Advanced Algorithms – COMS31900

2013/2014

Lecture 13 Approximate pattern matching (part two)

Benjamin Sach

Pattern matching with mismatches (Hamming distance)

Input A text string T (length n) and a pattern string P (length m)

Goal: For all *i*, output, Ham(i), the Hamming distance between *P* and $T[i \dots i + m - 1]$

Pattern matching with mismatches (Hamming distance)

Input A text string T (length n) and a pattern string P (length m)

 $\mathsf{Ham}(4) = 1$

Goal: For all *i*, output, Ham(i), the Hamming distance between *P* and $T[i \dots i + m - 1]$

Pattern matching with mismatches (Hamming distance)

Input A text string T (length n) and a pattern string P (length m)

Goal: For all *i*, output, Ham(i), the Hamming distance between *P* and $T[i \dots i + m - 1]$

Pattern matching with mismatches (Hamming distance)

Input A text string T (length n) and a pattern string P (length m)

Goal: For all *i*, output, Ham(i), the Hamming distance between *P* and $T[i \dots i + m - 1]$

Pattern matching with mismatches (Hamming distance)

Input A text string T (length n) and a pattern string P (length m)

Goal: For all *i*, output, Ham(i), the Hamming distance between *P* and $T[i \dots i + m - 1]$

Pattern matching with mismatches (Hamming distance)

Input A text string T (length n) and a pattern string P (length m)

Goal: For all *i*, output, Ham(i), the Hamming distance between *P* and $T[i \dots i + m - 1]$

Imagine that the alphabet contains only a small number of different symbols, which we consider individually...

Imagine that the alphabet contains only a small number of different symbols, which we consider individually...

Imagine that the alphabet contains only a small number of different symbols, which we consider individually...

Imagine that the alphabet contains only a small number of different symbols, which we consider individually...

Imagine that the alphabet contains only a small number of different symbols, which we consider individually...

Imagine that the alphabet contains only a small number of different symbols, which we consider individually...

Replace all a symbols with 1 and everything else with 0

Imagine that the alphabet contains only a small number of different symbols, which we consider individually...

Replace all a symbols with 1 and everything else with 0

Imagine that the alphabet contains only a small number of different symbols, which we consider individually...

Replace all a symbols with 1 and everything else with 0

$$(T_a \otimes P_a)[i] = \sum_{j=0}^{m-1} P_a[j]T_a[i+j]$$
$$\underbrace{\sum_{j=0}^{m-1} P_a[j]T_a[i+j]}_{1 \text{ iff } P[j]=T[i+j]=a}$$

Imagine that the alphabet contains only a small number of different symbols, which we consider individually...

Replace all a symbols with 1 and everything else with 0

$$(T_a \otimes P_a)[i] = \sum_{j=0}^{m-1} P_a[j]T_a[i+j] \qquad \cdots 2 1 2 1 2 1 3 \cdots \\ x + x + x \\ 1 2 1 2 1 3 \cdots \\ x + x + x \\ 1 2 1 3 \cdots \\ (1 \times 1) + (2 \times 2) + (1 \times 1) = 6$$

Imagine that the alphabet contains only a small number of different symbols, which we consider individually...

Replace all a symbols with 1 and everything else with 0

We denote these new strings T_a and P_a and consider...

This is the number of matching as at the i-th alignment.

Imagine that the alphabet contains only a small number of different symbols, which we consider individually...

Replace all a symbols with 1 and everything else with 0

We denote these new strings T_a and P_a and consider...

This is the number of matching as at the i-th alignment.

Imagine that the alphabet contains only a small number of different symbols, which we consider individually...

Replace all a symbols with 1 and everything else with 0

We denote these new strings T_a and P_a and consider...

This is the number of matching as at the i-th alignment.

which we can compute (for all i) in $O(n \log m)$ time via cross-correlations

University of BRISTOL

We saw how to find all matches with a single symbol in $O(n \log m)$ time

Let Σ denote the set of alphabet symbols and $|\Sigma|$ be its size

Algorithm Summary

Construct T_{σ} and P_{σ} for every symbol σ in Σ Compute $T_{\sigma} \otimes P_{\sigma}$ (for every symbol σ in Σ) For every *i*, compute,

$$\operatorname{Ham}(i) = m - \sum_{\sigma \in \Sigma} (T_{\sigma} \otimes P_{\sigma})[i].$$

We saw how to find all matches with a single symbol in $O(n \log m)$ time

Let Σ denote the set of alphabet symbols and $|\Sigma|$ be its size

Algorithm Summary

Construct T_{σ} and P_{σ} for every symbol σ in Σ Compute $T_{\sigma} \otimes P_{\sigma}$ (for every symbol σ in Σ) For every *i*, compute,

$$\mathsf{Ham}(i) = m - \sum_{\sigma \in \Sigma} (T_{\sigma} \otimes P_{\sigma})[i].$$

matches involving σ

University of BRISTOL

University of BRISTOL

We saw how to find all matches with a single symbol in $O(n \log m)$ time

Let Σ denote the set of alphabet symbols and $|\Sigma|$ be its size

Algorithm Summary

Construct T_{σ} and P_{σ} for every symbol σ in Σ Compute $T_{\sigma} \otimes P_{\sigma}$ (for every symbol σ in Σ) For every *i*, compute,

University of BRISTOL

We saw how to find all matches with a single symbol in $O(n \log m)$ time

Let Σ denote the set of alphabet symbols and $|\Sigma|$ be its size

Algorithm Summary

Construct T_{σ} and P_{σ} for every symbol σ in Σ Compute $T_{\sigma} \otimes P_{\sigma}$ (for every symbol σ in Σ) For every *i*, compute,

$$\mathsf{Ham}(i) = m - \sum_{\sigma \in \Sigma} (T_{\sigma} \otimes P_{\sigma})[i] \,.$$

mismatches = m - matches

University of BRISTOL

We saw how to find all matches with a single symbol in $O(n \log m)$ time

Let Σ denote the set of alphabet symbols and $|\Sigma|$ be its size

Algorithm Summary

Construct T_{σ} and P_{σ} for every symbol σ in Σ Compute $T_{\sigma} \otimes P_{\sigma}$ (for every symbol σ in Σ) For every *i*, compute,

$$\operatorname{Ham}(i) = m - \sum_{\sigma \in \Sigma} (T_{\sigma} \otimes P_{\sigma})[i].$$

University of BRISTOL

We saw how to find all matches with a single symbol in $O(n \log m)$ time

Let Σ denote the set of alphabet symbols and $|\Sigma|$ be its size

Algorithm Summary

Construct T_{σ} and P_{σ} for every symbol σ in Σ ($O(n|\Sigma|)$ time) Compute $T_{\sigma} \otimes P_{\sigma}$ (for every symbol σ in Σ) For every *i*, compute,

$$\operatorname{Ham}(i) = m - \sum_{\sigma \in \Sigma} (T_{\sigma} \otimes P_{\sigma})[i].$$

University of BRISTOL

We saw how to find all matches with a single symbol in $O(n \log m)$ time

Let Σ denote the set of alphabet symbols and $|\Sigma|$ be its size

Algorithm Summary

Construct T_{σ} and P_{σ} for every symbol σ in Σ ($O(n|\Sigma|)$ time) Compute $T_{\sigma} \otimes P_{\sigma}$ (for every symbol σ in Σ) ($O(n|\Sigma|\log m)$ time) For every *i*, compute,

$$\operatorname{Ham}(i) = m - \sum_{\sigma \in \Sigma} (T_{\sigma} \otimes P_{\sigma})[i].$$

We saw how to find all matches with a single symbol in $O(n \log m)$ time

Let Σ denote the set of alphabet symbols and $|\Sigma|$ be its size

Algorithm Summary

Construct T_{σ} and P_{σ} for every symbol σ in Σ ($O(n|\Sigma|)$ time) Compute $T_{\sigma} \otimes P_{\sigma}$ (for every symbol σ in Σ) ($O(n|\Sigma|\log m)$ time) For every *i*, compute,

$$\mathsf{Ham}(i) = m - \sum_{\sigma \in \Sigma} (T_\sigma \otimes P_\sigma)[i]$$
. ($O(n|\Sigma|)$ time)

University of

We saw how to find all matches with a single symbol in $O(n \log m)$ time

Let Σ denote the set of alphabet symbols and $|\Sigma|$ be its size

Algorithm Summary

Construct T_{σ} and P_{σ} for every symbol σ in Σ ($O(n|\Sigma|)$ time) Compute $T_{\sigma} \otimes P_{\sigma}$ (for every symbol σ in Σ) ($O(n|\Sigma|\log m)$ time) For every *i*, compute,

$$\mathsf{Ham}(i) = m - \sum_{\sigma \in \Sigma} (T_\sigma \otimes P_\sigma)[i]$$
. ($O(n|\Sigma|)$ time)

University of

This takes $O(n|\Sigma|\log m)$ total time (and O(n) space)

We saw how to find all matches with a single symbol in $O(n \log m)$ time

Let Σ denote the set of alphabet symbols and $|\Sigma|$ be its size

Algorithm Summary

Construct T_{σ} and P_{σ} for every symbol σ in Σ ($O(n|\Sigma|)$ time) Compute $T_{\sigma} \otimes P_{\sigma}$ (for every symbol σ in Σ) ($O(n|\Sigma|\log m)$ time) For every *i*, compute,

$$\mathsf{Ham}(i) = m - \sum_{\sigma \in \Sigma} (T_\sigma \otimes P_\sigma)[i]$$
. ($O(n|\Sigma|)$ time)

University of BR ISTOI

This takes $O(n|\Sigma|\log m)$ total time (and O(n) space)

However, $|\Sigma|$ could be as big as m...

We saw how to find all matches with a single symbol in $O(n \log m)$ time

Let Σ denote the set of alphabet symbols and $|\Sigma|$ be its size

Algorithm Summary

Construct T_{σ} and P_{σ} for every symbol σ in Σ ($O(n|\Sigma|)$ time) Compute $T_{\sigma} \otimes P_{\sigma}$ (for every symbol σ in Σ) ($O(n|\Sigma|\log m)$ time) For every *i*, compute,

$$\mathsf{Ham}(i) = m - \sum_{\sigma \in \Sigma} (T_\sigma \otimes P_\sigma)[i]$$
. ($O(n|\Sigma|)$ time)

University of

This takes $O(n|\Sigma|\log m)$ total time (and O(n) space)

However, $|\Sigma|$ could be as big as m...

what should we do instead?

Definition: A symbol is *frequent* if it occurs at least \sqrt{m} times in *P*.

Definition: A symbol is *frequent* if it occurs at least \sqrt{m} times in *P*.

$$P \quad \begin{bmatrix} 0 & 0 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \hline m & m & = & 9 & \hline m & = & 9 & \hline \\ a & b & b & a & c & a & d & b & d \end{bmatrix}$$

Definition: A symbol is *frequent* if it occurs at least \sqrt{m} times in *P*.

a is *frequent*

Definition: A symbol is *frequent* if it occurs at least \sqrt{m} times in *P*.

a is frequent, b is frequent

Definition: A symbol is *frequent* if it occurs at least \sqrt{m} times in *P*.

 $a ext{ is frequent, } b ext{ is frequent} \\ c ext{ and } d ext{ are not frequent}$

Definition: A symbol is *frequent* if it occurs at least \sqrt{m} times in *P*.

a is *frequent*, b is *frequent* c and d are not *frequent*

Step 1: Count all matches involving frequent symbols.

Definition: A symbol is *frequent* if it occurs at least \sqrt{m} times in *P*.

a is *frequent*, b is *frequent* c and d are not *frequent*

Step 1: Count all matches involving frequent symbols.

Consider each frequent symbol separately in $O(n \log m)$ time (per symbol).

Definition: A symbol is *frequent* if it occurs at least \sqrt{m} times in *P*.

a is *frequent*, b is *frequent* c and d are not *frequent*

Step 1: Count all matches involving frequent symbols.

Consider each frequent symbol separately in $O(n \log m)$ time (per symbol). using cross-correlations

Definition: A symbol is *frequent* if it occurs at least \sqrt{m} times in *P*.

a is *frequent*, b is *frequent* c and d are not *frequent*

Step 1: Count all matches involving frequent symbols.

Consider each frequent symbol separately in $O(n \log m)$ time (per symbol).

using cross-correlations

How many frequent symbols can there be?

Definition: A symbol is *frequent* if it occurs at least \sqrt{m} times in *P*.

a is *frequent*, b is *frequent* c and d are not *frequent*

Step 1: Count all matches involving frequent symbols.

Consider each frequent symbol separately in $O(n \log m)$ time (per symbol).

using cross-correlations

How many frequent symbols can there be?

Assume that there at least $(\sqrt{m} + 1)$ freq. symbols

Definition: A symbol is *frequent* if it occurs at least \sqrt{m} times in *P*.

a is *frequent*, b is *frequent* c and d are not *frequent*

Step 1: Count all matches involving frequent symbols.

Consider each frequent symbol separately in $O(n \log m)$ time (per symbol).

using cross-correlations

How many frequent symbols can there be? Assume that there at least $(\sqrt{m} + 1)$ freq. symbols each occurs at least \sqrt{m} times...

Definition: A symbol is *frequent* if it occurs at least \sqrt{m} times in *P*.

a is *frequent*, b is *frequent* c and d are not *frequent*

Step 1: Count all matches involving frequent symbols.

Consider each frequent symbol separately in $O(n \log m)$ time (per symbol).

using cross-correlations

How many frequent symbols can there be? Assume that there at least $(\sqrt{m} + 1)$ freq. symbols each occurs at least \sqrt{m} times... $(\sqrt{m} + 1)\sqrt{m} > m$

Definition: A symbol is *frequent* if it occurs at least \sqrt{m} times in *P*.

a is *frequent*, b is *frequent* c and d are not *frequent*

Step 1: Count all matches involving frequent symbols.

Consider each frequent symbol separately in $O(n \log m)$ time (per symbol).

using cross-correlations

How many frequent symbols can there be? Assume that there at least $(\sqrt{m} + 1)$ freq. symbols each occurs at least \sqrt{m} times... $(\sqrt{m} + 1)\sqrt{m} > m$ Contradiction!

Definition: A symbol is *frequent* if it occurs at least \sqrt{m} times in *P*.

a is *frequent*, b is *frequent* c and d are not *frequent*

Step 1: Count all matches involving frequent symbols.

Consider each frequent symbol separately in $O(n \log m)$ time (per symbol).

using cross-correlations

How many frequent symbols can there be? Assume that there at least $(\sqrt{m} + 1)$ freq. symbols each occurs at least \sqrt{m} times... $(\sqrt{m} + 1)\sqrt{m} > m$ Contradiction! so there are at most \sqrt{m} frequent symbols

Definition: A symbol is *frequent* if it occurs at least \sqrt{m} times in *P*.

a is *frequent*, b is *frequent* c and d are not *frequent*

Step 1: Count all matches involving frequent symbols.

Consider each frequent symbol separately in $O(n \log m)$ time (per symbol).

using cross-correlations

How many frequent symbols can there be?

Assume that there at least $(\sqrt{m} + 1)$ freq. symbols

each occurs at least \sqrt{m} times... $(\sqrt{m}+1)\sqrt{m} > m$ Contradiction! so there are at most \sqrt{m} frequent symbols

So Step 1 takes $O(n\sqrt{m}\log m)$ time.

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

Every symbol is either frequent or infrequent

a is frequent, b is frequent c and d are infrequent

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

Every symbol is either frequent or infrequent

a is frequent, b is frequent c and d are infrequent

Step 2: Count all matches involving infrequent symbols.

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

Every symbol is either frequent or infrequent

a is frequent, b is frequent c and d are infrequent

Step 2: Count all matches involving infrequent symbols.

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

Every symbol is either frequent or infrequent

a is frequent, b is frequent c and d are infrequent

Step 2: Count all matches involving infrequent symbols.

Construct an array A of length (n - m + 1) - which is initially all zeros

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

Every symbol is either frequent or infrequent

a is frequent, b is frequent c and d are infrequent

Step 2: Count all matches involving infrequent symbols.

Construct an array A of length (n - m + 1) - which is initially all zeros

Make a single pass through T...

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

Every symbol is either frequent or infrequent

a is frequent, b is frequent c and d are infrequent

Step 2: Count all matches involving infrequent symbols.

Construct an array A of length (n - m + 1) - which is initially all zeros

Make a single pass through T...

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

Every symbol is either frequent or infrequent

a is frequent, b is frequent c and d are infrequent

Step 2: Count all matches involving infrequent symbols.

Construct an array A of length (n - m + 1) - which is initially all zeros

Make a single pass through T...

For each character T[k], (where $0 \leq k < n$)

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

Every symbol is either frequent or infrequent

a is frequent, b is frequent c and d are infrequent

Step 2: Count all matches involving infrequent symbols.

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

Every symbol is either frequent or infrequent

a is frequent, b is frequent c and d are infrequent

Step 2: Count all matches involving infrequent symbols.

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

Step 2: Count all matches involving infrequent symbols.

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

Step 2: Count all matches involving infrequent symbols.

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

Step 2: Count all matches involving infrequent symbols.

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

Step 2: Count all matches involving infrequent symbols.

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

Step 2: Count all matches involving infrequent symbols.

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

Step 2: Count all matches involving infrequent symbols.

Construct an array A of length (n - m + 1) - which is initially all zeros

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

Step 2: Count all matches involving infrequent symbols.

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

Step 2: Count all matches involving infrequent symbols.

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

Every symbol is either frequent or infrequent

a is frequent, b is frequent c and d are infrequent

Step 2: Count all matches involving infrequent symbols.

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

Every symbol is either frequent or infrequent

a is frequent, b is frequent c and d are infrequent

Step 2: Count all matches involving infrequent symbols.

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

✓ ·····>

Every symbol is either frequent or infrequent

a is frequent, b is frequent c and d are infrequent

Step 2: Count all matches involving infrequent symbols.

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

....⊳

Every symbol is either frequent or infrequent

a is frequent, b is frequent c and d are infrequent

Step 2: Count all matches involving infrequent symbols.

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

Every symbol is either frequent or infrequent

a is frequent, b is frequent c and d are infrequent

Step 2: Count all matches involving infrequent symbols.

Construct an array A of length (n - m + 1) - which is initially all zeros

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

Every symbol is either frequent or infrequent

a is frequent, b is frequent c and d are infrequent

Step 2: Count all matches involving infrequent symbols.

Construct an array A of length (n - m + 1) - which is initially all zeros

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

Every symbol is either frequent or infrequent

a is frequent, b is frequent c and d are infrequent

Step 2: Count all matches involving infrequent symbols.

Construct an array A of length (n - m + 1) - which is initially all zeros

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

....⊳

Every symbol is either frequent or infrequent

a is frequent, b is frequent c and d are infrequent

Step 2: Count all matches involving infrequent symbols.

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

Every symbol is either frequent or infrequent

a is frequent, b is frequent c and d are infrequent

Step 2: Count all matches involving infrequent symbols.

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

♥ ----->

Every symbol is either frequent or infrequent

a is frequent, b is frequent c and d are infrequent

Step 2: Count all matches involving infrequent symbols.

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

Every symbol is either frequent or infrequent

a is frequent, b is frequent c and d are infrequent

Step 2: Count all matches involving infrequent symbols.

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

Every symbol is either frequent or infrequent

a is frequent, b is frequent c and d are infrequent

Step 2: Count all matches involving infrequent symbols.

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

Every symbol is either frequent or infrequent

a is frequent, b is frequent c and d are infrequent

Step 2: Count all matches involving infrequent symbols.

Construct an array A of length (n - m + 1) - which is initially all zeros

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

Every symbol is either frequent or infrequent

a is frequent, b is frequent c and d are infrequent

Step 2: Count all matches involving infrequent symbols.

Construct an array A of length (n - m + 1) - which is initially all zeros

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

Every symbol is either frequent or infrequent

a is frequent, b is frequent c and d are infrequent

Step 2: Count all matches involving infrequent symbols.

Construct an array A of length (n - m + 1) - which is initially all zeros

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

Every symbol is either frequent or infrequent

a is frequent, b is frequent c and d are infrequent

Step 2: Count all matches involving infrequent symbols.

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

Every symbol is either frequent or infrequent

a is frequent, b is frequent c and d are infrequent

Step 2: Count all matches involving infrequent symbols.

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

Every symbol is either frequent or infrequent

a is frequent, b is frequent c and d are infrequent

Step 2: Count all matches involving infrequent symbols.

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

Every symbol is either frequent or infrequent

a is frequent, b is frequent c and d are infrequent

Step 2: Count all matches involving infrequent symbols.

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

Every symbol is either frequent or infrequent

a is frequent, b is frequent c and d are infrequent

Step 2: Count all matches involving infrequent symbols.

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

Every symbol is either frequent or infrequent

a is *frequent*, b is *frequent* c and d are *infrequent*

Step 2: Count all matches involving infrequent symbols.

Construct an array A of length (n - m + 1) - which is initially all zeros

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

Every symbol is either frequent or infrequent

a is frequent, b is frequent c and d are infrequent

Step 2: Count all matches involving infrequent symbols.

Construct an array A of length (n - m + 1) - which is initially all zeros

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

Every symbol is either frequent or infrequent

a is frequent, b is frequent c and d are infrequent

Step 2: Count all matches involving infrequent symbols.

Construct an array A of length (n - m + 1) - which is initially all zeros

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

Every symbol is either frequent or infrequent

a is frequent, b is frequent c and d are infrequent

Step 2: Count all matches involving infrequent symbols.

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

Every symbol is either frequent or infrequent

a is frequent, b is frequent c and d are infrequent

Step 2: Count all matches involving infrequent symbols.

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

Every symbol is either frequent or infrequent

a is frequent, b is frequent c and d are infrequent

Step 2: Count all matches involving infrequent symbols.

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

Every symbol is either frequent or infrequent

a is frequent, b is frequent c and d are infrequent

Step 2: Count all matches involving infrequent symbols.

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

Every symbol is either frequent or infrequent

a is frequent, b is frequent c and d are infrequent

Step 2: Count all matches involving infrequent symbols.

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

Every symbol is either frequent or infrequent

a is frequent, b is frequent c and d are infrequent

Step 2: Count all matches involving infrequent symbols.

Construct an array A of length (n - m + 1) - which is initially all zeros

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

Every symbol is either frequent or infrequent

a is frequent, b is frequent c and d are infrequent

Step 2: Count all matches involving infrequent symbols.

Construct an array A of length (n - m + 1) - which is initially all zeros

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

Every symbol is either frequent or infrequent

a is frequent, b is frequent c and d are infrequent

Step 2: Count all matches involving infrequent symbols.

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

Every symbol is either frequent or infrequent

a is frequent, b is frequent c and d are infrequent

Step 2: Count all matches involving infrequent symbols.

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

Every symbol is either frequent or infrequent

a is frequent, b is frequent c and d are infrequent

Step 2: Count all matches involving infrequent symbols.

Construct an array A of length (n - m + 1) - which is initially all zeros

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

Every symbol is either frequent or infrequent

a is frequent, b is frequent c and d are infrequent

Step 2: Count all matches involving infrequent symbols.

Construct an array A of length (n - m + 1) - which is initially all zeros

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

Every symbol is either frequent or infrequent

a is frequent, b is frequent c and d are infrequent

Step 2: Count all matches involving infrequent symbols.

Construct an array A of length (n - m + 1) - which is initially all zeros

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

Every symbol is either frequent or infrequent

a is frequent, b is frequent c and d are infrequent

Step 2: Count all matches involving infrequent symbols.

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

Every symbol is either frequent or infrequent

a is frequent, b is frequent c and d are infrequent

Step 2: Count all matches involving infrequent symbols.

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

Every symbol is either frequent or infrequent

a is frequent, b is frequent c and d are infrequent

Step 2: Count all matches involving infrequent symbols.

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

Every symbol is either frequent or infrequent

a is frequent, b is frequent c and d are infrequent

Step 2: Count all matches involving infrequent symbols.

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

Every symbol is either frequent or infrequent

a is frequent, b is frequent c and d are infrequent

Step 2: Count all matches involving infrequent symbols.

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

----⊳

Every symbol is either frequent or infrequent

a is frequent, b is frequent c and d are infrequent

Step 2: Count all matches involving infrequent symbols.

Construct an array A of length (n - m + 1) - which is initially all zeros

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

----⊳

Every symbol is either frequent or infrequent

a is frequent, b is frequent c and d are infrequent

Step 2: Count all matches involving infrequent symbols.

Construct an array A of length (n - m + 1) - which is initially all zeros

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

Every symbol is either frequent or infrequent

a is frequent, b is frequent c and d are infrequent

Step 2: Count all matches involving infrequent symbols.

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

Every symbol is either frequent or infrequent

a is frequent, b is frequent c and d are infrequent

Step 2: Count all matches involving infrequent symbols.

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

----⊳

Every symbol is either frequent or infrequent

a is frequent, b is frequent c and d are infrequent

Step 2: Count all matches involving infrequent symbols.

Construct an array A of length (n - m + 1) - which is initially all zeros

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

----⊳

Every symbol is either frequent or infrequent

a is frequent, b is frequent c and d are infrequent

Step 2: Count all matches involving infrequent symbols.

Construct an array A of length (n - m + 1) - which is initially all zeros

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

Every symbol is either frequent or infrequent

a is frequent, b is frequent c and d are infrequent

Step 2: Count all matches involving infrequent symbols.

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

Every symbol is either frequent or infrequent

a is frequent, b is frequent c and d are infrequent

Step 2: Count all matches involving infrequent symbols.

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

Step 2: Count all matches involving infrequent symbols.

Construct an array A of length (n - m + 1) - which is initially all zeros

Make a single pass through T...For each character T[k], (where $0 \le k < n$) If T[k] is infrequent... For all j such that T[k] = P[j], Increase A[k - j] by one except when (k - j) < 0

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

 $T \qquad \boxed{A} \qquad \boxed{A} \qquad \boxed{C} \qquad \boxed{C} \qquad \boxed{C} \qquad \boxed{A} \qquad \boxed{C} \qquad \boxed{C$

Every symbol is either frequent or infrequent

a is frequent, b is frequent c and d are infrequent

Step 2: Count all matches involving infrequent symbols.

Construct an array A of length (n - m + 1) - which is initially all zeros

Make a single pass through T...For each character T[k], (where $0 \le k < n$) If T[k] is infrequent... For all j such that T[k] = P[j], Increase A[k - j] by one except when (k - j) < 0

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

Every symbol is either frequent or infrequent

a is frequent, b is frequent c and d are infrequent

Step 2: Count all matches involving infrequent symbols.

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

Step 2: Count all matches involving infrequent symbols.

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

Every symbol is either frequent or infrequent

a is frequent, b is frequent c and d are infrequent

Step 2: Count all matches involving infrequent symbols.

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in *P*.

Every symbol is either frequent or infrequent

a is frequent, b is frequent c and d are infrequent

Step 2: Count all matches involving infrequent symbols.

Algorithm summary

Algorithm summary

Step 0: Classify each symbol as frequent or infrequent ($O(m \log m)$ time)

Algorithm summary

Step 0: Classify each symbol as frequent or infrequent ($O(m \log m)$ time)

Step 1: Count all matches involving frequent symbols. ($O(n\sqrt{m}\log m)$ time)

Algorithm summary

Step 0: Classify each symbol as frequent or infrequent ($O(m \log m)$ time)

Step 1: Count all matches involving frequent symbols. ($O(n\sqrt{m}\log m)$ time)

Step 2: Count all matches involving infrequent symbols. ($O(n\sqrt{m})$ time)

Algorithm summary

Step 0: Classify each symbol as frequent or infrequent ($O(m \log m)$ time)

Step 1: Count all matches involving frequent symbols. ($O(n\sqrt{m}\log m)$ time)

Step 2: Count all matches involving infrequent symbols. ($O(n\sqrt{m})$ time)

Algorithm summary

Step 0: Classify each symbol as frequent or infrequent ($O(m \log m)$ time)

Step 1: Count all matches involving frequent symbols. ($O(n\sqrt{m}\log m)$ time)

Step 2: Count all matches involving infrequent symbols. ($O(n\sqrt{m})$ time)

at any alignment the number of mismatches is just m minus the total number of matches

Algorithm summary

Step 0: Classify each symbol as frequent or infrequent ($O(m \log m)$ time)

Step 1: Count all matches involving frequent symbols. ($O(n\sqrt{m}\log m)$ time)

Step 2: Count all matches involving infrequent symbols. ($O(n\sqrt{m})$ time)

at any alignment the number of mismatches is just m minus the total number of matches

Overall, we obtain a time complexity of $O(n\sqrt{m}\log m)$.