

Introduction to Semantics

DTU

Course 02240 spring 2005

Hanne Riis Nielson riis@imm.dtu.dk

Informatics and Mathematical Modelling

Syntax of While

Syntactic categories

Numerals $\geq n \in Num$ not further specified Variables $\succ x \in Var$ \rightarrow Arithmetic expressions $\rightarrow a \in AExp$ $a ::= n | x | a_1 + a_2 | a_1 \star a_2 | a_1 - a_2$ \blacktriangleright Boolean expressions $\blacktriangleright b \in \mathsf{BExp}$ *b* ::= true | false | $a_1 = a_2$ | $a_1 \le a_2$ | $\neg b$ | $b_1 \land b_2$ Statements $\succ S \in Stm$ $S ::= x := a \mid \text{skip} \mid S_1; S_2 \mid \text{if } b \text{ then } S_1 \text{ else } S_2$ while b do $S \mid$ repeat S until b

Abstract vs Concrete syntax

Abstract Syntax

focusses on the *structure* of expressions, statements, etc and ignores the scanning and parsing aspects of the syntax

Concrete Syntax

deals with scanning and parsing aspects

$$a ::= n \mid x$$
$$\mid a_1 + a_2$$
$$\mid a_1 * a_2$$

N: digit⁺ X: letter (digit | letter)*

Example: x+5*y

$$a ::= n \mid x$$
$$\mid a_1 + a_2$$
$$\mid a_1 * a_2$$

Abstract syntax:

- formalises the allowable parse trees
- we use parentheses to disambiguate the syntax
- we introduce defaults as e.g. * binds closer than +

Example: x+5*y

Concrete syntax

- parantheses disambiguate the syntax
- the grammar captures aspects like the precedence and associativity rules

F

Other ambiguities

if x < y then x := 1; y := 2 else x := 3; y := 4
if x < y then (x := 1; y := 2) else x := 3; y := 4
if x < y then x := 1; y := 2 else (x := 3; y := 4)</pre>

while x < y do x := x+1; y := 0

while x < y do (x := x+1; y := 0)

Example programs

> factorial program:

 if x = n initially then y= n! when the program terminates

power function:
Exercise 1.2

- if x = n and y = m initially then $z = n^m$ when the program terminates
- write the program in the while language

Semantics of expressions

Memory model: states

- the value of x+5*y depends on the values of the variables x and y
- these are determined by the current state
- > operations on states:

lookup in a state:
$$s \ x$$

update a state: $s' = s[y \mapsto n]$
 $s' \ x = \begin{cases} s \ x & \text{if } x \neq y \\ n & \text{if } x = y \end{cases}$

the value of x+5*y is 22:

$$\mathcal{A}$$
 [x+5*y]s = s(x)+5*s(y)
= 2+5*4
= 22

Semantic functions

$\nearrow \mathcal{A}$: AExp \rightarrow (State \rightarrow Z)

for each arithmetic expression a and each state s the function determines the value (a number) $\mathcal{A}[a]s$ of a

$\triangleright \mathcal{B}: \mathsf{BExp} \to (\mathsf{State} \to \mathsf{T})$

for each boolean expression b and each state s the function determines the value (true or false) $\mathcal{B}[b]s$ of b

\mathcal{A} : AExp \rightarrow (State \rightarrow Z)

one clause for each of the different forms of arithmetic expressions

 $\mathcal{A} \| n \| s$

 \mathcal{N} : Num \rightarrow Z from numerals (syntax) to numbers (semantics)

$$= \mathcal{N}[n]$$

$$\mathcal{A}[\![x]\!]s = s x$$

$$\mathcal{A}[\![a_1]\!+\!a_2]\!]s = \mathcal{A}[\![a_1]\!]s + \mathcal{A}[\![a_2]\!]s$$

$$\mathcal{A}[\![a_1]\!+\!a_2]\!]s = \mathcal{A}[\![a_1]\!]s \star \mathcal{A}[\![a_2]\!]s$$

$$\mathcal{A}[\![a_1]\!-\!a_2]\!]s = \mathcal{A}[\![a_1]\!]s - \mathcal{A}[\![a_2]\!]s$$

$$symbols$$
symbols
of syntax
semantic operators

$\mathcal{B}: \mathsf{BExp} \to (\mathsf{State} \to \mathsf{T})$

truth values: **tt** (for true) **ff** (for false)

$\mathcal{B}[\texttt{true}]s$	—	tt		
$\mathcal{B}[[false]]s$	=	ff		one clause for each of
$\mathcal{B}\llbracket a_1 = a_2 \rrbracket s$	=	∫ tt	$\text{if }\mathcal{A}[\![a_1]\!]s=\mathcal{A}[\![a_2]\!]s$	the different
) ff	$\text{if } \mathcal{A}\llbracket a_1 \rrbracket s \neq \mathcal{A}\llbracket a_2 \rrbracket s$	forms of
$\mathcal{B}\llbracket a_1 \le a_2 \rrbracket s$	=	∫ tt	$\text{if } \mathcal{A}[\![a_1]\!]s \leq \mathcal{A}[\![a_2]\!]s$	boolean expressions
) ff	$\text{if } \mathcal{A}\llbracket a_1 \rrbracket s > \mathcal{A}\llbracket a_2 \rrbracket s$	
$\mathcal{B}\llbracket \neg \ b \rrbracket s$	=	∫ tt	$\text{if} \ \mathcal{B}[\![b]\!]s = \mathbf{f} \mathbf{f}$	
		∫ ff	if $\mathcal{B}[\![b]\!]s = \mathbf{t}\mathbf{t}$	
$\mathcal{B}\llbracket b_1 \wedge b_2 rbracket s$	=	∫ tt	$\text{if } \mathcal{B}[\![b_1]\!]s = \mathbf{t}\mathbf{t} \text{ and } \mathcal{B}[\![b_2]\!]s = \mathbf{t}\mathbf{t}$	
) ff	if $\mathcal{B}\llbracket b_1 \rrbracket s = \mathbf{ff}$ or $\mathcal{B}\llbracket b_2 \rrbracket s =$	$= \mathbf{f}\mathbf{f}$

The rules of the game

The syntactic category is specified by giving

- the basic elements
- the composite elements; these have a unique decomposition into their immediate constituents

The rules of the game

- The semantics is then defined by a compositional definition of a function:
 - there is a semantic clause for each of the basic elements of the syntactic category
 - there is a semantic clause for each of the ways for constructing composite elements; the clause is defined in terms of the semantics for the immediate constituents of the elements $\mathcal{A}[n]s = \mathcal{N}[n]$

$$\mathcal{A}\llbracket x \rrbracket s \qquad = s x$$

$$\mathcal{A}\llbracket a_1 + a_2 \rrbracket s = \mathcal{A}\llbracket a_1 \rrbracket s + \mathcal{A}\llbracket a_2 \rrbracket s$$

$$\mathcal{A}\llbracket a_1 \star a_2 \rrbracket s = \mathcal{A}\llbracket a_1 \rrbracket s \star \mathcal{A}\llbracket a_2 \rrbracket s$$

$$\mathcal{A}\llbracket a_1 \star a_2 \rrbracket s = \mathcal{A}\llbracket a_1 \rrbracket s \star \mathcal{A}\llbracket a_2 \rrbracket s$$

$$\mathcal{A}\llbracket a_1 - a_2 \rrbracket s = \mathcal{A}\llbracket a_1 \rrbracket s - \mathcal{A}\llbracket a_2 \rrbracket s$$

$$d\llbracket a_1 - a_2 \rrbracket s = \mathcal{A}\llbracket a_1 \rrbracket s - \mathcal{A}\llbracket a_2 \rrbracket s$$

15

A simple result

We want to formalise the fact that the value of an arithmetic expression only depends on the values of the variables occurring in it

Definition: FV(a) is the set of free variables in the arithmetic expression a

$$FV(n) = \emptyset$$

$$FV(x) = \{x\}$$

$$FV(a_1 + a_2) = FV(a_1) \cup FV(a_2)$$

$$FV(a_1 \star a_2) = FV(a_1) \cup FV(a_2)$$

$$FV(a_1 - a_2) = FV(a_1) \cup FV(a_2)$$

A simple result and its proof

Lemma: Assume that s and s' are states satisfying s(x) = s'(x) for all x in FV(a). Then A[a]s = A[a]s'.

Proof: by Structural Induction

- case n
- case x
- $\text{case } a_1 + a_2$
- case $a_1 * a_2$
- case $a_1 a_2$

Structural Induction

To prove a property of all the elements of the syntactic category do the following:

- Prove that the property holds for all the basis elements of the syntactic category.
- Prove that the property holds for all the composite elements of the syntactic category: Assume that the property holds for all the immediate constituents of the element — this is called the induction hypothesis and prove that it also holds for the element itself.

A substitution result

- We want to formalise the fact that a substitution within an expression can be mimicked by a similar change of the state.
- Definition: Replacing all occurrences of y within a with a₀:

A substitution result and its proof

Lemma: Let

$$(s[y\mapsto v]) \ x = \left\{ egin{array}{cc} v & ext{if } x = y \ s \ x & ext{if } x
eq y \end{array}
ight.$$

then for all states s

$$\mathcal{A}\llbracket a\llbracket y \mapsto a_0] \rrbracket s = \mathcal{A}\llbracket a\rrbracket (s\llbracket y \mapsto \mathcal{A}\llbracket a_0 \rrbracket s])$$

Proof: Exercise 1.13

Semantics of statements

Updating the states

An assignment updates the state

state before executing z := x+5*y

general formulation:

$$\langle x := a, s \rangle \to s[x \mapsto \mathcal{A}\llbracket a \rrbracket s]$$

state before executing x := a state after executing x := a state after executing z := x+5*y

Two kinds of semantics

Natural semantics (NS)

 given a statement and a state in which it has to be executed, what is the resulting state (if it exists)?

Structural operational semantics (SOS)

– given a statement and a state in which it has to be executed, what is the next step of the computation (if it exists)?

Natural semantics

the result of executing the assignment x := a in the state s is the state s updated such that x gets the value of a

the result of executing the skip statement in the state s is simply the state s

$$\langle x := a, s \rangle \to s[x \mapsto \mathcal{A}\llbracket a \rrbracket s] \qquad \qquad \langle \texttt{skip}, s \rangle \to s$$

axiom schemas they can be instantiated for particular choices of *x*, *a* and *s*

Natural semantics

➤ the result of executing S₁; S₂ from the state s is obtained by first executing the S₁ from s to obtain its resulting state s' and then to execute S₂ from that state to obtain its resulting state s'' and that will be the resulting state for S₁; S₂

$$\frac{\langle S_1, s \rangle \to s', \langle S_2, s' \rangle \to s''}{\langle S_1; S_2, s \rangle \to s''} \xrightarrow{\text{a rule with}}_{\text{- two premises and}}_{\text{- one conclusion}}$$

Building a derivation tree

 $\langle S_1; S_2, s \rangle \to s''$

Natural semantics

- The result of executing if b then S₁ else S₂ from state s depends on the value of b in state s:
 - If it is **tt** then the result is the resulting state of S₁
 - If it is **ff** then the result is the resulting state of S_2

computable

Natural semantics

- The result of executing while b do S from state s depends on the value of b in state s:
 - If it is tt then we first execute S from s to obtain its resulting state s' and then repeat the execution of while b do S but from s' in order to obtain its resulting state s'' which then will be the overall resulting state
 - If it is **ff** then the resulting state is simply s

$$\begin{array}{l} \langle S, s \rangle \to s', \, \langle \texttt{while } b \; \texttt{do} \; S, \, s' \rangle \to s'' \\ \langle \texttt{while } b \; \texttt{do} \; S, \, s \rangle \to s'' \\ \langle \texttt{while } b \; \texttt{do} \; S, \, s \rangle \to s \; \texttt{if } \mathcal{B}\llbracket b \rrbracket s = \texttt{ff} \end{array} \qquad \begin{array}{l} \texttt{if } \mathcal{B}\llbracket b \rrbracket s = \texttt{tt} \\ \texttt{side conditions} \end{array}$$

Summary: natural semantics

$$\begin{array}{l} \langle x := a \,, \, s \rangle \to s[x \mapsto \mathcal{A}\llbracket a \rrbracket s] \\ \langle \text{skip} \,, \, s \rangle \to s \\ \hline & \langle S_1, \, s \rangle \to s' \quad \langle S_2 \,, \, s' \rangle \to s'' \\ \hline & \langle S_1; S_2 \,, \, s \rangle \to s'' \\ \hline & \langle S_1; S_2 \,, \, s \rangle \to s'' \\ \hline & \langle S_1; S_2 \,, \, s \rangle \to s \\ \hline & \langle S_1; S_2 \,, \, s \rangle \to s \\ \hline & \langle S_1;$$

Hanne Riis Nielson

Example

$$s_{ij}(y) = i, s_{ij}(x) = j$$

 $s = s_{03}$

 $\langle y:=1; while \neg(x=1) do (y:=y \star x; x:=x-1), s \rangle \rightarrow s_{61}$

Exercise 2.3

Consider the statement

z := 0; while $y \le x$ do (z := z+1; x := x-y)

Construct a derivation tree for the statement when executed in a state where x has the value 17 and y has the value 5.

Terminology

Derivation tree

- > When we use the axioms and rules to derive a transition $\langle S, s \rangle \rightarrow s'$ we obtain a derivation tree:
 - the *root* of the tree is $\langle S, s \rangle \rightarrow s'$
 - the leaves of the tree are instances of the axioms
 - the *internal nodes* of the tree are the conclusions of instances of the rules; they have the corresponding instances of their premises as immediate sons
- The execution of S from s
 - *terminates* if there is a state s' such that $\langle S, s \rangle \rightarrow s'$
 - *loops* if there is *no* state s' such that $\langle S, s \rangle \rightarrow s'$

Exercise

Consider the following statements

- while \neg (x = 1) do (y := y*x; x := x-1)
- while $1 \le x \text{ do } (y := y^*x; x := x-1)$

- while true do skip

For each statement determine whether or not it always terminates or it always loops. Argue for your answer using the axioms and rules of the NS.

Semantic equivalence

Definition: Two statements S₁ and S₂ are semantically equivalent if for all states s and s'

 $\langle S_1,s\rangle \to s'$ if and only if $\langle S_2,s\rangle \to s'$

Lemma: while b do S and if b then (S; while b do S) else skip are semantically equivalent

are semantically equivalent Assume \mathcal{B} [b]s = ff (while b do S, s
angle
ightarrow ss=s" must be the case s=s" must be the case $\langle \text{skip}, s \rangle \rightarrow s''$ (if b then (S; while b do S) else skip, $s \rangle \rightarrow s''$

if b then (S; while b do S) else skip

Lemma: while b do S and

Proof: part 2

Exercise 2.6

Prove that (S₁; S₂); S₃ and S₁; (S₂; S₃) are semantically equivalent

Proof principle for natural semantics

Deterministic semantics

Definition: the natural semantics is deterministic if for all statements S and states s, s' and s''

 $\langle S, s \rangle \to s' \text{ and } \langle S, s \rangle \to s'' \text{ imply } s' = s''$

Lemma: the natural semantics of the while language is deterministic

Proof: by induction on the shape of the derivation tree

Induction on the shape of derivation trees

To prove a property of all the derivation trees of a natural semantics do the following:

- Prove that the property holds for all the simple derivation trees by showing that it holds for the axioms of the transition system.
- Prove that the property holds for all composite derivation trees: For each rule assume that the property holds for its premises — this is called the induction hypothesis — and prove that it also holds for the conclusion of the rule provided that the conditions of the rule are satisfied.

Summary: natural semantics

The exercise session today: Natural Semantics for the repeat construct

$$S ::= x := a \mid \text{skip} \mid S_1; S_2 \mid \text{if } b \text{ then } S_1 \text{ else } S_2$$
$$\mid \quad \text{while } b \text{ do } S \mid \text{ repeat } S \text{ until } b$$

The repeat construct

The most complex construct of the While language is the while b do S construct.

To improve your understanding of the material of the course you will get a sequence of exercises on the repeat S until b construct.

These exercises will all be part of the first assignment to be handed in on March 1st.

Exercise 2.7 and 2.10

Specify the semantics of the construct repeat S until b

The specification is not allowed to rely on the existence of the while construct in the language.

Prove that repeat *S* until *b* is semantically equivalent to *S*; if *b* then skip else (repeat *S* until *b*)

Harder: Show that repeat S until b is semantically equivalent to S; while ¬b do S

- If we have derivation trees that matches the premises and if the side condition is fulfilled
- then we can construct a derivation tree for the conclusion

Preliminary plan

9. Feb 2005	Lecture: Natural semantics (NS); NN ch 1 and 2.1			
	Exercises: 1.2, 1.13, 2.3, 2.4, 2.6, 2.7, 2.10			
	Programming: A prototype interpreter for NS			
16. Feb 2005	Lecture: Structural operational semantics (SOS); NN 2.2			
	Exercises: more later			
	Programming: A prototype interpreter for SOS			
23. Feb 2005	Lecture: Comparison of NS and SOS; NN 2.3, 3.1			
	Exercises: more later			
	Programming: more later			
1. March 2005	Deadline for handing the first exercise in:			
	"Everything one would like to know about the repeat construct – and a little bit more"			
	More details later			

Programming exercises for today

We shall use SML as this is very easy but of course any language will do ...

Goal for today

Syntax in the theory

Numerals $\geq n \in Num$ Variables $\succ x \in Var$ > Arithmetic expressions > $a \in AExp$ $a ::= n | x | a_1 + a_2 | a_1 \star a_2 | a_1 - a_2$ \blacktriangleright Boolean expressions $\blacktriangleright b \in \mathsf{BExp}$ *b* ::= true | false | $a_1 = a_2$ | $a_1 \le a_2$ | $\neg b$ | $b_1 \land b_2$ Statements $\succ S \in Stm$ $S ::= x := a \mid \text{skip} \mid S_1; S_2 \mid \text{if } b \text{ then } S_1 \text{ else } S_2$ while b do S

Syntax in SML

each syntactic category gives rise to a data type

```
type NUM = string
type VAR = string
datatype AEXP = Num of NUM
               Var of VAR
               Add of AEXP * AEXP
               Mult of AEXP * AEXP
               Sub
                    of AEXP * AEXP
datatype BEXP = tt
               ff
datatype STM
             = Ass
                    of VAR * AEXP
               Skip
               •••
```

Example: y := y * x becomes Ass ("y", Mult (Var "y", Var "x"))

Expressions
State = Var \rightarrow Z
$\mathcal{N}: Num \to Z$
\mathcal{A} : AExp $ ightarrow$ (State $ ightarrow$ Z)
\mathscr{B} : BExp \rightarrow (State \rightarrow T)

$$\mathcal{A}\llbracket n \rrbracket s = \mathcal{N}\llbracket n \rrbracket$$
$$\mathcal{A}\llbracket x \rrbracket s = s x$$
$$\mathcal{A}\llbracket a_1 + a_2 \rrbracket s = \mathcal{A}\llbracket a_1 \rrbracket s + \mathcal{A}\llbracket a_2 \rrbracket s$$
$$\mathcal{A}\llbracket a_1 \star a_2 \rrbracket s = \mathcal{A}\llbracket a_1 \rrbracket s \star \mathcal{A}\llbracket a_2 \rrbracket s$$
$$\mathcal{A}\llbracket a_1 \star a_2 \rrbracket s = \mathcal{A}\llbracket a_1 \rrbracket s \star \mathcal{A}\llbracket a_2 \rrbracket s$$
$$\mathcal{A}\llbracket a_1 - a_2 \rrbracket s = \mathcal{A}\llbracket a_1 \rrbracket s - \mathcal{A}\llbracket a_2 \rrbracket s$$

each semantic function gives rise to a SML function

```
type STATE = VAR -> int
(* N : NUM -> int *)
fun N n = valOf (Int.fromString n)
(* A: AEXP -> STATE -> int *)
fun A (Num n) s = N n
| A (Var x) s = s x
| A (Add (a1,a2)) s = A al s + A a2 s
| A ...
```

Natural semantics

```
\begin{split} \langle x &:= a \,, \, s \rangle \to s [x \mapsto \mathcal{A}[\![a]\!] s] \\ \langle \text{skip} \,, \, s \rangle \to s \\ \hline & \langle S_1 \,, \, s \rangle \to s' \quad \langle S_2 \,, \, s' \rangle \to s'' \\ \hline & \langle S_1 \,, \, s \rangle \to s' \quad \langle S_1 \,, \, s \rangle \to s'' \\ \hline & \langle S_1 \,, \, s \rangle \to s' \\ \hline & \langle S_1 \,, \, s \rangle \to s' \\ \hline & \langle S_1 \,, \, s \rangle \to s' \\ \hline & \langle S_1 \,, \, s \rangle \to s' \\ \hline & \langle S_1 \,, \, s \rangle \to s' \\ \hline & \langle S_1 \,, \, s \rangle \to s' \\ \hline & \langle S_1 \,, \, s \rangle \to s' \\ \hline & \langle S_1 \,, \, s \rangle \to s' \\ \hline & \langle S_1 \,, \, s \rangle \to s' \\ \hline & \langle S_1 \,, \, s \rangle \to s' \\ \hline & \langle S_1 \,, \, s \rangle \to s' \\ \hline & \langle S_1 \,, \, s \rangle \to s' \\ \hline & \langle S_1 \,, \, s \rangle \to s' \\ \hline & \langle S_1 \,, \, s \rangle \to s' \\ \hline & \langle S_1 \,, \, s \rangle \to s' \\ \hline & \langle S_1 \,, \, s \rangle \to s' \\ \hline & \langle S_1 \,, \, s \rangle \to s' \\ \hline & \langle S_1 \,, \, s \rangle \to s' \\ \hline & \langle S_1 \,, \, s \rangle \to s' \\ \hline & \langle S_1 \,, \, s \rangle \to s' \\ \hline & \langle S_1 \,, \, s \rangle \to s' \\ \hline & \langle S_1 \,, \, s \rangle \to s' \\ \hline & \langle S_1 \,, \, s \rangle \to s' \\ \hline & \langle S_1 \,, \, s \rangle \to s' \\ \hline & \langle S_1 \,, \, s \rangle \to s' \\ \hline & \langle S_1 \,, \, s \rangle \to s' \\ \hline & \langle S_1 \,, \, s \rangle \to s' \\ \hline & \langle S_1 \,, \, s \rangle \to s' \\ \hline & \langle S_1 \,, \, s \rangle \to s' \\ \hline & \langle S_1 \,, \, s \rangle \to s' \\ \hline & \langle S_1 \,, \, s \rangle \to s' \\ \hline & \langle S_1 \,, \, s \rangle \to s' \\ \hline & \langle S_1 \,, \, s \rangle \to s \\ \hline & \langle S_1 \,, \, s \rangle \to s \\ \hline & \langle S_1 \,, \, s \rangle \to s \\ \hline & \langle S_1 \,, \, s \rangle \to s \\ \hline & \langle S_1 \,, \, s \rangle \to s \\ \hline & \langle S_1 \,, \, s \rangle \to s \\ \hline & \langle S_1 \,, \, s \rangle \to s \\ \hline & \langle S_1 \,, \, s \rangle \to s \\ \hline & \langle S_1 \,, \, s \rangle \to s \\ \hline & \langle S_1 \,, \, s \rangle \to s \\ \hline & \langle S_1 \,, \, S_1 \,, \, s \rangle \to s \\ \hline & \langle S_1 \,, \, S_1
```

the transition relation gives rise to a function in SML – why does that work, by the way?

datatype CONFIG
 = Inter of STM * STATE
 | Final of STATE

```
fun update x a s = ...
fun NS (Inter ((Ass (x,a)), s)) = Final ...
| NS (Inter (Skip, s)) = Final s
| NS ..
```

Programming exercise

- Complete the SML implementation
- Test the implementations on programs like
 - y := 1; while $\neg(x = 1)$ do (y := y * x; x := x 1)
 - z := 0; while $y \le x \text{ do } (z := z+1; x := x-y)$
 - while \neg (x = 1) do (y := y*x; x := x-1)
 - while $1 \le x \text{ do } (y := y^*x; x := x-1)$
 - while true do skip

using a number of different states

Extend the implementation to include the repeat construct