating set of size k <=> opt solution to the k-center problem has radius 1.
 - Use α-approximation algorithm A:
 - opt = 1 => A returns solution with radius at most α < 2.
 - opt = 2 => A returns solution with radius 2.
 - Can use A to distinguish between the 2 cases.