Advanced Algorithms – COMS31900

2013/2014

Lecture 13 Approximate pattern matching (part two)

Benjamin Sach

Definition: A symbol is *frequent* if it occurs at least \sqrt{k} times in *P*, and infrequent otherwise

Definition: A symbol is *frequent* if it occurs at least \sqrt{k} times in *P*, and infrequent otherwise

Definition: A symbol is *frequent* if it occurs at least \sqrt{k} times in *P*, and infrequent otherwise

Definition: A symbol is *frequent* if it occurs at least \sqrt{k} times in *P*, and infrequent otherwise

a is frequent

Definition: A symbol is *frequent* if it occurs at least \sqrt{k} times in *P*, and infrequent otherwise

a is frequent, b is frequent

Definition: A symbol is *frequent* if it occurs at least \sqrt{k} times in *P*, and infrequent otherwise

a is frequent, b is frequent, d is frequent

Definition: A symbol is *frequent* if it occurs at least \sqrt{k} times in *P*, and infrequent otherwise

a is frequent, b is frequent, d is frequent c is infrequent

Definition: A symbol is *frequent* if it occurs at least \sqrt{k} times in *P*, and infrequent otherwise

a is frequent, b is frequent, d is frequent c is infrequent

How many frequent symbols can there be?

Definition: A symbol is *frequent* if it occurs at least \sqrt{k} times in *P*, and infrequent otherwise

a is frequent, b is frequent, d is frequent c is infrequent

How many frequent symbols can there be? Lots!

Definition: A symbol is *frequent* if it occurs at least \sqrt{k} times in *P*, and infrequent otherwise

a is frequent, b is frequent, d is frequent c is infrequent

How many frequent symbols can there be? Lots! there could be $\frac{m}{\sqrt{k}}$ frequent symbols

Definition: A symbol is *frequent* if it occurs at least \sqrt{k} times in *P*, and infrequent otherwise

a is frequent, b is frequent, d is frequent c is infrequent

How many frequent symbols can there be? Lots! there could be $\frac{m}{\sqrt{k}}$ frequent symbols

Case 1: There are fewer than $2\sqrt{k}$ frequent symbols in *P*.

Definition: A symbol is *frequent* if it occurs at least \sqrt{k} times in *P*, and infrequent otherwise

a is frequent, b is frequent, d is frequent c is infrequent

How many frequent symbols can there be? Lots! there could be $\frac{m}{\sqrt{k}}$ frequent symbols

Case 1: There are fewer than $2\sqrt{k}$ frequent symbols in *P*.

Algorithm summary

Definition: A symbol is *frequent* if it occurs at least \sqrt{k} times in *P*, and infrequent otherwise

a is frequent, b is frequent, d is frequent c is infrequent

How many frequent symbols can there be? Lots! there could be $\frac{m}{\sqrt{k}}$ frequent symbols

Case 1: There are fewer than $2\sqrt{k}$ frequent symbols in *P*.

Algorithm summary

Step 0: Classify each symbol as frequent or infrequent

Step 1: Count all matches involving frequent symbols (using convolutions)

Step 2: Count all matches involving infrequent symbols (as before)

Definition: A symbol is *frequent* if it occurs at least \sqrt{k} times in *P*, and infrequent otherwise

a is frequent, b is frequent, d is frequent c is infrequent

How many frequent symbols can there be? Lots! there could be $\frac{m}{\sqrt{k}}$ frequent symbols

Case 1: There are fewer than $2\sqrt{k}$ frequent symbols in *P*.

Algorithm summary

Step 0: Classify each symbol as frequent or infrequent $-O(m \log m)$ time

Step 1: Count all matches involving frequent symbols (using convolutions)

Step 2: Count all matches involving infrequent symbols (as before)

Definition: A symbol is *frequent* if it occurs at least \sqrt{k} times in *P*, and infrequent otherwise

a is frequent, b is frequent, d is frequent c is infrequent

How many frequent symbols can there be? Lots! there could be $\frac{m}{\sqrt{k}}$ frequent symbols

Case 1: There are fewer than $2\sqrt{k}$ frequent symbols in *P*.

Algorithm summary

Step 0: Classify each symbol as frequent or infrequent $-O(m \log m)$ time

Step 1: Count all matches involving frequent symbols (using convolutions)

- $O(n\sqrt{k}\log m)$ time

Step 2: Count all matches involving infrequent symbols (as before)

Definition: A symbol is *frequent* if it occurs at least \sqrt{k} times in *P*, and infrequent otherwise

a is frequent, b is frequent, d is frequent c is infrequent

How many frequent symbols can there be? Lots! there could be $\frac{m}{\sqrt{k}}$ frequent symbols

Case 1: There are fewer than $2\sqrt{k}$ frequent symbols in *P*.

Algorithm summary

Step 0: Classify each symbol as frequent or infrequent $-O(m \log m)$ time

Step 1: Count all matches involving frequent symbols (using convolutions)

- $O(n\sqrt{k}\log m)$ time

Step 2: Count all matches involving infrequent symbols (as before)

- $O(n\sqrt{k})$ time

Definition: A symbol is *frequent* if it occurs at least \sqrt{k} times in *P*, and infrequent otherwise

a is frequent, b is frequent, d is frequent c is infrequent

How many frequent symbols can there be? Lots! there could be $\frac{m}{\sqrt{k}}$ frequent symbols

Case 1: There are fewer than $2\sqrt{k}$ frequent symbols in *P*. - $O(n\sqrt{k}\log m)$ total time

Algorithm summary

Step 0: Classify each symbol as frequent or infrequent $-O(m \log m)$ time

Step 1: Count all matches involving frequent symbols (using convolutions)

- $O(n\sqrt{k}\log m)$ time

Step 2: Count all matches involving infrequent symbols (as before)

- $O(n\sqrt{k})$ time

Pick any $2\sqrt{k}$ frequent symbols and for each symbol pick \sqrt{k} occurrences in *P*.

This gives us 2k interesting pattern locations, denoted J

$$P \quad a \quad e \quad b \quad b \quad a \quad c \quad a \quad d \quad b \quad d \quad c \quad f \quad b \quad b \quad k = 4$$

Pick any $2\sqrt{k}$ frequent symbols and for each symbol pick \sqrt{k} occurrences in *P*.

This gives us 2k *interesting* pattern locations, denoted J

Pick any $2\sqrt{k}$ frequent symbols and for each symbol pick \sqrt{k} occurrences in *P*. This gives us 2k interesting pattern locations, denoted *J*

> Pbbbk = 4 $\boldsymbol{\mathcal{C}}$ eaa \boldsymbol{b} db 9 10 4 5 6 8 (1) 2 3 \bigcirc 1 (12) (13) \bigcirc

Pick any $2\sqrt{k}$ frequent symbols and for each symbol pick \sqrt{k} occurrences in *P*.

University of BRISTOL

Case 2: There are at least $2\sqrt{k}$ frequent symbols

Pick any $2\sqrt{k}$ frequent symbols and for each symbol pick \sqrt{k} occurrences in *P*.

University of BRISTOL

Case 2: There are at least $2\sqrt{k}$ frequent symbols

Pick any $2\sqrt{k}$ frequent symbols and for each symbol pick \sqrt{k} occurrences in *P*.

This gives us 2k interesting pattern locations, denoted J $J = \{0, 2, 3, 4, 5, 7, 9, 10\}$

$$P \quad a \quad e \quad b \quad b \quad a \quad c \quad a \quad d \quad b \quad d \quad c \quad f \quad b \quad b \quad k = 4$$

Pick any $2\sqrt{k}$ frequent symbols and for each symbol pick \sqrt{k} occurrences in *P*.

Let $d_k(i)$ be the number of $j \in J$ such that P[j] = T[i + j]*i.e. the number of (single character) matches involving interesting pattern locations*

University of

Pick any $2\sqrt{k}$ frequent symbols and for each symbol pick \sqrt{k} occurrences in *P*.

This gives us
$$2k$$
 interesting pattern locations, denoted J
 $J = \{0, 2, 3, 4, 5, 7, 9, 10\}$
 P $a \ e \ b \ b \ a \ c \ a \ d \ b \ d \ c \ f \ b \ b}$ $k = 4$
 T $a \ c \ c \ a \ a \ b \ a \ b \ b \ a \ c \ f \ c \ d \ e \ f \ f \ b \ b \ c \ e \ a \ e}$
 $i = 4$

Let $d_k(i)$ be the number of $j \in J$ such that P[j] = T[i + j]*i.e. the number of (single character) matches involving interesting pattern locations*

University of

Pick any $2\sqrt{k}$ frequent symbols and for each symbol pick \sqrt{k} occurrences in *P*.

This gives us
$$2k$$
 interesting pattern locations, denoted J
 $J = \{0, 2, 3, 4, 5, 7, 9, 10\}$
 P $a \ e \ b \ b \ a \ c \ a \ d \ b \ d \ c \ f \ b \ b}$ $k = 4$
 T $a \ c \ c \ a \ a \ b \ a \ b \ b \ a \ c \ f \ c \ d \ e \ f \ f \ b \ b \ c \ e \ a \ e}$
 $i = 4$ $d_k(i) = 3$

Let $d_k(i)$ be the number of $j \in J$ such that P[j] = T[i + j]*i.e. the number of (single character) matches involving interesting pattern locations*

University of

Pick any $2\sqrt{k}$ frequent symbols and for each symbol pick \sqrt{k} occurrences in *P*.

This gives us
$$2k$$
 interesting pattern locations, denoted J
 $J = \{0, 2, 3, 4, 5, 7, 9, 10\}$
 P $a \ e \ b \ b \ a \ c \ a \ d \ b \ d \ c \ f \ b \ b}$ $k = 4$
 T $a \ c \ c \ a \ a \ b \ a \ b \ b \ a \ c \ f \ c \ d \ e \ f \ f \ b \ b \ c \ e \ a \ e}$
 $i = 4$ $d_k(i) = 3$

Let $d_k(i)$ be the number of $j \in J$ such that P[j] = T[i + j]*i.e. the number of (single character) matches involving interesting pattern locations*

Fact if $d_k(i) < k$ then there are more than k mismatches (i.e. $\text{Ham}_k(i) = X$)

University of

Pick any $2\sqrt{k}$ frequent symbols and for each symbol pick \sqrt{k} occurrences in *P*.

This gives us
$$2k$$
 interesting pattern locations, denoted J
 $J = \{0, 2, 3, 4, 5, 7, 9, 10\}$
 P $a \ e \ b \ b \ a \ c \ a \ d \ b \ d \ c \ f \ b \ b}$ $k = 4$
 T $a \ c \ c \ a \ a \ b \ a \ b \ b \ a \ c \ f \ c \ d \ e \ f \ f \ b \ b \ c \ e \ a \ e}$
 $i = 4$ $d_k(i) = 3$

Let $d_k(i)$ be the number of $j \in J$ such that P[j] = T[i + j]*i.e. the number of (single character) matches involving interesting pattern locations*

Fact if $d_k(i) < k$ then there are more than k mismatches (i.e. $\text{Ham}_k(i) = X$) because there are 2k interesting positions... and fewer than k of them match

University of

Pick any $2\sqrt{k}$ frequent symbols and for each symbol pick \sqrt{k} occurrences in *P*.

This gives us
$$2k$$
 interesting pattern locations, denoted J
 $J = \{0, 2, 3, 4, 5, 7, 9, 10\}$
 P $a \ e \ b \ b \ a \ c \ a \ d \ b \ d \ c \ f \ b \ b}$ $k = 4$
 T $a \ c \ c \ a \ a \ b \ a \ b \ b \ a \ c \ f \ c \ d \ e \ f \ f \ b \ b \ c \ e \ a \ e}$
 $i = 4$ $d_k(i) = 3$

Let $d_k(i)$ be the number of $j \in J$ such that P[j] = T[i + j]*i.e. the number of (single character) matches involving interesting pattern locations*

Fact if $d_k(i) < k$ then there are more than k mismatches (i.e. $\text{Ham}_k(i) = X$) because there are 2k interesting positions... and fewer than k of them match

Fact There are at most n/\sqrt{k} values of *i* with $d_k(i) \ge k$

University of

Pick any $2\sqrt{k}$ frequent symbols and for each symbol pick \sqrt{k} occurrences in *P*.

This gives us
$$2k$$
 interesting pattern locations, denoted J
 $J = \{0, 2, 3, 4, 5, 7, 9, 10\}$
 P $a \ e \ b \ b \ a \ c \ a \ d \ b \ d \ c \ f \ b \ b}$ $k = 4$
 T $a \ c \ c \ a \ a \ b \ a \ b \ b \ a \ c \ f \ c \ d \ e \ f \ f \ b \ b \ c \ e \ a \ e}$
 $i = 4$ $d_k(i) = 3$

Let $d_k(i)$ be the number of $j \in J$ such that P[j] = T[i + j]*i.e. the number of (single character) matches involving interesting pattern locations*

Fact if $d_k(i) < k$ then there are more than k mismatches (i.e. $\text{Ham}_k(i) = X$) because there are 2k interesting positions... and fewer than k of them match

Fact There are at most n/\sqrt{k} values of *i* with $d_k(i) \ge k$ this follows from a counting argument

University of

Pick any $2\sqrt{k}$ frequent symbols and for each symbol pick \sqrt{k} occurrences in *P*.

This gives us
$$2k$$
 interesting pattern locations, denoted J
 $J = \{0, 2, 3, 4, 5, 7, 9, 10\}$
 P $a \ e \ b \ b \ a \ c \ a \ d \ b \ d \ c \ f \ b \ b}$ $k = 4$
 T $a \ c \ c \ a \ a \ b \ a \ b \ b \ a \ c \ f \ c \ d \ e \ f \ f \ b \ b \ c \ e \ a \ e}$
 $i = 4$ $d_k(i) = 3$

Let $d_k(i)$ be the number of $j\in J$ such that P[j]=T[i+j]

i.e. the number of (single character) matches involving interesting pattern locations

Fact There are at most n/\sqrt{k} values of *i* with $d_k(i) \ge k$

University of BR ISTOI

Pick any $2\sqrt{k}$ frequent symbols and for each symbol pick \sqrt{k} occurrences in *P*.

This gives us
$$2k$$
 interesting pattern locations, denoted J
 $J = \{0, 2, 3, 4, 5, 7, 9, 10\}$
 P $a \ e \ b \ b \ a \ c \ a \ d \ b \ d \ c \ f \ b \ b}$ $k = 4$
 T $a \ c \ c \ a \ a \ b \ a \ b \ b \ a \ c \ f \ c \ d \ e \ f \ f \ b \ b \ c \ e \ a \ e}$
 $i = 4$ $d_k(i) = 3$

Let $d_k(i)$ be the number of $j \in J$ such that P[j] = T[i+j]

i.e. the number of (single character) matches involving interesting pattern locations

Fact There are at most n/\sqrt{k} values of *i* with $d_k(i) \ge k$

For any location i', T[i'] = P[j] for either 0 or \sqrt{k} distinct $j \in J$

University of

Pick any $2\sqrt{k}$ frequent symbols and for each symbol pick \sqrt{k} occurrences in *P*.

This gives us
$$2k$$
 interesting pattern locations, denoted J
 $J = \{0, 2, 3, 4, 5, 7, 9, 10\}$
 P $a \ e \ b \ b \ a \ c \ a \ d \ b \ d \ c \ f \ b \ b}$ $k = 4$
 T $a \ c \ c \ a \ a \ b \ a \ b \ b \ a \ c \ f \ c \ d \ e \ f \ f \ b \ b \ c \ e \ a \ e}$
 $i = 4$ $d_k(i) = 3$

Let $d_k(i)$ be the number of $j \in J$ such that P[j] = T[i+j]

i.e. the number of (single character) matches involving interesting pattern locations

Fact There are at most n/\sqrt{k} values of *i* with $d_k(i) \ge k$

For any location i', T[i'] = P[j] for either 0 or \sqrt{k} distinct $j \in J$

This implies that $\sum_i d_k(i) \leq \sum_{i'} \sum_{j \in J} Eq(T[i'], P[j]) \leq n\sqrt{k}$

University of

Pick any $2\sqrt{k}$ frequent symbols and for each symbol pick \sqrt{k} occurrences in *P*.

This gives us
$$2k$$
 interesting pattern locations, denoted J
 $J = \{0, 2, 3, 4, 5, 7, 9, 10\}$
 P a e b b a c a d b d c f b b $k = 4$
 T a c c a a b a b b a c f c d e f f b b c e a e
 $i = 4$ $d_k(i) = 3$

Let $d_k(i)$ be the number of $j \in J$ such that P[j] = T[i + j]*i.e. the number of (single character) matches involving interes* Fact There are at most n/\sqrt{k} values of i with $d_k(i) \ge k$ For any location i', T[i'] = P[j] for either 0 or \sqrt{k} distinct $j \in J$ This implies that $\sum_i d_k(i) \le \sum_{i'} \sum_{j \in J} \mathsf{Eq}(T[i'], P[j]) \le n\sqrt{k}$

University of

Pick any $2\sqrt{k}$ frequent symbols and for each symbol pick \sqrt{k} occurrences in *P*.

This gives us
$$2k$$
 interesting pattern locations, denoted J
 $J = \{0, 2, 3, 4, 5, 7, 9, 10\}$
 P $a \ e \ b \ b \ a \ c \ a \ d \ b \ d \ c \ f \ b \ b}$ $k = 4$
 T $a \ c \ c \ a \ a \ b \ a \ b \ b \ a \ c \ f \ c \ d \ e \ f \ f \ b \ b \ c \ e \ a \ e}$
 $i = 4$ $d_k(i) = 3$

Let $d_k(i)$ be the number of $j \in J$ such that P[j] = T[i+j]

i.e. the number of (single character) matches involving interesting pattern locations

Fact There are at most n/\sqrt{k} values of *i* with $d_k(i) \ge k$

For any location i', T[i'] = P[j] for either 0 or \sqrt{k} distinct $j \in J$

This implies that $\sum_i d_k(i) \leq \sum_{i'} \sum_{j \in J} Eq(T[i'], P[j]) \leq n\sqrt{k}$

University of

Pick any $2\sqrt{k}$ frequent symbols and for each symbol pick \sqrt{k} occurrences in *P*.

This gives us
$$2k$$
 interesting pattern locations, denoted J
 $J = \{0, 2, 3, 4, 5, 7, 9, 10\}$
 P
 $a \ e \ b \ b \ a \ c \ a \ d \ b \ d \ c \ f \ b \ b}$
 $k = 4$
 T
 $a \ c \ c \ a \ a \ b \ a \ b \ b \ a \ c \ f \ c \ d \ e \ f \ f \ b \ b \ c \ e \ a \ e}$
 $i = 4$
 $d_k(i) = 3$

Let $d_k(i)$ be the number of $j\in J$ such that P[j]=T[i+j]

i.e. the number of (single character) matches involving interesting pattern locations

Fact There are at most n/\sqrt{k} values of *i* with $d_k(i) \ge k$

Assume that more than n/\sqrt{k} values of *i* have $d_k(i) \ge k$

University of

Pick any $2\sqrt{k}$ frequent symbols and for each symbol pick \sqrt{k} occurrences in *P*.

This gives us
$$2k$$
 interesting pattern locations, denoted J
 $J = \{0, 2, 3, 4, 5, 7, 9, 10\}$
 P
 $a \ e \ b \ b \ a \ c \ a \ d \ b \ d \ c \ f \ b \ b}$
 $k = 4$
 T
 $a \ c \ c \ a \ a \ b \ a \ b \ b \ a \ c \ f \ c \ d \ e \ f \ f \ b \ b \ c \ e \ a \ e}$
 $i = 4$
 $d_k(i) = 3$

Let $d_k(i)$ be the number of $j \in J$ such that P[j] = T[i+j]

i.e. the number of (single character) matches involving interesting pattern locations

Fact There are at most n/\sqrt{k} values of *i* with $d_k(i) \ge k$

Assume that more than n/\sqrt{k} values of *i* have $d_k(i) \ge k$

So $\sum_{i} d_k(i) \ge \frac{n}{\sqrt{k}} \cdot k$

University of

Pick any $2\sqrt{k}$ frequent symbols and for each symbol pick \sqrt{k} occurrences in *P*.

This gives us
$$2k$$
 interesting pattern locations, denoted J
 $J = \{0, 2, 3, 4, 5, 7, 9, 10\}$
 P
 $a \ e \ b \ b \ a \ c \ a \ d \ b \ d \ c \ f \ b \ b}$
 $k = 4$
 T
 $a \ c \ c \ a \ a \ b \ a \ b \ b \ a \ c \ f \ c \ d \ e \ f \ f \ b \ b \ c \ e \ a \ e}$
 $i = 4$
 $d_k(i) = 3$

Let $d_k(i)$ be the number of $j \in J$ such that P[j] = T[i+j]

i.e. the number of (single character) matches involving interesting pattern locations

Fact There are at most n/\sqrt{k} values of *i* with $d_k(i) \ge k$

Assume that more than n/\sqrt{k} values of *i* have $d_k(i) \ge k$

So $\sum_i d_k(i) \ge \frac{n}{\sqrt{k}} \cdot k > n\sqrt{k}$

Pick any $2\sqrt{k}$ frequent symbols and for each symbol pick \sqrt{k} occurrences in *P*.

This gives us
$$2k$$
 interesting pattern locations, denoted J
 $J = \{0, 2, 3, 4, 5, 7, 9, 10\}$
 P $a \ e \ b \ b \ a \ c \ a \ d \ b \ d \ c \ f \ b \ b}$ $k = 4$
 T $a \ c \ c \ a \ a \ b \ a \ b \ b \ a \ c \ f \ c \ d \ e \ f \ f \ b \ b \ c \ e \ a \ e}$
 $i = 4$ $d_k(i) = 3$

Let $d_k(i)$ be the number of $j \in J$ such that P[j] = T[i+j]

i.e. the number of (single character) matches involving interesting pattern locations

Fact There are at most n/\sqrt{k} values of *i* with $d_k(i) \ge k$ Assume that more than n/\sqrt{k} values of *i* have $d_k(i) \ge k$

So $\sum_i d_k(i) \ge \frac{n}{\sqrt{k}} \cdot k > n\sqrt{k}$

Contradiction!

University of

University of

Pick any $2\sqrt{k}$ frequent symbols and for each symbol pick \sqrt{k} occurrences in *P*.

This gives us
$$2k$$
 interesting pattern locations, denoted J
 $J = \{0, 2, 3, 4, 5, 7, 9, 10\}$
 P $a \ e \ b \ b \ a \ c \ a \ d \ b \ d \ c \ f \ b \ b}$ $k = 4$
 T $a \ c \ c \ a \ a \ b \ a \ b \ b \ a \ c \ f \ c \ d \ e \ f \ f \ b \ b \ c \ e \ a \ e}$
 $i = 4$ $d_k(i) = 3$

Let $d_k(i)$ be the number of $j \in J$ such that P[j] = T[i + j]*i.e. the number of (single character) matches involving interesting pattern locations*

Fact if $d_k(i) < k$ then there are more than k mismatches (i.e. $\text{Ham}_k(i) = X$) because there are 2k interesting positions... and fewer than k of them match

Fact There are at most n/\sqrt{k} values of *i* with $d_k(i) \ge k$ this follows from a counting argument

University of BRISTOL

Pick any $2\sqrt{k}$ frequent symbols and for each symbol pick \sqrt{k} occurrences in *P*.

This gives us
$$2k$$
 interesting pattern locations, denoted J
 $J = \{0, 2, 3, 4, 5, 7, 9, 10\}$
 P $a \ e \ b \ b \ a \ c \ a \ d \ b \ d \ c \ f \ b \ b}$ $k = 4$
 T $a \ c \ c \ a \ a \ b \ a \ b \ b \ a \ c \ f \ c \ d \ e \ f \ f \ b \ b \ c \ e \ a \ e}$
 $i = 4$

We can filter the text, leaving only n/\sqrt{k} locations to check every other location has more than k mismatches

University of

Pick any $2\sqrt{k}$ frequent symbols and for each symbol pick \sqrt{k} occurrences in *P*.

This gives us
$$2k$$
 interesting pattern locations, denoted J
 $J = \{0, 2, 3, 4, 5, 7, 9, 10\}$
 P a e b b a c a d b d c f b b $k = 4$
 T a c c a a b a b b b a c f c d e f f b b c e a e
 $i = 4$

We can filter the text, leaving only n/\sqrt{k} locations to check every other location has more than k mismatches

Check each of the remaining locations using LCP queries in O(k) time

University of

Pick any $2\sqrt{k}$ frequent symbols and for each symbol pick \sqrt{k} occurrences in *P*.

This gives us
$$2k$$
 interesting pattern locations, denoted J
 $J = \{0, 2, 3, 4, 5, 7, 9, 10\}$
 P a e b b a c a d b d c f b b $k = 4$
 T a c c a a b a b b b a c f c d e f f b b c e a e
 $i = 4$

We can filter the text, leaving only n/\sqrt{k} locations to check every other location has more than k mismatches

Check each of the remaining locations using LCP queries in O(k) time

Determining which locations to check also takes $O(n\sqrt{k})$ total time

Pick any $2\sqrt{k}$ frequent symbols and for each symbol pick \sqrt{k} occurrences in *P*.

This gives us
$$2k$$
 interesting pattern locations, denoted J
 $J = \{0, 2, 3, 4, 5, 7, 9, 10\}$
 P a e b b a c a d b d c f b b $k = 4$
 T a c c a a b a b b b a c f c d e f f b b c e a e
 $i = 4$

We can filter the text, leaving only n/\sqrt{k} locations to check every other location has more than k mismatches

Check each of the remaining locations using LCP queries in O(k) time

Determining which locations to check also takes $O(n\sqrt{k})$ total time This gives $O(n\sqrt{k})$ total time

Algorithm summary

Algorithm summary

Preprocess P, T for LCP queries - O(n) time

Algorithm summary

Preprocess P, T for LCP queries - O(n) time

Count the number of *frequent* symbols in $P - O(m \log m)$ time

Algorithm summary

Preprocess P, T for LCP queries - O(n) time

Count the number of *frequent* symbols in $P - O(m \log m)$ time

Case 1: *P* has at most $2\sqrt{k}$ frequent symbols

Case 2: *P* has more than $2\sqrt{k}$ frequent symbols

Algorithm summary

Preprocess P, T for LCP queries - O(n) time

Count the number of *frequent* symbols in $P - O(m \log m)$ time

Case 1: *P* has at most $2\sqrt{k}$ frequent symbols

Count matches with frequent symbols using convolution - $O(n\sqrt{k}\log m)$ time

Case 2: *P* has more than $2\sqrt{k}$ frequent symbols

University of BD ISTOL

Algorithm summary

Preprocess P, T for LCP queries - O(n) time

Count the number of *frequent* symbols in $P - O(m \log m)$ time

Case 1: *P* has at most $2\sqrt{k}$ frequent symbols

Count matches with frequent symbols using convolution - $O(n\sqrt{k}\log m)$ time Count matches with infrequent symbols directly - $O(n\sqrt{k})$ time

Case 2: *P* has more than $2\sqrt{k}$ frequent symbols

Algorithm summary

Preprocess P, T for LCP queries - O(n) time

Count the number of *frequent* symbols in $P - O(m \log m)$ time

Case 1: *P* has at most $2\sqrt{k}$ frequent symbols

Count matches with frequent symbols using convolution - $O(n\sqrt{k}\log m)$ time Count matches with infrequent symbols directly - $O(n\sqrt{k})$ time

Case 2: *P* has more than $2\sqrt{k}$ frequent symbols

Filter the text, leaving n/\sqrt{k} alignments - $O(n\sqrt{k})$ time

Algorithm summary

Preprocess P, T for LCP queries - O(n) time

Count the number of *frequent* symbols in $P - O(m \log m)$ time

Case 1: *P* has at most $2\sqrt{k}$ frequent symbols

Count matches with frequent symbols using convolution - $O(n\sqrt{k}\log m)$ time Count matches with infrequent symbols directly - $O(n\sqrt{k})$ time

Case 2: *P* has more than $2\sqrt{k}$ frequent symbols Filter the text, leaving n/\sqrt{k} alignments - $O(n\sqrt{k})$ time

Count mismatches at these alignments using LCP queries - $O(n\sqrt{k})$ time

Algorithm summary

Preprocess P, T for LCP queries - O(n) time

Count the number of *frequent* symbols in $P - O(m \log m)$ time

Case 1: *P* has at most $2\sqrt{k}$ frequent symbols

Count matches with frequent symbols using convolution - $O(n\sqrt{k}\log m)$ time Count matches with infrequent symbols directly - $O(n\sqrt{k})$ time

Case 2: *P* has more than $2\sqrt{k}$ frequent symbols Filter the text, leaving n/\sqrt{k} alignments - $O(n\sqrt{k})$ time Count mismatches at these alignments using LCP queries - $O(n\sqrt{k})$ time

Overall, we obtain a time complexity of $O(n\sqrt{k}\log m)$.

Algorithm summary

Preprocess P, T for LCP queries - O(n) time

Count the number of *frequent* symbols in $P - O(m \log m)$ time

Case 1: *P* has at most $2\sqrt{k}$ frequent symbols

Count matches with frequent symbols using convolution - $O(n\sqrt{k}\log m)$ time Count matches with infrequent symbols directly - $O(n\sqrt{k})$ time

Case 2: *P* has more than $2\sqrt{k}$ frequent symbols Filter the text, leaving n/\sqrt{k} alignments - $O(n\sqrt{k})$ time Count mismatches at these alignments using LCP queries - $O(n\sqrt{k})$ time

Overall, we obtain a time complexity of $O(n\sqrt{k}\log m)$.

- this can be improved to $O(n\sqrt{k\log k})$