Semantics of Pointers®

Hanne Riis Nielson

Informatics and Mathematical Modelling

Technical University of Denmark

February 26, 2003

1 Syntax of a pointer language

We shall study an extension of WHILE that allows us to create cells in the heap;
the cells are structured and may contain values as well as pointers to other cells.
The data stored in a cell is accessed via selectors so we assume that a finite and
non-empty set Sel of selector names are given:

sel € Sel selector names

Asg an example Sel may include the Lisp-like selectors car and cdr for selecting
the first and second components of pairs. The cells of the heap can be addressed
by expressions like x.cdr: this will first determine the cell pointed to by the
variable x and then return the value of the cdr field. For the sake of simplicity
we shall only allow one level of selectors although the development generalises
to several levels. Formally the pointer expressions

p € PExp

are given by:
p == x|mz.sel
The syntax of the WHILE-language is now extended to have:
a == p|nl|a op, az|nil

true | false | not b | by op, b2 | a1 0p,. a2 | 0p, P

S == p:=a|skip]|S;; S |
if b then S; else Sy | while bdo S|
malloc p

*This note is based on Section 2.6 of “Principles of Program Analysis” (by F. Nielson, H.
Riis Nielson and C. Hankin) published by Springer 1999.

Arithmetic expressions are extended to use pointer expressions rather than just
variables, and an arithmetic expression can also be the constant nil. The binary
operations op, are as before, that is, they are the standard arithmetic operations
and in particular they do not allow pointer arithmetic. The boolean expressions
are extended such that the relational operators op, now allow testing for the
equality of pointers and also we shall allow unary operations op,, on pointers (as
for example is-nil and has-sel for each sel € Sel). Note that arithmetic as
well as boolean expressions can only access cells in the heap, they cannot create
new cells nor update existing cells.

The assignment statement takes the general form p:=a where p is a pointer
expression. In the case where p is just a variable we have an extension of the
ordinary assignment of the WHILE language and in the case where p contains
a selector we have a destructive update of the heap. The statements of the
extended language also contain a statement malloc p for creating a new cell
pointed to by p.

Example The following program reverses the list pointed to by x and leaves
the result in y:

y:=nil;

while not is-nil(x) do
(z:=y;y:=x;x:=x.cdr;y.cdr:=2);

z:=nil

Figure 1 illustrates the effect of the program when x points to a five element list
and y and z are initially undefined. Row 0 shows the heap just before entering
the while-loop: x points to the list and y is nil (denoted by ¢); to avoid
cluttering the figure we do not draw the car-pointers. After having executed
the statements of the body of the loop the situation is as in row 1: x now points
to the tail of the list, y points to the head of the list and z is nil. In general the
n’th row illustrates the situation just before entering the loop the n + 1’th time
80 in row 5 we see that x points to nil and the execution of the loop terminates
and y points to the reversed list. The final statement z:=nil simply removes
the pointer from z to & and sets it to the nil-value. a

2 Structural Operational Semantics

To model the scenario described above we shall introduce an infinite set Loe of
locations (or addresses) for the heap cells:

£ € Loc locations

The value of a variable will now either be an integer (as before), a location (i.e. a
pointer) or the special constant ¢ reflecting that it is the nil value. Thus the

o]

o))))2) e

—_—

o]

AT)) o

Y D)o

zZ — <

y) e o

Z

y e) sy
Z

x)

Z

X — <

y) S)) S 2 o
Z

Figure 1: Reversal of a list of five elements.

states are given by
o € State = Var < (Z + Loc + {¢})

where Var is the set of variables occurring in the program of interest. As
mentioned above the cells of the heap have multiple fields and they are accessed
using the selectors. Each field can either be an integer, a pointer to another cell
or it can be nil. We formalise this by taking

1 € Heap = (Loc x Sel) < (Z + Loc + {¢})

where the use of partial functions with finite domain reflects that not all selector
fields need to be defined; as we shall see later, a newly created cell with location
& will have all its fields to be uninitialised and hence the corresponding heap %
will have #(€, sel) to be undefined for all sel € Sel.

Pointer expressions. Given a state and a heap we need to determine the
value of a pointer expression p as an element of Z + Loc + {¢}. For this we
introduce the function

p : PExp — (State X Heap) — (Z + {¢} + Loc)

where PExp denotes pointer expressions with variables in Var. It is defined
by:

plz](o,n) = o(z)
H(q(;r:), sel) .
olz.sel](o, 1) = un;ﬁfa(m) € Loc and # is defined on (o(z), sel)

if o(z) ¢ Loc or # is undefined on (o(x), sel)

The first clause takes care of the situation where p is a simple variable and using
the state we determine its value — note that this may be an integer, a location
or the special nil-value ¢. The second clause takes care of the case where the
pointer expression has the form z.sel. Here we first have to determine the value
of x; it only makes sense to inspect the sel-field in the case z evaluates to a
location that has a sel-field and hence the clause is split into two cases. Tn the
case where x evaluates to a location we simply inspect the heap % to determine
the value of the sel-field — again we may note that this can be an integer, a
location or the special value <.

Example Tn Figure 1 the oval nodes model the cells of the heap # and they
are labelled with their location (or address). The unlabelled edges denote the
state o: an edge from a variable x to some node labelled £ means that o(z) = &;
an edge from z to the symbol ¢ means that o(z) = o. The labelled edges model
the heap #: an edge labelled sel from a node labelled £ to a node labelled &'

means that there is a sel pointer between the two cells, that is #(&, sel) = £'; an
edge labelled sel from a node labelled £ to the symbol ¢ means that the pointer
is a nil-pointer, that is #(¢, sel) = o.

Consider the pointer expression x.cdr and assume that o and & are as in row 0
of Figure 1, that is o(x) = & and #(&;, cdr) = &. Then p[x.cdr](o, %) = &.

Arithmetic and boolean expressions. It is now straightforward to extend
the semantics of arithmetic and boolean expressions to handle pointer expres-
sions and the nil-constant. Obviously the functionality of the semantic func-
tions A4 and B has to be changed to take the heap into account:

A : AExp — (State x Heap) — (Z + Loc + {¢})

B : BExp — (State x Heap) — T

The clauses for arithmetic expressions are

Alpl(o, 1) = plpl(o,%)
Alnl(o,n) = Nn]
Alay 0p, az](o,#) = Alail(o,%) op, Alaz](a,#)
Anil](o,x) = o

where we use p to determine the value of pointer expressions and we explicitly
write that the meaning of nil is o. Also the meaning op, of the binary operation
op, has to be suitably modified to be undefined unless both arguments are
integers in which case the results are as for the WHILE-language.

The definition of the semantics of boolean expressions is similar so we only give
two of the clauses:

Blay op, as](o, %) = Alai]{o, %) op, Ala2](o, 1)
Blop, pl(o,#) = op, (plpl(o,#))

Analogously to above, the meaning op,. of the binary relation operator op, has
to be suitably modified to give undefined in case the arguments are not both
integers or both pointers (in which case the equality operation tests for the
equality of the pointers). The meaning of the unary operation op, is defined by
op,; as an example:

is-nil(v) = tt ifo=o
i) = ff otherwise

Statements. Finally, the semantics of statements is extended to cope with
the heap component. The configurations will now contain a state as well as a
heap so they have the form

(S,0,1)

[assi] (z:=a,0,n) = (o]z — Ala](o, #)],) it AJa](o, %) is defined

[assa] (x.sel:=a,o,n) = (o, H[(c(x), sel) — Ala](o,%)]) if o(z) € Loc and
Ala](o,#) is defined

[skip] (skip,o,%) = (o, %)

[86] <SlaUa H> = <S{aala7{/>
ql <SI;SQaUaH> = <Si;5270-/7%/>
<Sla g, H> = <UI7 Hl>
[86(]2] <51;SQ,U, 7—[> = <SQ,O’I,H'>
[+,] (if b then Sy else So, 0, %) = (S1,0,%) it B[b](o,) = true
[if,] (if b then S; else Sy, 0,%) = (52,0, %) it B[b](o,) = false

[why] (while bdo S,o,1) = ((S;while bdo S),o,%) if B[b](o, %) = true
[why] (while bdo S,o, %) = (o, %) if B[b](o,#) = false

[maly] (malloc z,0,%) = {(o[x — &],H)
where £ does not occur in ¢ or %

[mals] (malloc (z.sel), o, 1) = (o, #[(o(x), sel) — &])
where £ does not oceur in o or # and o(z) € Loc

Table 1: The Structural Operational Semantics of WHILE with pointers.

The clause [ass;] reflects that for the assignment z:=a the state is updated as
usual and the heap is left unchanged. In the case where we assign to a pointer
expression containing a selector field we shall leave the state unchanged and
update the heap as shown in the clause [assz]. Here the side condition ensures
that the left hand side of the assignment does indeed evaluate to a location.

The construct malloc p is responsible for creating a new cell. We have two
clauses depending on the form of p. Tn both cases we introduce a fresh location
& but we do not specify any values for #(&, sel) — as discussed before we have
settled for a semantics where the fields of ¢ are undefined; obviously other choices
are possible. Also note that in the clause [mal] the side condition ensures that
we already have a location corresponding to and hence can create an edge to
the new location.

Remark. The semantics only allows a limited reuse of garbage locations. For
a statement like
malloc x;x:=nil;malloc y

we will assign some location to x at the first statement and since it neither
occurs in the state nor the heap after the second assignment we are free to reuse
it in the third statement (but we do not have to). For a statement like

malloc x;x.cdr:=nil;x:=nil;malloc y

we would not be able to reuse the location allocated in the first statement
although it will be unreachable (and hence garbage) after the third statement.

