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Syntax of While
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Syntactic categories

Numerals
Variables
Arithmetic expressions

Boolean expressions

Statements

n ∈ Num
x ∈ Var
a ∈ AExp

b ∈ BExp

S ∈ Stm

not further
specified



Hanne Riis Nielson 4

Abstract vs Concrete syntax

Abstract Syntax
focusses on the structure of
expressions, statements, etc
and ignores the scanning and 
parsing aspects of the syntax
Concrete Syntax
deals with scanning and 
parsing aspects

a ::= n | x 
| a1 + a2
| a1 * a2

A ::= T+ A | T
T ::= F * T | F
F ::= N | X | ( A )

N: digit+
X: letter (digit | letter)*
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Example: x+5*y

Abstract syntax:
– formalises the allowable parse trees
– we use parentheses to disambiguate the syntax
– we introduce defaults as e.g. * binds closer than +

a ::= n | x 
| a1 + a2
| a1 * a2

a

a a

aa +

x 5

*

y

a

a a

aax

5 y

+

*
default
x + (5 * y)

write
(x + 5) * y
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Example: x+5*y

Concrete syntax
– parantheses disambiguate the syntax
– the grammar captures aspects like the precedence

and associativity rules
A

T A

TFF

N F

+

*

X

X

x 5

y

A ::= T+ A | T
T ::= F * T | F
F ::= N | X | ( A )
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Other ambiguities

x := 1; y := 2; z := 3

x := 1; (y := 2; z := 3)

(x := 1; y := 2); z := 3

if x < y then x := 1; y := 2 else x := 3; y := 4

if x < y then (x := 1; y := 2) else x := 3; y := 4

if x < y then x := 1; y := 2 else (x := 3; y := 4)

while x < y do x := x+1; y := 0

while x < y do (x := x+1; y := 0) 
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Example programs

factorial program:
– if x = n initially then y= n! when the program 

terminates
– y := 1; while ¬(x=1) do (y:=y*x; x:=x-1)

power function:
– if x = n and y = m initially then z = nm when the 

program terminates
– write the program in the while language

Exercise 1.2



Semantics of expressions
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Memory model: states
semantic
values:
numbers

variables
the value of x+5*y
depends on the values
of the variables x and y
these are determined by 
the current state
operations on states:

0z
4y
2x

the value of x+5*y is 22:

A [x+5*y]s = s(x)+5*s(y)
= 2+5*4 
= 22
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Semantic functions

A: AExp → (State → Z)
for each arithmetic expression a and each
state s the function determines the value
(a number) A[a]s of a
B: BExp → (State → T)
for each boolean expression b and each
state s the function determines the value
(true or false) B[b]s of b
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A: AExp → (State → Z)
N : Num → Z
from numerals (syntax)
to numbers (semantics)

one clause for each of
the different forms of
arithmetic expressions

semantic
operators

symbols
of syntax



Hanne Riis Nielson 13

truth values:
tt (for true)
ff (for false)

B: BExp → (State → T)

one clause
for each of
the different
forms of
boolean
expressions
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The rules of the game

the syntactic category is specified by giving
– the basic elements
– the composite elements; these have a unique

decomposition into their immediate constituents
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The rules of the game
The semantics is then defined by a compositional
definition of a function:
– there is a semantic clause for each of the basic elements

of the syntactic category
– there is a semantic clause for each of the ways for 

constructing composite elements; the clause is defined in 
terms of the semantics for the immediate constituents of
the elements

basic
elements

composite
elements
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A simple result
We want to formalise the fact that the value 
of an arithmetic expression only depends 
on the values of the variables occurring in it
Definition: FV(a) is the set of free 
variables in the arithmetic expression a
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A simple result and its proof

Lemma: Assume that s and s’ are states 
satisfying s(x) = s’(x) for all x in FV(a).  
Then A[a]s = A[a]s’.

Proof: by Structural Induction
– case n
– case x
– case a1 + a2
– case a1 * a2
– case a1 - a2
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Structural Induction
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A substitution result
We want to formalise the fact that a 
substitution within an expression can be 
mimicked by a similar change of the state.
Definition: Replacing all occurrences of y
within a with a0:
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A substitution result and its proof

Lemma: Let

then for all states s

Proof: Exercise 1.13



Semantics of statements
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Updating the states

An assignment
updates the state

general formulation:
0z
4y
2xstate before

executing
z := x+5*y

22z

4y
2xstate after

executing
z := x+5*y

state after
executing

x := a

state before
executing

x := a
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Two kinds of semantics

Natural semantics (NS)
– given a statement and a state in which it has 

to be executed, what is the resulting state
(if it exists)?

Structural operational semantics (SOS)
– given a statement and a state in which it has 

to be executed, what is the next step of the
computation (if it exists)?
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Natural semantics

the result of executing
the assignment x := a in 
the state s is the state s
updated such that x gets
the value of a

the result of
executing the skip
statement in the
state s is simply
the state s

axiom schemas
they can be instantiated for 
particular choices of x, a and s
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Natural semantics

the result of executing S1; S2 from the state s is 
obtained by first executing the S1 from s to 
obtain its resulting state s’ and then to execute
S2 from that state to obtain its resulting state s’’ 
and that will be the resulting state for S1; S2

a rule with
- two premises
and
- one conclusion
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Building a derivation tree
axiom
schemas

assume x 
is 0 in s0

instances

the state that
is as s0 except
that x is 1

instance of rule:
the premises are
satisfied
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Natural semantics

The result of executing if b then S1 else S2 from 
state s depends on the value of b in state s:
– If it is tt then the result is the resulting state of S1
– If it is ff then the result is the resulting state of S2

side
conditions

must be
computable
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Natural semantics
The result of executing while b do S from state s
depends on the value of b in state s:
– If it is tt then we first execute S from s to obtain its

resulting state s’ and then repeat the execution of
while b do S but from s’ in order to obtain its resulting
state s’’ which then will be the overall resulting state

– If it is ff then the resulting state is simply s

side 
conditions
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Summary: natural semantics
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sij(y) = i, sij(x) = j
s = s03Example
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Exercise 2.3

Consider the statement 
z := 0; while y ≤ x do (z := z+1; x := x-y)

Construct a derivation tree for the
statement when executed in a state where
x has the value 17 and y has the value 5.



Terminology
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Derivation tree

When we use the axioms and rules to derive a 
transition 〈S,s〉 → s’ we obtain a derivation tree:
– the root of the tree is 〈S,s〉 → s’
– the leaves of the tree are instances of the axioms
– the internal nodes of the tree are the conclusions of

instances of the rules; they have the corresponding
instances of their premises as immediate sons

The execution of S from s
– terminates if there is a state s’ such that 〈S,s〉 → s’
– loops if there is no state s’ such that 〈S,s〉 → s’
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Exercise Exercise 2.4

Consider the following statements
– while ¬ (x = 1) do (y := y*x; x := x-1)
– while 1 ≤ x do (y := y*x; x := x-1)
– while true do skip

For each statement determine whether or
not it always terminates or it always loops. 
Argue for your answer using the axioms
and rules of the NS.
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Semantic equivalence

Definition: Two statements S1 and S2 are 
semantically equivalent if for all states s 
and s’

〈S1,s〉 → s’ if and only if 〈S2,s〉 → s’

Lemma: while b do S and if b then (S; 
while b do S) else skip are semantically
equivalent
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Lemma: while b do S and
if b then (S; while b do S) else skip 
are semantically equivalent

Proof: 
part 1

Assume
B [b]s = tt
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Lemma: while b do S and
if b then (S; while b do S) else skip 
are semantically equivalent

Proof: 
part 2

Assume
B [b]s = ff

s=s’’ must 
be the case

s=s’’ must 
be the case
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Exercise Exercise 2.6

Prove that (S1; S2); S3 and S1; (S2; S3) are
semantically equivalent



Proof principle 
for

natural semantics
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Deterministic semantics

Definition: the natural semantics is 
deterministic if for all statements S and 
states s, s’ and s’’

Lemma: the natural semantics of the while 
language is deterministic

Proof: by induction on the shape of the 
derivation tree
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Induction on the shape of 
derivation trees
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Summary: natural semantics

composite
derivation
trees

simple
derivation
trees



The exercise session today:
Natural Semantics 

for 
the repeat construct
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The repeat construct

The most complex construct of the While
language is the while b do S construct. 
To improve your understanding of the
material of the course you will get a 
sequence of exercises on the repeat S
until b construct. 

These exercises will all be part of the first 
assignment to be handed in on March 1st.
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Exercise 2.7 and 2.10
Specify the semantics of the construct

repeat S until b
The specification is not allowed to rely on
the existence of the while construct in the
language.
Prove that repeat S until b is semantically
equivalent to S; if b then skip else (repeat S
until b)
Harder: Show that repeat S until b is 
semantically equivalent to S; while ¬b do S



Hanne Riis Nielson 46

The rules of the game
several premises (n≥0)

conclusion computable
side condition

OBS

If we have derivation trees that matches the premises
and if the side condition is fulfilled
then we can construct a derivation tree for the
conclusion
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Preliminary plan

Deadline for handing the first exercise in:
”Everything one would like to know about the repeat
construct – and a little bit more” 
More details later …

1. March 2005

Lecture: Comparison of NS and SOS; NN 2.3, 3.1 
Exercises: more later
Programming: more later

23. Feb 2005

Lecture: Structural operational semantics (SOS); NN 2.2
Exercises: more later
Programming: A prototype interpreter for SOS

16. Feb 2005

Lecture: Natural semantics (NS); NN ch 1 and 2.1
Exercises: 1.2, 1.13, 2.3, 2.4, 2.6, 2.7, 2.10
Programming: A prototype interpreter for NS

9. Feb 2005



Programming exercises
for today

We shall use SML
as this is very easy

but of course any language will do ...
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Goal for today

while
program

initial
state

improves your
understanding
of the axioms
and rules and
what they say

interpreter for
Natural Semantics

of While

resulting
state

error
messages
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review

Syntax in the theory

Numerals
Variables
Arithmetic expressions

Boolean expressions

Statements

n ∈ Num
x ∈ Var
a ∈ AExp

b ∈ BExp

S ∈ Stm
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Syntax in SML
type NUM = string
type VAR = string

datatype AEXP = Num   of NUM
| Var of VAR
| Add   of AEXP * AEXP
| Mult of AEXP * AEXP
| Sub   of AEXP * AEXP

datatype BEXP = tt
| ff
| …

datatype STM  = Ass   of VAR  * AEXP
| Skip
| …

each syntactic
category gives
rise to a data
type

Example:  y := y * x becomes  Ass ("y", Mult (Var "y", Var "x"))
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Expressions
State = Var → Z

N: Num → Z

A: AExp → (State → Z)

B: BExp → (State → T)

type STATE = VAR -> int

(* N : NUM -> int *)

fun N n = valOf (Int.fromString n)

(* A: AEXP -> STATE -> int *)

fun A (Num n) s        = N n
|  A (Var x) s        = s x
|  A (Add (a1,a2)) s  = A a1 s + A a2 s
|  A ...

each semantic
function gives
rise to a SML
function
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Natural semantics
the transition relation 
gives rise to a function
in SML – why does that
work, by the way?

datatype CONFIG 
= Inter of STM * STATE
| Final of STATE

fun update x a s = ...

fun NS (Inter ((Ass (x,a)), s) )     = Final ... 
|  NS (Inter (Skip, s))             = Final s
|  NS ..
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Programming exercise

Complete the SML implementation
Test the implementations on programs like
– y := 1; while ¬(x = 1) do (y := y * x; x := x – 1)
– z := 0; while y ≤ x do (z := z+1; x := x-y)
– while ¬ (x = 1) do (y := y*x; x := x-1)
– while 1 ≤ x do (y := y*x; x := x-1)
– while true do skip
using a number of different states

Extend the implementation to include the
repeat construct
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