Advanced Algorithms - COMS31900

2013/2014

Lecture 13
 Approximate pattern matching (part two)

Benjamin Sach

k-mismatch using frequent/infrequent symbols

Definition: A symbol is frequent if it occurs at least \sqrt{k} times in P, and infrequent otherwise
k-mismatch using frequent/infrequent symbols
Definition: A symbol is frequent if it occurs at least \sqrt{k} times in P, and infrequent otherwise

$$
\begin{aligned}
& k=4 \\
& \quad(\sqrt{k}=2)
\end{aligned}
$$

k-mismatch using frequent/infrequent symbols
Definition: A symbol is frequent if it occurs at least \sqrt{k} times in P, and infrequent otherwise

$$
\begin{aligned}
& \text { (1) (1) (2) (3) (4) (5) (ㄷ) (8) } \\
& P \quad \begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline a & b & b & a & c & a & d & b & d \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& k=4 \\
& \quad(\sqrt{k}=2)
\end{aligned}
$$

k-mismatch using frequent/infrequent symbols
Definition: A symbol is frequent if it occurs at least \sqrt{k} times in P, and infrequent otherwise

$$
\begin{aligned}
& \text { (1) (1) (2) (3) (4) (5) (6) (3) } 8 \\
& P \quad \begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline a & b & b & a & c & a & d & b & d \\
\hline
\end{array} \\
& k=4 \\
& (\sqrt{k}=2) \\
& a \text { is frequent }
\end{aligned}
$$

k-mismatch using frequent/infrequent symbols
Definition: A symbol is frequent if it occurs at least \sqrt{k} times in P, and infrequent otherwise

$$
\begin{aligned}
& k=4 \\
& (\sqrt{k}=2) \\
& a \text { is frequent, } b \text { is frequent }
\end{aligned}
$$

k-mismatch using frequent/infrequent symbols
Definition: A symbol is frequent if it occurs at least \sqrt{k} times in P, and infrequent otherwise

$$
\begin{aligned}
& \text { (1) (1) (2) (3) © (4) © © © © © © } \\
& \begin{array}{|l|l|l|l|l|l|l|l|l|r}
& k=4 \\
\hline a & b & b & a & c & a & d & b & d & (\sqrt{k}=2)
\end{array}
\end{aligned}
$$

a is frequent, b is frequent, d is frequent

k-mismatch using frequent/infrequent symbols

Definition: A symbol is frequent if it occurs at least \sqrt{k} times in P, and infrequent otherwise

a is frequent, b is frequent, d is frequent
c is infrequent

k-mismatch using frequent/infrequent symbols

Definition: A symbol is frequent if it occurs at least \sqrt{k} times in P, and infrequent otherwise

How many frequent symbols can there be?

k-mismatch using frequent/infrequent symbols

Definition: A symbol is frequent if it occurs at least \sqrt{k} times in P, and infrequent otherwise

$$
\begin{aligned}
& k=4 \\
& \quad(\sqrt{k}=2)
\end{aligned}
$$

a is frequent, b is frequent, d is frequent c is infrequent

How many frequent symbols can there be? Lots!

k-mismatch using frequent/infrequent symbols

Definition: A symbol is frequent if it occurs at least \sqrt{k} times in P, and infrequent otherwise

$$
\begin{aligned}
& k=4 \\
& \quad(\sqrt{k}=2)
\end{aligned}
$$

a is frequent, b is frequent, d is frequent c is infrequent

How many frequent symbols can there be? Lots! there could be $\frac{m}{\sqrt{k}}$ frequent symbols

k-mismatch using frequent/infrequent symbols

Definition: A symbol is frequent if it occurs at least \sqrt{k} times in P, and infrequent otherwise

a is frequent, b is frequent, d is frequent c is infrequent

How many frequent symbols can there be? Lots! there could be $\frac{m}{\sqrt{k}}$ frequent symbols

Case 1: There are fewer than $2 \sqrt{k}$ frequent symbols in P.

k-mismatch using frequent/infrequent symbols

Definition: A symbol is frequent if it occurs at least \sqrt{k} times in P, and infrequent otherwise

a is frequent, b is frequent, d is frequent c is infrequent

How many frequent symbols can there be? Lots! there could be $\frac{m}{\sqrt{k}}$ frequent symbols

Case 1: There are fewer than $2 \sqrt{k}$ frequent symbols in P.
Algorithm summary

k-mismatch using frequent/infrequent symbols

Definition: A symbol is frequent if it occurs at least \sqrt{k} times in P, and infrequent otherwise

a is frequent, b is frequent, d is frequent c is infrequent

How many frequent symbols can there be? Lots! there could be $\frac{m}{\sqrt{k}}$ frequent symbols
Case 1: There are fewer than $2 \sqrt{k}$ frequent symbols in P.

Algorithm summary

Step 0: Classify each symbol as frequent or infrequent
Step 1: Count all matches involving frequent symbols (using convolutions)

Step 2: Count all matches involving infrequent symbols (as before)

k-mismatch using frequent/infrequent symbols

Definition: A symbol is frequent if it occurs at least \sqrt{k} times in P, and infrequent otherwise

a is frequent, b is frequent, d is frequent c is infrequent

How many frequent symbols can there be? Lots! there could be $\frac{m}{\sqrt{k}}$ frequent symbols
Case 1: There are fewer than $2 \sqrt{k}$ frequent symbols in P.

Algorithm summary

Step 0: Classify each symbol as frequent or infrequent $-O(m \log m)$ time
Step 1: Count all matches involving frequent symbols (using convolutions)

Step 2: Count all matches involving infrequent symbols (as before)

k-mismatch using frequent/infrequent symbols

Definition: A symbol is frequent if it occurs at least \sqrt{k} times in P, and infrequent otherwise

a is frequent, b is frequent, d is frequent c is infrequent

How many frequent symbols can there be? Lots! there could be $\frac{m}{\sqrt{k}}$ frequent symbols

Case 1: There are fewer than $2 \sqrt{k}$ frequent symbols in P.

Algorithm summary

Step 0: Classify each symbol as frequent or infrequent - $O(m \log m)$ time
Step 1: Count all matches involving frequent symbols (using convolutions)

- $O(n \sqrt{k} \log m)$ time

Step 2: Count all matches involving infrequent symbols (as before)

k-mismatch using frequent/infrequent symbols

Definition: A symbol is frequent if it occurs at least \sqrt{k} times in P, and infrequent otherwise

a is frequent, b is frequent, d is frequent c is infrequent

How many frequent symbols can there be? Lots! there could be $\frac{m}{\sqrt{k}}$ frequent symbols

Case 1: There are fewer than $2 \sqrt{k}$ frequent symbols in P.

Algorithm summary

Step 0: Classify each symbol as frequent or infrequent - $O(m \log m)$ time
Step 1: Count all matches involving frequent symbols (using convolutions)

- $O(n \sqrt{k} \log m)$ time

Step 2: Count all matches involving infrequent symbols (as before)

k-mismatch using frequent/infrequent symbols

Definition: A symbol is frequent if it occurs at least \sqrt{k} times in P, and infrequent otherwise

a is frequent, b is frequent, d is frequent c is infrequent

How many frequent symbols can there be? Lots! there could be $\frac{m}{\sqrt{k}}$ frequent symbols
Case 1: There are fewer than $2 \sqrt{k}$ frequent symbols in $P .-O(n \sqrt{k} \log m)$ total time Algorithm summary
Step 0: Classify each symbol as frequent or infrequent $-O(m \log m)$ time
Step 1: Count all matches involving frequent symbols (using convolutions)

- $O(n \sqrt{k} \log m)$ time

Step 2: Count all matches involving infrequent symbols (as before)

- $O(n \sqrt{k})$ time

Case 2: There are at least $2 \sqrt{k}$ frequent symbols

Pick any $2 \sqrt{k}$ frequent symbols and for each symbol pick \sqrt{k} occurences in P.
This gives us $2 k$ interesting pattern locations, denoted J

$$
P \quad \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline a & e & b & b & a & c & a & d & b & d & c & f & b & b \\
\hline
\end{array} \quad k=4
$$

Case 2: There are at least $2 \sqrt{k}$ frequent symbols

Pick any $2 \sqrt{k}$ frequent symbols and for each symbol pick \sqrt{k} occurences in P.
This gives us $2 k$ interesting pattern locations, denoted J

Case 2: There are at least $2 \sqrt{k}$ frequent symbols

Pick any $2 \sqrt{k}$ frequent symbols and for each symbol pick \sqrt{k} occurences in P.
This gives us $2 k$ interesting pattern locations, denoted J

Case 2: There are at least $2 \sqrt{k}$ frequent symbols

Pick any $2 \sqrt{k}$ frequent symbols and for each symbol pick \sqrt{k} occurences in P.
This gives us $2 k$ interesting pattern locations, denoted J

Case 2: There are at least $2 \sqrt{k}$ frequent symbols

Pick any $2 \sqrt{k}$ frequent symbols and for each symbol pick \sqrt{k} occurences in P.
This gives us $2 k$ interesting pattern locations, denoted J

Case 2: There are at least $2 \sqrt{k}$ frequent symbols

Pick any $2 \sqrt{k}$ frequent symbols and for each symbol pick \sqrt{k} occurences in P.
This gives us $2 k$ interesting pattern locations, denoted J

$$
P \begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|c|cc}
\\
\hline a & e & b & b & a & c & a & d & b & d & c & f & b & b \\
\hline
\end{array}
$$

Case 2: There are at least $2 \sqrt{k}$ frequent symbols

Pick any $2 \sqrt{k}$ frequent symbols and for each symbol pick \sqrt{k} occurences in P.
This gives us $2 k$ interesting pattern locations, denoted J

Let $d_{k}(i)$ be the number of $j \in J$ such that $P[j]=T[i+j]$
i.e. the number of (single character) matches involving interesting pattern locations

Case 2: There are at least $2 \sqrt{k}$ frequent symbols

Pick any $2 \sqrt{k}$ frequent symbols and for each symbol pick \sqrt{k} occurences in P.
This gives us $2 k$ interesting pattern locations, denoted J

Let $d_{k}(i)$ be the number of $j \in J$ such that $P[j]=T[i+j]$
i.e. the number of (single character) matches involving interesting pattern locations

Case 2: There are at least $2 \sqrt{k}$ frequent symbols

Pick any $2 \sqrt{k}$ frequent symbols and for each symbol pick \sqrt{k} occurences in P.
This gives us $2 k$ interesting pattern locations, denoted J

Let $d_{k}(i)$ be the number of $j \in J$ such that $P[j]=T[i+j]$
i.e. the number of (single character) matches involving interesting pattern locations

Case 2: There are at least $2 \sqrt{k}$ frequent symbols

Pick any $2 \sqrt{k}$ frequent symbols and for each symbol pick \sqrt{k} occurences in P.
This gives us $2 k$ interesting pattern locations, denoted J

Let $d_{k}(i)$ be the number of $j \in J$ such that $P[j]=T[i+j]$
i.e. the number of (single character) matches involving interesting pattern locations

Fact if $d_{k}(i)<k$ then there are more than k mismatches (i.e. $\operatorname{Ham}_{k}(i)=X$)

Case 2: There are at least $2 \sqrt{k}$ frequent symbols

Pick any $2 \sqrt{k}$ frequent symbols and for each symbol pick \sqrt{k} occurences in P.
This gives us $2 k$ interesting pattern locations, denoted J

Let $d_{k}(i)$ be the number of $j \in J$ such that $P[j]=T[i+j]$
i.e. the number of (single character) matches involving interesting pattern locations

Fact if $d_{k}(i)<k$ then there are more than k mismatches (i.e. $\operatorname{Ham}_{k}(i)=X$) because there are $2 k$ interesting positions. . . and fewer than k of them match

Case 2: There are at least $2 \sqrt{k}$ frequent symbols

Pick any $2 \sqrt{k}$ frequent symbols and for each symbol pick \sqrt{k} occurences in P.
This gives us $2 k$ interesting pattern locations, denoted J

Let $d_{k}(i)$ be the number of $j \in J$ such that $P[j]=T[i+j]$
i.e. the number of (single character) matches involving interesting pattern locations

Fact if $d_{k}(i)<k$ then there are more than k mismatches (i.e. $\operatorname{Ham}_{k}(i)=X$) because there are $2 k$ interesting positions. . . and fewer than k of them match

Fact There are at most n / \sqrt{k} values of i with $d_{k}(i) \geqslant k$

Case 2: There are at least $2 \sqrt{k}$ frequent symbols

Pick any $2 \sqrt{k}$ frequent symbols and for each symbol pick \sqrt{k} occurences in P.
This gives us $2 k$ interesting pattern locations, denoted J

Let $d_{k}(i)$ be the number of $j \in J$ such that $P[j]=T[i+j]$
i.e. the number of (single character) matches involving interesting pattern locations

Fact if $d_{k}(i)<k$ then there are more than k mismatches (i.e. $\operatorname{Ham}_{k}(i)=X$) because there are $2 k$ interesting positions. . . and fewer than k of them match

Fact There are at most n / \sqrt{k} values of i with $d_{k}(i) \geqslant k$ this follows from a counting argument

Case 2: There are at least $2 \sqrt{k}$ frequent symbols

Pick any $2 \sqrt{k}$ frequent symbols and for each symbol pick \sqrt{k} occurences in P.
This gives us $2 k$ interesting pattern locations, denoted J

Let $d_{k}(i)$ be the number of $j \in J$ such that $P[j]=T[i+j]$
i.e. the number of (single character) matches involving interesting pattern locations

Fact There are at most n / \sqrt{k} values of i with $d_{k}(i) \geqslant k$

Case 2: There are at least $2 \sqrt{k}$ frequent symbols

Pick any $2 \sqrt{k}$ frequent symbols and for each symbol pick \sqrt{k} occurences in P.
This gives us $2 k$ interesting pattern locations, denoted J

Let $d_{k}(i)$ be the number of $j \in J$ such that $P[j]=T[i+j]$
i.e. the number of (single character) matches involving interesting pattern locations

Fact There are at most n / \sqrt{k} values of i with $d_{k}(i) \geqslant k$
For any location $i^{\prime}, \quad T\left[i^{\prime}\right]=P[j]$ for either 0 or \sqrt{k} distinct $j \in J$

Case 2: There are at least $2 \sqrt{k}$ frequent symbols

Pick any $2 \sqrt{k}$ frequent symbols and for each symbol pick \sqrt{k} occurences in P.
This gives us $2 k$ interesting pattern locations, denoted J

Let $d_{k}(i)$ be the number of $j \in J$ such that $P[j]=T[i+j]$
i.e. the number of (single character) matches involving interesting pattern locations

Fact There are at most n / \sqrt{k} values of i with $d_{k}(i) \geqslant k$
For any location $i^{\prime}, \quad T\left[i^{\prime}\right]=P[j]$ for either 0 or \sqrt{k} distinct $j \in J$
This implies that $\sum_{i} d_{k}(i) \leqslant \sum_{i^{\prime}} \sum_{j \in J} \mathrm{Eq}\left(T\left[i^{\prime}\right], P[j]\right) \leqslant n \sqrt{k}$

Case 2: There are at least $2 \sqrt{k}$ frequent symbols

Pick any $2 \sqrt{k}$ frequent symbols and for each symbol pick \sqrt{k} occurences in P.
This gives us $2 k$ interesting pattern locations, denoted J

Let $d_{k}(i)$ be the number of $j \in J$ such that $P[j]=T[i+j]$
i.e. the number of (single character) matches involving interes Eq $=1$ if $T\left[i^{\prime}\right]=P[j]$

Fact There are at most n / \sqrt{k} values of i with $d_{k}(i) \geqslant k \quad$ (and 0 otherwise)
For any location $i^{\prime}, T\left[i^{\prime}\right]=P[j]$ for either 0 or \sqrt{k} distinct $j \in J$
This implies that $\sum_{i} d_{k}(i) \leqslant \sum_{i^{\prime}} \sum_{j \in J} \operatorname{Eq}\left(T\left[i^{\prime}\right], P[j]\right) \leqslant n \sqrt{k}$

Case 2: There are at least $2 \sqrt{k}$ frequent symbols

Pick any $2 \sqrt{k}$ frequent symbols and for each symbol pick \sqrt{k} occurences in P.
This gives us $2 k$ interesting pattern locations, denoted J

Let $d_{k}(i)$ be the number of $j \in J$ such that $P[j]=T[i+j]$
i.e. the number of (single character) matches involving interesting pattern locations

Fact There are at most n / \sqrt{k} values of i with $d_{k}(i) \geqslant k$
For any location $i^{\prime}, \quad T\left[i^{\prime}\right]=P[j]$ for either 0 or \sqrt{k} distinct $j \in J$
This implies that $\sum_{i} d_{k}(i) \leqslant \sum_{i^{\prime}} \sum_{j \in J} \mathrm{Eq}\left(T\left[i^{\prime}\right], P[j]\right) \leqslant n \sqrt{k}$

Case 2: There are at least $2 \sqrt{k}$ frequent symbols

Pick any $2 \sqrt{k}$ frequent symbols and for each symbol pick \sqrt{k} occurences in P.
This gives us $2 k$ interesting pattern locations, denoted J

Let $d_{k}(i)$ be the number of $j \in J$ such that $P[j]=T[i+j]$
i.e. the number of (single character) matches involving interesting pattern locations

Fact There are at most n / \sqrt{k} values of i with $d_{k}(i) \geqslant k$
Assume that more than n / \sqrt{k} values of i have $d_{k}(i) \geqslant k$

Case 2: There are at least $2 \sqrt{k}$ frequent symbols

Pick any $2 \sqrt{k}$ frequent symbols and for each symbol pick \sqrt{k} occurences in P.
This gives us $2 k$ interesting pattern locations, denoted J

Let $d_{k}(i)$ be the number of $j \in J$ such that $P[j]=T[i+j]$
i.e. the number of (single character) matches involving interesting pattern locations

Fact There are at most n / \sqrt{k} values of i with $d_{k}(i) \geqslant k$
Assume that more than n / \sqrt{k} values of i have $d_{k}(i) \geqslant k$

$$
\text { So } \sum_{i} d_{k}(i) \geqslant \frac{n}{\sqrt{k}} \cdot k
$$

Case 2: There are at least $2 \sqrt{k}$ frequent symbols

Pick any $2 \sqrt{k}$ frequent symbols and for each symbol pick \sqrt{k} occurences in P.
This gives us $2 k$ interesting pattern locations, denoted J

Let $d_{k}(i)$ be the number of $j \in J$ such that $P[j]=T[i+j]$
i.e. the number of (single character) matches involving interesting pattern locations

Fact There are at most n / \sqrt{k} values of i with $d_{k}(i) \geqslant k$
Assume that more than n / \sqrt{k} values of i have $d_{k}(i) \geqslant k$

$$
\text { So } \sum_{i} d_{k}(i) \geqslant \frac{n}{\sqrt{k}} \cdot k>n \sqrt{k}
$$

Case 2: There are at least $2 \sqrt{k}$ frequent symbols

Pick any $2 \sqrt{k}$ frequent symbols and for each symbol pick \sqrt{k} occurences in P.
This gives us $2 k$ interesting pattern locations, denoted J

Let $d_{k}(i)$ be the number of $j \in J$ such that $P[j]=T[i+j]$
i.e. the number of (single character) matches involving interesting pattern locations

Fact There are at most n / \sqrt{k} values of i with $d_{k}(i) \geqslant k$
Assume that more than n / \sqrt{k} values of i have $d_{k}(i) \geqslant k$

$$
\text { So } \sum_{i} d_{k}(i) \geqslant \frac{n}{\sqrt{k}} \cdot k>n \sqrt{k}
$$

Case 2: There are at least $2 \sqrt{k}$ frequent symbols

Pick any $2 \sqrt{k}$ frequent symbols and for each symbol pick \sqrt{k} occurences in P.
This gives us $2 k$ interesting pattern locations, denoted J

Let $d_{k}(i)$ be the number of $j \in J$ such that $P[j]=T[i+j]$
i.e. the number of (single character) matches involving interesting pattern locations

Fact if $d_{k}(i)<k$ then there are more than k mismatches (i.e. $\operatorname{Ham}_{k}(i)=X$) because there are $2 k$ interesting positions. . . and fewer than k of them match

Fact There are at most n / \sqrt{k} values of i with $d_{k}(i) \geqslant k$ this follows from a counting argument

Case 2: There are at least $2 \sqrt{k}$ frequent symbols

Pick any $2 \sqrt{k}$ frequent symbols and for each symbol pick \sqrt{k} occurences in P.
This gives us $2 k$ interesting pattern locations, denoted J

We can filter the text, leaving only n / \sqrt{k} locations to check every other location has more than k mismatches

Case 2: There are at least $2 \sqrt{k}$ frequent symbols

Pick any $2 \sqrt{k}$ frequent symbols and for each symbol pick \sqrt{k} occurences in P.
This gives us $2 k$ interesting pattern locations, denoted J

We can filter the text, leaving only n / \sqrt{k} locations to check every other location has more than k mismatches

Check each of the remaining locations using LCP queries in $O(k)$ time

Case 2: There are at least $2 \sqrt{k}$ frequent symbols

Pick any $2 \sqrt{k}$ frequent symbols and for each symbol pick \sqrt{k} occurences in P.
This gives us $2 k$ interesting pattern locations, denoted J

We can filter the text, leaving only n / \sqrt{k} locations to check every other location has more than k mismatches

Check each of the remaining locations using LCP queries in $O(k)$ time Determining which locations to check also takes $O(n \sqrt{k})$ total time

Case 2: There are at least $2 \sqrt{k}$ frequent symbols

Pick any $2 \sqrt{k}$ frequent symbols and for each symbol pick \sqrt{k} occurences in P.
This gives us $2 k$ interesting pattern locations, denoted J

We can filter the text, leaving only n / \sqrt{k} locations to check every other location has more than k mismatches

Check each of the remaining locations using LCP queries in $O(k)$ time Determining which locations to check also takes $O(n \sqrt{k})$ total time

Pattern matching with k-mismatches: putting it all together

Algorithm summary

Pattern matching with k-mismatches: putting it all together

Algorithm summary

Preprocess P, T for LCP queries - $O(n)$ time

Pattern matching with k-mismatches: putting it all together

Algorithm summary

Preprocess P, T for LCP queries - $O(n)$ time
Count the number of frequent symbols in $P-O(m \log m)$ time

Pattern matching with k-mismatches: putting it all together

Algorithm summary

Preprocess P, T for LCP queries - $O(n)$ time
Count the number of frequent symbols in $P-O(m \log m)$ time

Case 1: P has at most $2 \sqrt{k}$ frequent symbols

Case 2: P has more than $2 \sqrt{k}$ frequent symbols

Pattern matching with k-mismatches: putting it all together

Algorithm summary

Preprocess P, T for LCP queries - $O(n)$ time
Count the number of frequent symbols in $P-O(m \log m)$ time
Case 1: P has at most $2 \sqrt{k}$ frequent symbols
Count matches with frequent symbols using convolution - $O(n \sqrt{k} \log m)$ time

Case 2: P has more than $2 \sqrt{k}$ frequent symbols

Pattern matching with k-mismatches: putting it all together

Algorithm summary

Preprocess P, T for LCP queries - $O(n)$ time
Count the number of frequent symbols in $P-O(m \log m)$ time
Case 1: P has at most $2 \sqrt{k}$ frequent symbols
Count matches with frequent symbols using convolution - $O(n \sqrt{k} \log m)$ time Count matches with infrequent symbols directly - $O(n \sqrt{k})$ time

Case 2: P has more than $2 \sqrt{k}$ frequent symbols

Pattern matching with k-mismatches: putting it all together

Algorithm summary

Preprocess P, T for LCP queries - $O(n)$ time
Count the number of frequent symbols in $P-O(m \log m)$ time
Case 1: P has at most $2 \sqrt{k}$ frequent symbols
Count matches with frequent symbols using convolution - $O(n \sqrt{k} \log m)$ time Count matches with infrequent symbols directly - $O(n \sqrt{k})$ time

Case 2: P has more than $2 \sqrt{k}$ frequent symbols
Filter the text, leaving n / \sqrt{k} alignments - $O(n \sqrt{k})$ time

Pattern matching with k-mismatches: putting it all together

Algorithm summary

Preprocess P, T for LCP queries - $O(n)$ time
Count the number of frequent symbols in $P-O(m \log m)$ time
Case 1: P has at most $2 \sqrt{k}$ frequent symbols
Count matches with frequent symbols using convolution - $O(n \sqrt{k} \log m)$ time Count matches with infrequent symbols directly - $O(n \sqrt{k})$ time

Case 2: P has more than $2 \sqrt{k}$ frequent symbols
Filter the text, leaving n / \sqrt{k} alignments - $O(n \sqrt{k})$ time
Count mismatches at these alignments using LCP queries - $O(n \sqrt{k})$ time

Algorithm summary

Preprocess P, T for LCP queries - $O(n)$ time
Count the number of frequent symbols in $P-O(m \log m)$ time
Case 1: P has at most $2 \sqrt{k}$ frequent symbols
Count matches with frequent symbols using convolution - $O(n \sqrt{k} \log m)$ time Count matches with infrequent symbols directly - $O(n \sqrt{k})$ time

Case 2: P has more than $2 \sqrt{k}$ frequent symbols
Filter the text, leaving n / \sqrt{k} alignments - $O(n \sqrt{k})$ time
Count mismatches at these alignments using LCP queries - $O(n \sqrt{k})$ time

Overall, we obtain a time complexity of $O(n \sqrt{k} \log m)$.

Algorithm summary

Preprocess P, T for LCP queries - $O(n)$ time
Count the number of frequent symbols in $P-O(m \log m)$ time

Case 1: P has at most $2 \sqrt{k}$ frequent symbols
Count matches with frequent symbols using convolution - $O(n \sqrt{k} \log m)$ time Count matches with infrequent symbols directly - $O(n \sqrt{k})$ time

Case 2: P has more than $2 \sqrt{k}$ frequent symbols
Filter the text, leaving n / \sqrt{k} alignments - $O(n \sqrt{k})$ time
Count mismatches at these alignments using LCP queries - $O(n \sqrt{k})$ time

Overall, we obtain a time complexity of $O(n \sqrt{k} \log m)$.

- this can be improved to $O(n \sqrt{k \log k})$

