
Introduction to Semantics

Course 02240
spring 2005

Hanne Riis Nielson
riis@imm.dtu.dk

Informatics and Mathematical Modelling

mailto:riis@imm.dtu.dk

Syntax of While

Hanne Riis Nielson 3

Syntactic categories

Numerals
Variables
Arithmetic expressions

Boolean expressions

Statements

n ∈ Num
x ∈ Var
a ∈ AExp

b ∈ BExp

S ∈ Stm

not further
specified

Hanne Riis Nielson 4

Abstract vs Concrete syntax

Abstract Syntax
focusses on the structure of
expressions, statements, etc
and ignores the scanning and
parsing aspects of the syntax
Concrete Syntax
deals with scanning and
parsing aspects

a ::= n | x
| a1 + a2
| a1 * a2

A ::= T+ A | T
T ::= F * T | F
F ::= N | X | (A)

N: digit+
X: letter (digit | letter)*

Hanne Riis Nielson 5

Example: x+5*y

Abstract syntax:
– formalises the allowable parse trees
– we use parentheses to disambiguate the syntax
– we introduce defaults as e.g. * binds closer than +

a ::= n | x
| a1 + a2
| a1 * a2

a

a a

aa +

x 5

*

y

a

a a

aax

5 y

+

*
default
x + (5 * y)

write
(x + 5) * y

Hanne Riis Nielson 6

Example: x+5*y

Concrete syntax
– parantheses disambiguate the syntax
– the grammar captures aspects like the precedence

and associativity rules
A

T A

TFF

N F

+

*

X

X

x 5

y

A ::= T+ A | T
T ::= F * T | F
F ::= N | X | (A)

Hanne Riis Nielson 7

Other ambiguities

x := 1; y := 2; z := 3

x := 1; (y := 2; z := 3)

(x := 1; y := 2); z := 3

if x < y then x := 1; y := 2 else x := 3; y := 4

if x < y then (x := 1; y := 2) else x := 3; y := 4

if x < y then x := 1; y := 2 else (x := 3; y := 4)

while x < y do x := x+1; y := 0

while x < y do (x := x+1; y := 0)

Hanne Riis Nielson 8

Example programs

factorial program:
– if x = n initially then y= n! when the program

terminates
– y := 1; while ¬(x=1) do (y:=y*x; x:=x-1)

power function:
– if x = n and y = m initially then z = nm when the

program terminates
– write the program in the while language

Exercise 1.2

Semantics of expressions

Hanne Riis Nielson 10

Memory model: states
semantic
values:
numbers

variables
the value of x+5*y
depends on the values
of the variables x and y
these are determined by
the current state
operations on states:

0z
4y
2x

the value of x+5*y is 22:

A [x+5*y]s = s(x)+5*s(y)
= 2+5*4
= 22

Hanne Riis Nielson 11

Semantic functions

A: AExp → (State → Z)
for each arithmetic expression a and each
state s the function determines the value
(a number) A[a]s of a
B: BExp → (State → T)
for each boolean expression b and each
state s the function determines the value
(true or false) B[b]s of b

Hanne Riis Nielson 12

A: AExp → (State → Z)
N : Num → Z
from numerals (syntax)
to numbers (semantics)

one clause for each of
the different forms of
arithmetic expressions

semantic
operators

symbols
of syntax

Hanne Riis Nielson 13

truth values:
tt (for true)
ff (for false)

B: BExp → (State → T)

one clause
for each of
the different
forms of
boolean
expressions

Hanne Riis Nielson 14

The rules of the game

the syntactic category is specified by giving
– the basic elements
– the composite elements; these have a unique

decomposition into their immediate constituents

Hanne Riis Nielson 15

The rules of the game
The semantics is then defined by a compositional
definition of a function:
– there is a semantic clause for each of the basic elements

of the syntactic category
– there is a semantic clause for each of the ways for

constructing composite elements; the clause is defined in
terms of the semantics for the immediate constituents of
the elements

basic
elements

composite
elements

Hanne Riis Nielson 16

A simple result
We want to formalise the fact that the value
of an arithmetic expression only depends
on the values of the variables occurring in it
Definition: FV(a) is the set of free
variables in the arithmetic expression a

Hanne Riis Nielson 17

A simple result and its proof

Lemma: Assume that s and s’ are states
satisfying s(x) = s’(x) for all x in FV(a).
Then A[a]s = A[a]s’.

Proof: by Structural Induction
– case n
– case x
– case a1 + a2
– case a1 * a2
– case a1 - a2

Hanne Riis Nielson 18

Structural Induction

Hanne Riis Nielson 19

A substitution result
We want to formalise the fact that a
substitution within an expression can be
mimicked by a similar change of the state.
Definition: Replacing all occurrences of y
within a with a0:

Hanne Riis Nielson 20

A substitution result and its proof

Lemma: Let

then for all states s

Proof: Exercise 1.13

Semantics of statements

Hanne Riis Nielson 22

Updating the states

An assignment
updates the state

general formulation:
0z
4y
2xstate before

executing
z := x+5*y

22z

4y
2xstate after

executing
z := x+5*y

state after
executing

x := a

state before
executing

x := a

Hanne Riis Nielson 23

Two kinds of semantics

Natural semantics (NS)
– given a statement and a state in which it has

to be executed, what is the resulting state
(if it exists)?

Structural operational semantics (SOS)
– given a statement and a state in which it has

to be executed, what is the next step of the
computation (if it exists)?

Hanne Riis Nielson 24

Natural semantics

the result of executing
the assignment x := a in
the state s is the state s
updated such that x gets
the value of a

the result of
executing the skip
statement in the
state s is simply
the state s

axiom schemas
they can be instantiated for
particular choices of x, a and s

Hanne Riis Nielson 25

Natural semantics

the result of executing S1; S2 from the state s is
obtained by first executing the S1 from s to
obtain its resulting state s’ and then to execute
S2 from that state to obtain its resulting state s’’
and that will be the resulting state for S1; S2

a rule with
- two premises
and
- one conclusion

Hanne Riis Nielson 26

Building a derivation tree
axiom
schemas

assume x
is 0 in s0

instances

the state that
is as s0 except
that x is 1

instance of rule:
the premises are
satisfied

Hanne Riis Nielson 27

Natural semantics

The result of executing if b then S1 else S2 from
state s depends on the value of b in state s:
– If it is tt then the result is the resulting state of S1
– If it is ff then the result is the resulting state of S2

side
conditions

must be
computable

Hanne Riis Nielson 28

Natural semantics
The result of executing while b do S from state s
depends on the value of b in state s:
– If it is tt then we first execute S from s to obtain its

resulting state s’ and then repeat the execution of
while b do S but from s’ in order to obtain its resulting
state s’’ which then will be the overall resulting state

– If it is ff then the resulting state is simply s

side
conditions

Hanne Riis Nielson 29

Summary: natural semantics

Hanne Riis Nielson 30

sij(y) = i, sij(x) = j
s = s03Example

Hanne Riis Nielson 31

Exercise 2.3

Consider the statement
z := 0; while y ≤ x do (z := z+1; x := x-y)

Construct a derivation tree for the
statement when executed in a state where
x has the value 17 and y has the value 5.

Terminology

Hanne Riis Nielson 33

Derivation tree

When we use the axioms and rules to derive a
transition 〈S,s〉 → s’ we obtain a derivation tree:
– the root of the tree is 〈S,s〉 → s’
– the leaves of the tree are instances of the axioms
– the internal nodes of the tree are the conclusions of

instances of the rules; they have the corresponding
instances of their premises as immediate sons

The execution of S from s
– terminates if there is a state s’ such that 〈S,s〉 → s’
– loops if there is no state s’ such that 〈S,s〉 → s’

Hanne Riis Nielson 34

Exercise Exercise 2.4

Consider the following statements
– while ¬ (x = 1) do (y := y*x; x := x-1)
– while 1 ≤ x do (y := y*x; x := x-1)
– while true do skip

For each statement determine whether or
not it always terminates or it always loops.
Argue for your answer using the axioms
and rules of the NS.

Hanne Riis Nielson 35

Semantic equivalence

Definition: Two statements S1 and S2 are
semantically equivalent if for all states s
and s’

〈S1,s〉 → s’ if and only if 〈S2,s〉 → s’

Lemma: while b do S and if b then (S;
while b do S) else skip are semantically
equivalent

Hanne Riis Nielson 36

Lemma: while b do S and
if b then (S; while b do S) else skip
are semantically equivalent

Proof:
part 1

Assume
B [b]s = tt

Hanne Riis Nielson 37

Lemma: while b do S and
if b then (S; while b do S) else skip
are semantically equivalent

Proof:
part 2

Assume
B [b]s = ff

s=s’’ must
be the case

s=s’’ must
be the case

Hanne Riis Nielson 38

Exercise Exercise 2.6

Prove that (S1; S2); S3 and S1; (S2; S3) are
semantically equivalent

Proof principle
for

natural semantics

Hanne Riis Nielson 40

Deterministic semantics

Definition: the natural semantics is
deterministic if for all statements S and
states s, s’ and s’’

Lemma: the natural semantics of the while
language is deterministic

Proof: by induction on the shape of the
derivation tree

Hanne Riis Nielson 41

Induction on the shape of
derivation trees

Hanne Riis Nielson 42

Summary: natural semantics

composite
derivation
trees

simple
derivation
trees

The exercise session today:
Natural Semantics

for
the repeat construct

Hanne Riis Nielson 44

The repeat construct

The most complex construct of the While
language is the while b do S construct.
To improve your understanding of the
material of the course you will get a
sequence of exercises on the repeat S
until b construct.

These exercises will all be part of the first
assignment to be handed in on March 1st.

Hanne Riis Nielson 45

Exercise 2.7 and 2.10
Specify the semantics of the construct

repeat S until b
The specification is not allowed to rely on
the existence of the while construct in the
language.
Prove that repeat S until b is semantically
equivalent to S; if b then skip else (repeat S
until b)
Harder: Show that repeat S until b is
semantically equivalent to S; while ¬b do S

Hanne Riis Nielson 46

The rules of the game
several premises (n≥0)

conclusion computable
side condition

OBS

If we have derivation trees that matches the premises
and if the side condition is fulfilled
then we can construct a derivation tree for the
conclusion

Hanne Riis Nielson 47

Preliminary plan

Deadline for handing the first exercise in:
”Everything one would like to know about the repeat
construct – and a little bit more”
More details later …

1. March 2005

Lecture: Comparison of NS and SOS; NN 2.3, 3.1
Exercises: more later
Programming: more later

23. Feb 2005

Lecture: Structural operational semantics (SOS); NN 2.2
Exercises: more later
Programming: A prototype interpreter for SOS

16. Feb 2005

Lecture: Natural semantics (NS); NN ch 1 and 2.1
Exercises: 1.2, 1.13, 2.3, 2.4, 2.6, 2.7, 2.10
Programming: A prototype interpreter for NS

9. Feb 2005

Programming exercises
for today

We shall use SML
as this is very easy

but of course any language will do ...

Hanne Riis Nielson 49

Goal for today

while
program

initial
state

improves your
understanding
of the axioms
and rules and
what they say

interpreter for
Natural Semantics

of While

resulting
state

error
messages

Hanne Riis Nielson 50

review

Syntax in the theory

Numerals
Variables
Arithmetic expressions

Boolean expressions

Statements

n ∈ Num
x ∈ Var
a ∈ AExp

b ∈ BExp

S ∈ Stm

Hanne Riis Nielson 51

Syntax in SML
type NUM = string
type VAR = string

datatype AEXP = Num of NUM
| Var of VAR
| Add of AEXP * AEXP
| Mult of AEXP * AEXP
| Sub of AEXP * AEXP

datatype BEXP = tt
| ff
| …

datatype STM = Ass of VAR * AEXP
| Skip
| …

each syntactic
category gives
rise to a data
type

Example: y := y * x becomes Ass ("y", Mult (Var "y", Var "x"))

Hanne Riis Nielson 52

Expressions
State = Var → Z

N: Num → Z

A: AExp → (State → Z)

B: BExp → (State → T)

type STATE = VAR -> int

(* N : NUM -> int *)

fun N n = valOf (Int.fromString n)

(* A: AEXP -> STATE -> int *)

fun A (Num n) s = N n
| A (Var x) s = s x
| A (Add (a1,a2)) s = A a1 s + A a2 s
| A ...

each semantic
function gives
rise to a SML
function

Hanne Riis Nielson 53

Natural semantics
the transition relation
gives rise to a function
in SML – why does that
work, by the way?

datatype CONFIG
= Inter of STM * STATE
| Final of STATE

fun update x a s = ...

fun NS (Inter ((Ass (x,a)), s)) = Final ...
| NS (Inter (Skip, s)) = Final s
| NS ..

Hanne Riis Nielson 54

Programming exercise

Complete the SML implementation
Test the implementations on programs like
– y := 1; while ¬(x = 1) do (y := y * x; x := x – 1)
– z := 0; while y ≤ x do (z := z+1; x := x-y)
– while ¬ (x = 1) do (y := y*x; x := x-1)
– while 1 ≤ x do (y := y*x; x := x-1)
– while true do skip
using a number of different states

Extend the implementation to include the
repeat construct

	Introduction to Semantics
	Syntax of While
	Syntactic categories
	Abstract vs Concrete syntax
	Example: x+5*y
	Example: x+5*y
	Other ambiguities
	Example programs
	Semantics of expressions
	Memory model: states
	Semantic functions
	A: AExp ? (State ? Z)
	B: BExp ? (State ? T)
	The rules of the game
	The rules of the game
	A simple result
	A simple result and its proof
	Structural Induction
	A substitution result
	A substitution result and its proof
	Semantics of statements
	Updating the states
	Two kinds of semantics
	Natural semantics
	Natural semantics
	Building a derivation tree
	Natural semantics
	Natural semantics
	Summary: natural semantics
	Example
	Exercise 2.3
	Terminology
	Derivation tree
	Exercise
	Semantic equivalence
	Lemma: while b do S and if b then (S; while b do S) else skip are semantically equivalent
	Exercise
	Proof principle fornatural semantics
	Deterministic semantics
	Induction on the shape of derivation trees
	Summary: natural semantics
	The exercise session today:Natural Semantics for the repeat construct
	The repeat construct
	Exercise 2.7 and 2.10
	The rules of the game
	Preliminary plan
	Programming exercisesfor today
	Goal for today
	Syntax in the theory
	Syntax in SML
	Expressions
	Natural semantics
	Programming exercise

