Advanced Algorithms - COMS31900

2013/2014

Lecture 13
 Approximate pattern matching (part two)

Benjamin Sach

Input A text string T (length n) and a pattern string P (length m)

Goal: For all i, output, Ham(i), the Hamming distance between P and $T[i \ldots i+m-1]$
The Hamming distance is the number of (single character) mismatches...
i.e. the number of distinct j such that $P[j] \neq T[i+j]$

Input A text string T (length n) and a pattern string P (length m)

$$
\operatorname{Ham}(4)=1
$$

Goal: For all i, output, Ham(i), the Hamming distance between P and $T[i \ldots i+m-1]$
The Hamming distance is the number of (single character) mismatches...
i.e. the number of distinct j such that $P[j] \neq T[i+j]$

Input A text string T (length n) and a pattern string P (length m)

$$
\operatorname{Ham}(5)=4
$$

Goal: For all i, output, Ham(i), the Hamming distance between P and $T[i \ldots i+m-1]$
The Hamming distance is the number of (single character) mismatches...
i.e. the number of distinct j such that $P[j] \neq T[i+j]$

Input A text string T (length n) and a pattern string P (length m)

$$
\operatorname{Ham}(6)=1
$$

Goal: For all i, output, Ham(i), the Hamming distance between P and $T[i \ldots i+m-1]$
The Hamming distance is the number of (single character) mismatches...
i.e. the number of distinct j such that $P[j] \neq T[i+j]$

Input A text string T (length n) and a pattern string P (length m)

$$
\operatorname{Ham}(7)=3
$$

Goal: For all i, output, Ham(i), the Hamming distance between P and $T[i \ldots i+m-1]$
The Hamming distance is the number of (single character) mismatches...
i.e. the number of distinct j such that $P[j] \neq T[i+j]$

Input A text string T (length n) and a pattern string P (length m)

$$
\operatorname{Ham}(8)=3
$$

Goal: For all i, output, Ham(i), the Hamming distance between P and $T[i \ldots i+m-1]$
The Hamming distance is the number of (single character) mismatches...
i.e. the number of distinct j such that $P[j] \neq T[i+j]$

Hamming distance - considering symbols seperately

Imagine that the alphabet contains only a small number of different symbols, which we consider individually...

	(0) (1) (2) (3) (4) (5)						$\begin{aligned} & \text { © } \\ & n \end{aligned}$	(7)	(8)	(9)	(1)	(11)	
T	a	b	C	d	a	b	a	a	d	a	c	a	a
P					a	b	d	a					

Hamming distance - considering symbols seperately

Imagine that the alphabet contains only a small number of different symbols, which we consider individually...

Replace all a symbols with 1 and everything else with 0

Hamming distance - considering symbols seperately

Imagine that the alphabet contains only a small number of different symbols, which we consider individually...

Replace all a symbols with 1 and everything else with 0

Hamming distance - considering symbols seperately

Imagine that the alphabet contains only a small number of different symbols, which we consider individually...

Replace all a symbols with 1 and everything else with 0

Hamming distance - considering symbols seperately

Imagine that the alphabet contains only a small number of different symbols, which we consider individually...

Replace all a symbols with 1 and everything else with 0

Hamming distance - considering symbols seperately

Imagine that the alphabet contains only a small number of different symbols, which we consider individually...

Replace all a symbols with 1 and everything else with 0
We denote these new strings T_{a} and P_{a} and consider. . .

Hamming distance - considering symbols seperately

Imagine that the alphabet contains only a small number of different symbols, which we consider individually...

Replace all a symbols with 1 and everything else with 0
We denote these new strings T_{a} and P_{a} and consider. . .

Hamming distance - considering symbols seperately

Imagine that the alphabet contains only a small number of different symbols, which we consider individually...

Replace all a symbols with 1 and everything else with 0
We denote these new strings T_{a} and P_{a} and consider. . .

$$
\left(T_{a} \otimes P_{a}\right)[i]=\sum_{j=0}^{m-1} \underbrace{P_{a}[j] T_{a}[i+j]}_{1 \text { iff } P[j]=T[i+j]=a}
$$

Hamming distance - considering symbols seperately

Imagine that the alphabet contains only a small number of different symbols, which we consider individually...

Replace all a symbols with 1 and everything else with 0
We denote these new strings T_{a} and P_{a} and consider...

$$
\begin{aligned}
& \left(T_{a} \otimes P_{a}\right)[i]=\sum_{j=0}^{m-1} \underbrace{P_{a}[j] T_{a}[i+j]} \\
& 1 \text { iff } P[j]=T[i+j]=a \\
& (1 \times 1)+(2 \times 2)+(1 \times 1)=6
\end{aligned}
$$

Hamming distance - considering symbols seperately

Imagine that the alphabet contains only a small number of different symbols, which we consider individually...

Replace all a symbols with 1 and everything else with 0
We denote these new strings T_{a} and P_{a} and consider...

$$
\begin{aligned}
& \left(T_{a} \otimes P_{a}\right)[i]=\sum_{j=0}^{m-1} \underbrace{P_{a}[j] T_{a}[i+j]} \\
& 1 \text { iff } P[j]=T[i+j]=a \\
& (1 \times 1)+(2 \times 2)+(1 \times 1)=6
\end{aligned}
$$

This is the number of matching a s at the i-th alignment.

Hamming distance - considering symbols seperately

Imagine that the alphabet contains only a small number of different symbols, which we consider individually...

Replace all a symbols with 1 and everything else with 0
We denote these new strings T_{a} and P_{a} and consider...

$$
\begin{aligned}
& \left(T_{a} \otimes P_{a}\right)[i]=\sum_{j=0}^{m-1} \underbrace{P_{a}[j] T_{a}[i+j]} \\
& 1 \text { iff } P[j]=T[i+j]=a \\
& (1 \times 1)+(2 \times 2)+(1 \times 1)=6
\end{aligned}
$$

This is the number of matching a s at the i-th alignment.

Hamming distance - considering symbols seperately

Imagine that the alphabet contains only a small number of different symbols, which we consider individually...

Replace all a symbols with 1 and everything else with 0
We denote these new strings T_{a} and P_{a} and consider...

$$
\begin{aligned}
& \left(T_{a} \otimes P_{a}\right)[i]=\sum_{j=0}^{m-1} \underbrace{P_{a}[j] T_{a}[i+j]} \\
& 1 \text { iff } P[j]=T[i+j]=a \\
& (1 \times 1)+(2 \times 2)+(1 \times 1)=6
\end{aligned}
$$

This is the number of matching $a \mathrm{~s}$ at the i -th alignment. which we can compute (for all i) in $O(n \log m)$ time via cross-correlations

Hamming distance - considering symbols seperately

We saw how to find all matches with a single symbol in $O(n \log m)$ time
Let Σ denote the set of alphabet symbols and $|\Sigma|$ be its size

Algorithm Summary
Construct T_{σ} and P_{σ} for every symbol σ in Σ
Compute $T_{\sigma} \otimes P_{\sigma}$ (for every symbol σ in Σ)
For every i, compute,

$$
\operatorname{Ham}(i)=m-\sum_{\sigma \in \Sigma}\left(T_{\sigma} \otimes P_{\sigma}\right)[i]
$$

Hamming distance - considering symbols seperately

We saw how to find all matches with a single symbol in $O(n \log m)$ time
Let Σ denote the set of alphabet symbols and $|\Sigma|$ be its size

Algorithm Summary

Construct T_{σ} and P_{σ} for every symbol σ in Σ
Compute $T_{\sigma} \otimes P_{\sigma}$ (for every symbol σ in Σ)
For every i, compute,

$$
\operatorname{Ham}(i)=m-\sum_{\sigma \in \Sigma} \underbrace{\left(T_{\sigma} \otimes P_{\sigma}\right)[i]}_{\text {matches involving } \sigma}
$$

Hamming distance - considering symbols seperately

We saw how to find all matches with a single symbol in $O(n \log m)$ time
Let Σ denote the set of alphabet symbols and $|\Sigma|$ be its size

Algorithm Summary

Construct T_{σ} and P_{σ} for every symbol σ in Σ
Compute $T_{\sigma} \otimes P_{\sigma}$ (for every symbol σ in Σ)
For every i, compute,

$$
\operatorname{Ham}(i)=m-\underbrace{\sum_{\sigma \in \Sigma}\left(T_{\sigma} \otimes P_{\sigma}\right)[i]}_{\text {all matches }}
$$

Hamming distance - considering symbols seperately

We saw how to find all matches with a single symbol in $O(n \log m)$ time
Let Σ denote the set of alphabet symbols and $|\Sigma|$ be its size

Algorithm Summary

Construct T_{σ} and P_{σ} for every symbol σ in Σ
Compute $T_{\sigma} \otimes P_{\sigma}$ (for every symbol σ in Σ)
For every i, compute,

$$
\begin{gathered}
\operatorname{Ham}(i)=m-\sum_{\sigma \in \Sigma}\left(T_{\sigma} \otimes P_{\sigma}\right)[i] \\
\text { mismatches }=m-\text { matches }
\end{gathered}
$$

Hamming distance - considering symbols seperately

We saw how to find all matches with a single symbol in $O(n \log m)$ time
Let Σ denote the set of alphabet symbols and $|\Sigma|$ be its size

Algorithm Summary
Construct T_{σ} and P_{σ} for every symbol σ in Σ
Compute $T_{\sigma} \otimes P_{\sigma}$ (for every symbol σ in Σ)
For every i, compute,

$$
\operatorname{Ham}(i)=m-\sum_{\sigma \in \Sigma}\left(T_{\sigma} \otimes P_{\sigma}\right)[i]
$$

Hamming distance - considering symbols seperately

We saw how to find all matches with a single symbol in $O(n \log m)$ time
Let Σ denote the set of alphabet symbols and $|\Sigma|$ be its size

Algorithm Summary
Construct T_{σ} and P_{σ} for every symbol σ in $\Sigma(O(n|\Sigma|)$ time $)$
Compute $T_{\sigma} \otimes P_{\sigma}$ (for every symbol σ in Σ)
For every i, compute,

$$
\operatorname{Ham}(i)=m-\sum_{\sigma \in \Sigma}\left(T_{\sigma} \otimes P_{\sigma}\right)[i]
$$

Hamming distance - considering symbols seperately

We saw how to find all matches with a single symbol in $O(n \log m)$ time
Let Σ denote the set of alphabet symbols and $|\Sigma|$ be its size

Algorithm Summary

Construct T_{σ} and P_{σ} for every symbol σ in $\Sigma(O(n|\Sigma|)$ time $)$
Compute $T_{\sigma} \otimes P_{\sigma}($ for every symbol σ in $\Sigma) \quad(O(n|\Sigma| \log m)$ time $)$
For every i, compute,

$$
\operatorname{Ham}(i)=m-\sum_{\sigma \in \Sigma}\left(T_{\sigma} \otimes P_{\sigma}\right)[i]
$$

Hamming distance - considering symbols seperately

We saw how to find all matches with a single symbol in $O(n \log m)$ time
Let Σ denote the set of alphabet symbols and $|\Sigma|$ be its size

Algorithm Summary

Construct T_{σ} and P_{σ} for every symbol σ in $\Sigma(O(n|\Sigma|)$ time) Compute $T_{\sigma} \otimes P_{\sigma}($ for every symbol σ in $\Sigma) \quad(O(n|\Sigma| \log m)$ time $)$
For every i, compute,

$$
\operatorname{Ham}(i)=m-\sum_{\sigma \in \Sigma}\left(T_{\sigma} \otimes P_{\sigma}\right)[i] \cdot \quad(O(n|\Sigma|) \text { time })
$$

Hamming distance - considering symbols seperately

We saw how to find all matches with a single symbol in $O(n \log m)$ time
Let Σ denote the set of alphabet symbols and $|\Sigma|$ be its size

Algorithm Summary

Construct T_{σ} and P_{σ} for every symbol σ in $\Sigma(O(n|\Sigma|)$ time $)$
Compute $T_{\sigma} \otimes P_{\sigma}$ (for every symbol σ in $\left.\Sigma\right) \quad(O(n|\Sigma| \log m)$ time)
For every i, compute,

$$
\operatorname{Ham}(i)=m-\sum_{\sigma \in \Sigma}\left(T_{\sigma} \otimes P_{\sigma}\right)[i] \cdot \quad(O(n|\Sigma|) \text { time })
$$

This takes $O(n|\Sigma| \log m)$ total time (and $O(n)$ space)

Hamming distance - considering symbols seperately

We saw how to find all matches with a single symbol in $O(n \log m)$ time
Let Σ denote the set of alphabet symbols and $|\Sigma|$ be its size

Algorithm Summary

Construct T_{σ} and P_{σ} for every symbol σ in $\Sigma(O(n|\Sigma|)$ time $)$
Compute $T_{\sigma} \otimes P_{\sigma}$ (for every symbol σ in $\left.\Sigma\right) \quad(O(n|\Sigma| \log m)$ time)
For every i, compute,

$$
\operatorname{Ham}(i)=m-\sum_{\sigma \in \Sigma}\left(T_{\sigma} \otimes P_{\sigma}\right)[i] \cdot \quad(O(n|\Sigma|) \text { time })
$$

This takes $O(n|\Sigma| \log m)$ total time (and $O(n)$ space)

However, $|\Sigma|$ could be as big as $m \ldots$

Hamming distance - considering symbols seperately

We saw how to find all matches with a single symbol in $O(n \log m)$ time
Let Σ denote the set of alphabet symbols and $|\Sigma|$ be its size

Algorithm Summary

Construct T_{σ} and P_{σ} for every symbol σ in $\Sigma(O(n|\Sigma|)$ time $)$
Compute $T_{\sigma} \otimes P_{\sigma}($ for every symbol σ in $\Sigma) \quad(O(n|\Sigma| \log m)$ time $)$
For every i, compute,

$$
\operatorname{Ham}(i)=m-\sum_{\sigma \in \Sigma}\left(T_{\sigma} \otimes P_{\sigma}\right)[i] \cdot \quad(O(n|\Sigma|) \text { time })
$$

This takes $O(n|\Sigma| \log m)$ total time (and $O(n)$ space)

However, $|\Sigma|$ could be as big as $m \ldots$

The frequent/infrequent symbols trick

Definition: A symbol is frequent if it occurs at least \sqrt{m} times in P.

The frequent/infrequent symbols trick

Definition: A symbol is frequent if it occurs at least \sqrt{m} times in P.

P	a	b	b	a	c	a		d	b		d

The frequent/infrequent symbols trick

Definition: A symbol is frequent if it occurs at least \sqrt{m} times in P.

$$
\begin{aligned}
& a \text { is frequent }
\end{aligned}
$$

The frequent/infrequent symbols trick

Definition: A symbol is frequent if it occurs at least \sqrt{m} times in P.

P	(0) (1) (2)			$-m \stackrel{(4)}{=} 9$			$\begin{array}{llll} 9 & \text { (6) } & \text { 가 } & 8 \\ \hline \end{array}$		
	a	b	b	a	c	a	d	b	d

a is frequent, b is frequent

The frequent/infrequent symbols trick

Definition: A symbol is frequent if it occurs at least \sqrt{m} times in P.

				$\begin{gathered} (3) \\ -m=9 \end{gathered}$			$\begin{array}{llll} \text { (5) (6) } & \text { (7) } \\ \hline \end{array}$		
P	a	b	b	a	c	a	d	b	d

a is frequent, b is frequent c and d are not frequent

The frequent/infrequent symbols trick

Definition: A symbol is frequent if it occurs at least \sqrt{m} times in P.

a is frequent, b is frequent c and d are not frequent

Step 1: Count all matches involving frequent symbols.

The frequent/infrequent symbols trick

Definition: A symbol is frequent if it occurs at least \sqrt{m} times in P.

a is frequent, b is frequent c and d are not frequent

Step 1: Count all matches involving frequent symbols.
Consider each frequent symbol separately in $O(n \log m)$ time (per symbol).

The frequent/infrequent symbols trick

Definition: A symbol is frequent if it occurs at least \sqrt{m} times in P.

a is frequent, b is frequent c and d are not frequent

Step 1: Count all matches involving frequent symbols.
Consider each frequent symbol separately in $O(n \log m)$ time (per symbol). using cross-correlations

The frequent/infrequent symbols trick

Definition: A symbol is frequent if it occurs at least \sqrt{m} times in P.

a is frequent, b is frequent c and d are not frequent

Step 1: Count all matches involving frequent symbols.
Consider each frequent symbol separately in $O(n \log m)$ time (per symbol). using cross-correlations

How many frequent symbols can there be?

The frequent/infrequent symbols trick

Definition: A symbol is frequent if it occurs at least \sqrt{m} times in P.

a is frequent, b is frequent c and d are not frequent

Step 1: Count all matches involving frequent symbols.
Consider each frequent symbol separately in $O(n \log m)$ time (per symbol). using cross-correlations

How many frequent symbols can there be?
Assume that there at least $(\sqrt{m}+1)$ freq. symbols

The frequent/infrequent symbols trick

Definition: A symbol is frequent if it occurs at least \sqrt{m} times in P.

a is frequent, b is frequent c and d are not frequent

Step 1: Count all matches involving frequent symbols.
Consider each frequent symbol separately in $O(n \log m)$ time (per symbol). using cross-correlations

How many frequent symbols can there be?
Assume that there at least $(\sqrt{m}+1)$ freq. symbols each occurs at least \sqrt{m} times...

The frequent/infrequent symbols trick

Definition: A symbol is frequent if it occurs at least \sqrt{m} times in P.

a is frequent, b is frequent c and d are not frequent

Step 1: Count all matches involving frequent symbols.
Consider each frequent symbol separately in $O(n \log m)$ time (per symbol). using cross-correlations

How many frequent symbols can there be?
Assume that there at least $(\sqrt{m}+1)$ freq. symbols each occurs at least \sqrt{m} times... $\quad(\sqrt{m}+1) \sqrt{m}>m$

The frequent/infrequent symbols trick

Definition: A symbol is frequent if it occurs at least \sqrt{m} times in P.

a is frequent, b is frequent c and d are not frequent

Step 1: Count all matches involving frequent symbols.
Consider each frequent symbol separately in $O(n \log m)$ time (per symbol). using cross-correlations

How many frequent symbols can there be?
Assume that there at least $(\sqrt{m}+1)$ freq. symbols each occurs at least \sqrt{m} times... $\quad(\sqrt{m}+1) \sqrt{m}>m \quad$ Contradiction!

The frequent/infrequent symbols trick

Definition: A symbol is frequent if it occurs at least \sqrt{m} times in P.

a is frequent, b is frequent c and d are not frequent

Step 1: Count all matches involving frequent symbols.
Consider each frequent symbol separately in $O(n \log m)$ time (per symbol). using cross-correlations

How many frequent symbols can there be?
Assume that there at least $(\sqrt{m}+1)$ freq. symbols each occurs at least \sqrt{m} times... $\quad(\sqrt{m}+1) \sqrt{m}>m \quad$ Contradiction! so there are at most \sqrt{m} frequent symbols

The frequent/infrequent symbols trick

Definition: A symbol is frequent if it occurs at least \sqrt{m} times in P.

a is frequent, b is frequent c and d are not frequent

Step 1: Count all matches involving frequent symbols.
Consider each frequent symbol separately in $O(n \log m)$ time (per symbol). using cross-correlations

How many frequent symbols can there be?
Assume that there at least $(\sqrt{m}+1)$ freq. symbols each occurs at least \sqrt{m} times... $\quad(\sqrt{m}+1) \sqrt{m}>m \quad$ Contradiction!
so there are at most \sqrt{m} frequent symbols
So Step 1 takes $O(n \sqrt{m} \log m)$ time.

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

																Every symbol is either frequent or infrequent is frequent, b is frequent c and d are infrequent	
T	a d	b	a	c	c	c	d	a	d	c	$d \mid c$	$c \mid d$	d a	a	c		
P	$a \mid$	b	a	c	a	d	b	d									

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

Step 2: Count all matches involving infrequent symbols.

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

																	Every symbol is either frequent or infrequent a is frequent, b is frequent c and d are infrequent		
T	a	d	b	a	c	c	c	d	a	d	c	d	c	d	a	c			
P	a	b	b	a	c	a	d	b	d										

Step 2: Count all matches involving infrequent symbols.

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros Make a single pass through $T \ldots$

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

$\downarrow \cdots \cdots-\cdots$																	Every symbol is either frequent or infrequent a is frequent, b is frequent c and d are infrequent	
T	a	d	b	a	c	c	c	c	$d \mid a$	a d	d c	c ${ }^{\text {d }}$	d c	\|d	a	c		
P	a	b	b	a	c	c			$b \mid d$									
A	0	0	0	0	0	0			0									

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros Make a single pass through $T \ldots$

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

$\downarrow \cdots \cdots-\cdots$																	Every symbol is either frequent or infrequent a is frequent, b is frequent c and d are infrequent	
T	a	d	b	a	c	c	c	c	$d \mid a$	a d	d c	c ${ }^{\text {d }}$	d c	\|d	a	c		
P	a	b	b	a	c	c			$b \mid d$									
A	0	0	0	0	0	0			0									

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros
Make a single pass through $T \ldots$
For each character $T[k]$, (where $0 \leqslant k<n$)

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

$\downarrow \cdots \cdots-\cdots$																	Every symbol is either frequent or infrequent a is frequent, b is frequent c and d are infrequent	
T	a	d	b	a	c	c	c	c	$d \mid a$	a d	d c	c ${ }^{\text {d }}$	d c	\|d	a	c		
P	a	b	b	a	c	c			$b \mid d$									
A	0	0	0	0	0	0			0									

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros
Make a single pass through $T \ldots$
For each character $T[k]$, (where $0 \leqslant k<n$)
If $T[k]$ is infrequent. . .

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

$\downarrow \cdots \cdots-\cdots$																Every symbol is either frequent or infrequent	
T	$0 d$	b	\| a	c	c	c	$c \mid c$	$d a$	d	c	d	c	d	\| a	c		
P	a b	b	a	c	a		$d b$	d									a is frequent, b is frequent c and d are infrequent
A	0 0	0	0	0	0		0										

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros
Make a single pass through $T \ldots$
For each character $T[k]$, (where $0 \leqslant k<n$)
If $T[k]$ is infrequent...

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros
Make a single pass through $T \ldots$
For each character $T[k]$, (where $0 \leqslant k<n$)
If $T[k]$ is infrequent...

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros
Make a single pass through $T \ldots$
For each character $T[k]$, (where $0 \leqslant k<n$)
If $T[k]$ is infrequent...

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros
Make a single pass through $T \ldots$
For each character $T[k]$, (where $0 \leqslant k<n$)
If $T[k]$ is infrequent...
For all j such that $T[k]=P[j]$, Increase $A[k-j]$ by one

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros
Make a single pass through $T \ldots$
For each character $T[k]$, (where $0 \leqslant k<n$)
If $T[k]$ is infrequent...
For all j such that $T[k]=P[j]$, Increase $A[k-j]$ by one

$$
\text { except when }(k-j)<0
$$

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

Every symbol is either frequent or infrequent a is frequent, b is frequent c and d are infrequent

| c | a | d | b | d |
| :--- | :--- | :--- | :--- | :--- | :--- |

A	0	0	0	0	0	0	0	0

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros
Make a single pass through $T \ldots$
For each character $T[k]$, (where $0 \leqslant k<n$)
If $T[k]$ is infrequent. . .
For all j such that $T[k]=P[j]$, Increase $A[k-j]$ by one

$$
\text { except when }(k-j)<0
$$

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

T

| b | a | c | a | d | b | d |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |$(k-j)<0$

Every symbol is either frequent or infrequent a is frequent, b is frequent c and d are infrequent

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros
Make a single pass through $T \ldots$
For each character $T[k]$, (where $0 \leqslant k<n$)
If $T[k]$ is infrequent...
For all j such that $T[k]=P[j]$, Increase $A[k-j]$ by one

$$
\text { except when }(k-j)<0
$$

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros
Make a single pass through $T \ldots$
For each character $T[k]$, (where $0 \leqslant k<n$)
If $T[k]$ is infrequent...
For all j such that $T[k]=P[j]$, Increase $A[k-j]$ by one

$$
\text { except when }(k-j)<0
$$

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros
Make a single pass through $T \ldots$
For each character $T[k]$, (where $0 \leqslant k<n$)
If $T[k]$ is infrequent...
For all j such that $T[k]=P[j]$, Increase $A[k-j]$ by one

$$
\text { except when }(k-j)<0
$$

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

จ --....--->															Every symbol is either frequent or infrequent a is frequent, b is frequent c and d are infrequent	
T	$0 d$	D6\| a	c	c		c\|l	d a	d	c	d	c	d	a	c		
P	$a \mid$	b ${ }^{\text {a }}$	c	a		d b	d									
A	0 0	0 0	0	0		0										

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros
Make a single pass through $T \ldots$
For each character $T[k]$, (where $0 \leqslant k<n$)
If $T[k]$ is infrequent. ..
For all j such that $T[k]=P[j]$, Increase $A[k-j]$ by one

$$
\text { except when }(k-j)<0
$$

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

$\downarrow \cdots \cdots-\cdots$															Every symbol is either frequent or infrequent a is frequent, b is frequent c and d are infrequent	
T	$\square d$	W62		c	c c	$c \mid d$	d a	a d	d c	d	c	d	a	c		
P	a b b a c a d b d															
A	0 0	00	0	0	0	0	0									

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros
Make a single pass through $T \ldots$
For each character $T[k]$, (where $0 \leqslant k<n$)
If $T[k]$ is infrequent...
For all j such that $T[k]=P[j]$, Increase $A[k-j]$ by one

$$
\text { except when }(k-j)<0
$$

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

$\downarrow \cdots \cdots-\cdots$																Every symbol is either frequent or infrequent a is frequent, b is frequent c and d are infrequent	
T	Q d 为 c					c		$d \mid a$	a 1	d c	$c \mid d$	d c	c d	d a	c		
P	a b	b	a	c	a			b d									
A	0 0	0	0	0	0			0									

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros
Make a single pass through $T \ldots$
For each character $T[k]$, (where $0 \leqslant k<n$)
If $T[k]$ is infrequent...
For all j such that $T[k]=P[j]$, Increase $A[k-j]$ by one

$$
\text { except when }(k-j)<0
$$

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

$\downarrow \cdots \cdots-\cdots$																Every symbol is either frequent or infrequent a is frequent, b is frequent c and d are infrequent	
T						c	c d	d a	a d	$d \mathrm{c}$	c ${ }^{\text {d }}$	d c	$c \mid d$	\| a	c		
P		b) a	a c	a	d	d b	d									
A	0 0	0	0	0	0		0										

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros
Make a single pass through $T \ldots$
For each character $T[k]$, (where $0 \leqslant k<n$)
If $T[k]$ is infrequent...
For all j such that $T[k]=P[j]$, Increase $A[k-j]$ by one

$$
\text { except when }(k-j)<0
$$

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros
Make a single pass through $T \ldots$
For each character $T[k]$, (where $0 \leqslant k<n$)
If $T[k]$ is infrequent...
For all j such that $T[k]=P[j]$, Increase $A[k-j]$ by one

$$
\text { except when }(k-j)<0
$$

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros
Make a single pass through $T \ldots$
For each character $T[k]$, (where $0 \leqslant k<n$)
If $T[k]$ is infrequent. ..
For all j such that $T[k]=P[j]$, Increase $A[k-j]$ by one

$$
\text { except when }(k-j)<0
$$

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros
Make a single pass through $T \ldots$
For each character $T[k]$, (where $0 \leqslant k<n$)
If $T[k]$ is infrequent. ..
For all j such that $T[k]=P[j]$, Increase $A[k-j]$ by one

$$
\text { except when }(k-j)<0
$$

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

\downarrow - -------->														Every symbol is either frequent or infrequent a is frequent, b is frequent c and d are infrequent	
T			c	c	d	a	d	$c \mid$	d	c	d	a	c		
P	a b b a	c	a	d	b										
A	1 0 0 0	0	0	0	0										

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros
Make a single pass through $T \ldots$
For each character $T[k]$, (where $0 \leqslant k<n$)
If $T[k]$ is infrequent. ..
For all j such that $T[k]=P[j]$, Increase $A[k-j]$ by one

$$
\text { except when }(k-j)<0
$$

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

† - --...--->															Every symbol is either frequent or infrequent a is frequent, b is frequent c and d are infrequent	
T	$0 d$	W62		c	c	d	d a	a d	d c	d	c	d	\| a	c		
P	$a \mid$	$b{ }^{\text {b }}$	c	a		$d b$	b d									
A	10	0\|0	0	0		0										

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros
Make a single pass through $T \ldots$
For each character $T[k]$, (where $0 \leqslant k<n$)
If $T[k]$ is infrequent. ..
For all j such that $T[k]=P[j]$, Increase $A[k-j]$ by one

$$
\text { except when }(k-j)<0
$$

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

† - --...--->															Every symbol is either frequent or infrequent a is frequent, b is frequent c and d are infrequent	
T	$4 d$	W6a		c	c	d		$a \mid d$	d c	$c \mid d$	c	d	a	c		
P	a b	$b\|a\|$	c	a		$d b$	b d									
A	1 0	0×1	0	0		0										

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros
Make a single pass through $T \ldots$
For each character $T[k]$, (where $0 \leqslant k<n$)
If $T[k]$ is infrequent. ..
For all j such that $T[k]=P[j]$, Increase $A[k-j]$ by one

$$
\text { except when }(k-j)<0
$$

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros
Make a single pass through $T \ldots$
For each character $T[k]$, (where $0 \leqslant k<n$)
If $T[k]$ is infrequent...
For all j such that $T[k]=P[j]$, Increase $A[k-j]$ by one

$$
\text { except when }(k-j)<0
$$

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

$P \quad$| a | b | b | a | c | a | d | b | d |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Every symbol is either frequent or infrequent a is frequent, b is frequent c and d are infrequent

A| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros
Make a single pass through $T \ldots$
For each character $T[k]$, (where $0 \leqslant k<n$)
If $T[k]$ is infrequent...
For all j such that $T[k]=P[j]$, Increase $A[k-j]$ by one

$$
\text { except when }(k-j)<0
$$

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros
Make a single pass through $T \ldots$
For each character $T[k]$, (where $0 \leqslant k<n$)
If $T[k]$ is infrequent...
For all j such that $T[k]=P[j]$, Increase $A[k-j]$ by one

$$
\text { except when }(k-j)<0
$$

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros
Make a single pass through $T \ldots$
For each character $T[k]$, (where $0 \leqslant k<n$)
If $T[k]$ is infrequent...
For all j such that $T[k]=P[j]$, Increase $A[k-j]$ by one

$$
\text { except when }(k-j)<0
$$

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros
Make a single pass through $T \ldots$
For each character $T[k]$, (where $0 \leqslant k<n$)
If $T[k]$ is infrequent...
For all j such that $T[k]=P[j]$, Increase $A[k-j]$ by one

$$
\text { except when }(k-j)<0
$$

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros
Make a single pass through $T \ldots$
For each character $T[k]$, (where $0 \leqslant k<n$)
If $T[k]$ is infrequent. . .
For all j such that $T[k]=P[j]$, Increase $A[k-j]$ by one

$$
\text { except when }(k-j)<0
$$

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros
Make a single pass through $T \ldots$
For each character $T[k]$, (where $0 \leqslant k<n$)
If $T[k]$ is infrequent...
For all j such that $T[k]=P[j]$, Increase $A[k-j]$ by one

$$
\text { except when }(k-j)<0
$$

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros
Make a single pass through $T \ldots$
For each character $T[k]$, (where $0 \leqslant k<n$)
If $T[k]$ is infrequent...
For all j such that $T[k]=P[j]$, Increase $A[k-j]$ by one

$$
\text { except when }(k-j)<0
$$

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

$P \quad$| a | b | b | a | c | a | d | b | d |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Every symbol is either frequent or infrequent a is frequent, b is frequent c and d are infrequent

A| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros
Make a single pass through $T \ldots$
For each character $T[k]$, (where $0 \leqslant k<n$)
If $T[k]$ is infrequent...
For all j such that $T[k]=P[j]$, Increase $A[k-j]$ by one

$$
\text { except when }(k-j)<0
$$

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

$P \quad$| a | b | b | a | c | a | d | b | d |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Every symbol is either frequent or infrequent a is frequent, b is frequent c and d are infrequent

A| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros
Make a single pass through $T \ldots$
For each character $T[k]$, (where $0 \leqslant k<n$)
If $T[k]$ is infrequent...
For all j such that $T[k]=P[j]$, Increase $A[k-j]$ by one

$$
\text { except when }(k-j)<0
$$

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros
Make a single pass through $T \ldots$
For each character $T[k]$, (where $0 \leqslant k<n$)
If $T[k]$ is infrequent...
For all j such that $T[k]=P[j]$, Increase $A[k-j]$ by one

$$
\text { except when }(k-j)<0
$$

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros
Make a single pass through $T \ldots$
For each character $T[k]$, (where $0 \leqslant k<n$)
If $T[k]$ is infrequent...
For all j such that $T[k]=P[j]$, Increase $A[k-j]$ by one

$$
\text { except when }(k-j)<0
$$

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros
Make a single pass through $T \ldots$
For each character $T[k]$, (where $0 \leqslant k<n$)
If $T[k]$ is infrequent...
For all j such that $T[k]=P[j]$, Increase $A[k-j]$ by one

$$
\text { except when }(k-j)<0
$$

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros
Make a single pass through $T \ldots$
For each character $T[k]$, (where $0 \leqslant k<n$)
If $T[k]$ is infrequent. ..
For all j such that $T[k]=P[j]$, Increase $A[k-j]$ by one

$$
\text { except when }(k-j)<0
$$

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros
Make a single pass through $T \ldots$
For each character $T[k]$, (where $0 \leqslant k<n$)
If $T[k]$ is infrequent...
For all j such that $T[k]=P[j]$, Increase $A[k-j]$ by one

$$
\text { except when }(k-j)<0
$$

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros
Make a single pass through $T \ldots$
For each character $T[k]$, (where $0 \leqslant k<n$)
If $T[k]$ is infrequent...
For all j such that $T[k]=P[j]$, Increase $A[k-j]$ by one

$$
\text { except when }(k-j)<0
$$

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

Every symbol is either frequent or infrequent a is frequent, b is frequent c and d are infrequent

A| 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros
Make a single pass through $T \ldots$
For each character $T[k]$, (where $0 \leqslant k<n$)
If $T[k]$ is infrequent...
For all j such that $T[k]=P[j]$, Increase $A[k-j]$ by one

$$
\text { except when }(k-j)<0
$$

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.
 a is frequent, b is frequent c and d are infrequent

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros
Make a single pass through $T \ldots$
For each character $T[k]$, (where $0 \leqslant k<n$)
If $T[k]$ is infrequent. ..
For all j such that $T[k]=P[j]$, Increase $A[k-j]$ by one

$$
\text { except when }(k-j)<0
$$

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros
Make a single pass through $T \ldots$
For each character $T[k]$, (where $0 \leqslant k<n$)
If $T[k]$ is infrequent...
For all j such that $T[k]=P[j]$, Increase $A[k-j]$ by one

$$
\text { except when }(k-j)<0
$$

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.
 a is frequent, b is frequent c and d are infrequent

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros
Make a single pass through $T \ldots$
For each character $T[k]$, (where $0 \leqslant k<n$)
If $T[k]$ is infrequent. ..
For all j such that $T[k]=P[j]$, Increase $A[k-j]$ by one

$$
\text { except when }(k-j)<0
$$

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

$P \quad$| a | b | b | a | c | a | d | b | d |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Every symbol is either frequent or infrequent a is frequent, b is frequent c and d are infrequent

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros
Make a single pass through $T \ldots$
For each character $T[k]$, (where $0 \leqslant k<n$)
If $T[k]$ is infrequent...
For all j such that $T[k]=P[j]$, Increase $A[k-j]$ by one

$$
\text { except when }(k-j)<0
$$

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros
Make a single pass through $T \ldots$
For each character $T[k]$, (where $0 \leqslant k<n$)
If $T[k]$ is infrequent...
For all j such that $T[k]=P[j]$, Increase $A[k-j]$ by one

$$
\text { except when }(k-j)<0
$$

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros
Make a single pass through $T \ldots$
For each character $T[k]$, (where $0 \leqslant k<n$)
If $T[k]$ is infrequent...
For all j such that $T[k]=P[j]$, Increase $A[k-j]$ by one

$$
\text { except when }(k-j)<0
$$

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros
Make a single pass through $T \ldots$
For each character $T[k]$, (where $0 \leqslant k<n$)
If $T[k]$ is infrequent...
For all j such that $T[k]=P[j]$, Increase $A[k-j]$ by one

$$
\text { except when }(k-j)<0
$$

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros
Make a single pass through $T \ldots$
For each character $T[k]$, (where $0 \leqslant k<n$)
If $T[k]$ is infrequent...
For all j such that $T[k]=P[j]$, Increase $A[k-j]$ by one

$$
\text { except when }(k-j)<0
$$

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros
Make a single pass through $T \ldots$
For each character $T[k]$, (where $0 \leqslant k<n$)
If $T[k]$ is infrequent...
For all j such that $T[k]=P[j]$, Increase $A[k-j]$ by one

$$
\text { except when }(k-j)<0
$$

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros
Make a single pass through $T \ldots$
For each character $T[k]$, (where $0 \leqslant k<n$)
If $T[k]$ is infrequent...
For all j such that $T[k]=P[j]$, Increase $A[k-j]$ by one

$$
\text { except when }(k-j)<0
$$

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros
Make a single pass through $T \ldots$
For each character $T[k]$, (where $0 \leqslant k<n$)
If $T[k]$ is infrequent...
For all j such that $T[k]=P[j]$, Increase $A[k-j]$ by one

$$
\text { except when }(k-j)<0
$$

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros
Make a single pass through $T \ldots$
For each character $T[k]$, (where $0 \leqslant k<n$)
If $T[k]$ is infrequent...
For all j such that $T[k]=P[j]$, Increase $A[k-j]$ by one

$$
\text { except when }(k-j)<0
$$

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros
Make a single pass through $T \ldots$
For each character $T[k]$, (where $0 \leqslant k<n$)
If $T[k]$ is infrequent...
For all j such that $T[k]=P[j]$, Increase $A[k-j]$ by one

$$
\text { except when }(k-j)<0
$$

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros
Make a single pass through $T \ldots$
For each character $T[k]$, (where $0 \leqslant k<n$)
If $T[k]$ is infrequent...
For all j such that $T[k]=P[j]$, Increase $A[k-j]$ by one

$$
\text { except when }(k-j)<0
$$

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros
Make a single pass through $T \ldots$
For each character $T[k]$, (where $0 \leqslant k<n$)
If $T[k]$ is infrequent...
For all j such that $T[k]=P[j]$, Increase $A[k-j]$ by one

$$
\text { except when }(k-j)<0
$$

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros
Make a single pass through $T \ldots$
For each character $T[k]$, (where $0 \leqslant k<n$)
If $T[k]$ is infrequent...
For all j such that $T[k]=P[j]$, Increase $A[k-j]$ by one

$$
\text { except when }(k-j)<0
$$

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros
Make a single pass through $T \ldots$
For each character $T[k]$, (where $0 \leqslant k<n$)
If $T[k]$ is infrequent...
For all j such that $T[k]=P[j]$, Increase $A[k-j]$ by one

$$
\text { except when }(k-j)<0
$$

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros
Make a single pass through $T \ldots$
For each character $T[k]$, (where $0 \leqslant k<n$)
If $T[k]$ is infrequent...
For all j such that $T[k]=P[j]$, Increase $A[k-j]$ by one

$$
\text { except when }(k-j)<0
$$

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.
Every symbol is either

$T \quad$ $P \quad$| a | b | b | a | c | a | d | b | d |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | frequent or infrequent a is frequent, b is frequent c and d are infrequent

1	3	1	1	0	0	0	0

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros
Make a single pass through $T \ldots$
For each character $T[k]$, (where $0 \leqslant k<n$)
If $T[k]$ is infrequent...
For all j such that $T[k]=P[j]$, Increase $A[k-j]$ by one

$$
\text { except when }(k-j)<0
$$

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros
Make a single pass through $T \ldots$
For each character $T[k]$, (where $0 \leqslant k<n$)
If $T[k]$ is infrequent. . .
For all j such that $T[k]=P[j]$, Increase $A[k-j]$ by one

$$
\text { except when }(k-j)<0
$$

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros
Make a single pass through $T \ldots$
For each character $T[k]$, (where $0 \leqslant k<n$)
If $T[k]$ is infrequent...
For all j such that $T[k]=P[j]$, Increase $A[k-j]$ by one

$$
\text { except when }(k-j)<0
$$

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros
Make a single pass through $T \ldots$
For each character $T[k]$, (where $0 \leqslant k<n$)
If $T[k]$ is infrequent...
For all j such that $T[k]=P[j]$, Increase $A[k-j]$ by one

$$
\text { except when }(k-j)<0
$$

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

Construct an array A of length $(n-m+1)$ - which is initially all zeros
Make a single pass through $T \ldots$
For each character $T[k]$, (where $0 \leqslant k<n$)
If $T[k]$ is infrequent...
For all j such that $T[k]=P[j]$, Increase $A[k-j]$ by one

$$
\text { except when }(k-j)<0
$$

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros
Make a single pass through $T \ldots$
For each character $T[k]$, (where $0 \leqslant k<n$)
If $T[k]$ is infrequent...
For all j such that $T[k]=P[j]$, Increase $A[k-j]$ by one

$$
\text { except when }(k-j)<0
$$

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

How quick is Step 2?

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros
Make a single pass through $T \ldots$
For each character $T[k]$, (where $0 \leqslant k<n$)
If $T[k]$ is infrequent. . .
For all j such that $T[k]=P[j]$, Increase $A[k-j]$ by one

$$
\text { except when }(k-j)<0
$$

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

How quick is Step 2?

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros
Make a single pass through $T \ldots$
For each character $T[k]$, (where $0 \leqslant k<n$)
If $T[k]$ is infrequent...
For all j such that $T[k]=P[j]$, Increase $A[k-j]$ by one

$$
\text { except when }(k-j)<0
$$

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

How quick is Step 2?

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros
Make a single pass through $T \ldots$ store a list for each
For each character $T[k]$, (where $0 \leqslant k<n$) $O(n)$ time If $T[k]$ is infrequent...

For all j such that $T[k]=P[j]$, Increase $A[k-j]$ by one

$$
\text { except when }(k-j)<0
$$

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

How quick is Step 2?

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros
Make a single pass through $T \ldots$ store a list for each
For each character $T[k]$, (where $0 \leqslant k<n$) If $T[k]$ is infrequent. . .

For all j such that $T[k]=P[j], \quad$ less than \sqrt{m} Increase $A[k-j]$ by one

$$
\text { except when }(k-j)<0
$$

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

How quick is Step 2?

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros
$O(n \sqrt{m})$ time

Make a single pass through $T \ldots$
For each character $T[k]$, (where $0 \leqslant k<n$) If $T[k]$ is infrequent. . .

For all j such that $T[k]=P[j], \quad$ less than \sqrt{m} Increase $A[k-j]$ by one

$$
\text { except when }(k-j)<0
$$

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros
Make a single pass through $T \ldots$
For each character $T[k]$, (where $0 \leqslant k<n$)
If $T[k]$ is infrequent...
For all j such that $T[k]=P[j]$, Increase $A[k-j]$ by one

$$
\text { except when }(k-j)<0
$$

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \sqrt{m} times in P.

Step 2: Count all matches involving infrequent symbols.
Construct an array A of length $(n-m+1)$ - which is initially all zeros
Make a single pass through $T \ldots$
For each character $T[k]$, (where $0 \leqslant k<n$) If $T[k]$ is infrequent...

For all j such that $T[k]=P[j]$, Increase $A[k-j]$ by one

$$
\text { except when }(k-j)<0
$$

Pattern matching with mismatches: putting it all together

Algorithm summary

Pattern matching with mismatches: putting it all together

Algorithm summary

Step 0: Classify each symbol as frequent or infrequent ($O(m \log m)$ time $)$

Algorithm summary

Step 0: Classify each symbol as frequent or infrequent ($O(m \log m$) time)
Step 1: Count all matches involving frequent symbols. $(O(n \sqrt{m} \log m)$ time $)$

Algorithm summary

Step 0: Classify each symbol as frequent or infrequent ($O(m \log m$) time)
Step 1: Count all matches involving frequent symbols. ($O(n \sqrt{m} \log m$) time)
Step 2: Count all matches involving infrequent symbols. ($O(n \sqrt{m})$ time)

Algorithm summary

Step 0: Classify each symbol as frequent or infrequent ($O(m \log m$) time)
Step 1: Count all matches involving frequent symbols. ($O(n \sqrt{m} \log m$) time)
Step 2: Count all matches involving infrequent symbols. ($O(n \sqrt{m})$ time)

Pattern matching with mismatches: putting it all together

Algorithm summary

Step 0: Classify each symbol as frequent or infrequent ($O(m \log m$) time)
Step 1: Count all matches involving frequent symbols. $(O(n \sqrt{m} \log m)$ time $)$
Step 2: Count all matches involving infrequent symbols. ($O(n \sqrt{m})$ time $)$
at any alignment
the number of mismatches is just m minus the total number of matches

Pattern matching with mismatches: putting it all together

Algorithm summary

Step 0: Classify each symbol as frequent or infrequent ($O(m \log m$) time)
Step 1: Count all matches involving frequent symbols. $(O(n \sqrt{m} \log m)$ time $)$
Step 2: Count all matches involving infrequent symbols. ($O(n \sqrt{m})$ time $)$
at any alignment
the number of mismatches is just m minus the total number of matches

Overall, we obtain a time complexity of $O(n \sqrt{m} \log m)$.

